277 lines
6.0 KiB
C
277 lines
6.0 KiB
C
/* $NetBSD: arc4random.c,v 1.10 2011/02/04 22:07:07 christos Exp $ */
|
|
/* $OpenBSD: arc4random.c,v 1.6 2001/06/05 05:05:38 pvalchev Exp $ */
|
|
|
|
/*
|
|
* Arc4 random number generator for OpenBSD.
|
|
* Copyright 1996 David Mazieres <dm@lcs.mit.edu>.
|
|
*
|
|
* Modification and redistribution in source and binary forms is
|
|
* permitted provided that due credit is given to the author and the
|
|
* OpenBSD project by leaving this copyright notice intact.
|
|
*/
|
|
|
|
/*
|
|
* This code is derived from section 17.1 of Applied Cryptography,
|
|
* second edition, which describes a stream cipher allegedly
|
|
* compatible with RSA Labs "RC4" cipher (the actual description of
|
|
* which is a trade secret). The same algorithm is used as a stream
|
|
* cipher called "arcfour" in Tatu Ylonen's ssh package.
|
|
*
|
|
* Here the stream cipher has been modified always to include the time
|
|
* when initializing the state. That makes it impossible to
|
|
* regenerate the same random sequence twice, so this can't be used
|
|
* for encryption, but will generate good random numbers.
|
|
*
|
|
* RC4 is a registered trademark of RSA Laboratories.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
#if defined(LIBC_SCCS) && !defined(lint)
|
|
__RCSID("$NetBSD: arc4random.c,v 1.10 2011/02/04 22:07:07 christos Exp $");
|
|
#endif /* LIBC_SCCS and not lint */
|
|
|
|
#include "namespace.h"
|
|
#include <fcntl.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/time.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#ifdef __weak_alias
|
|
__weak_alias(arc4random,_arc4random)
|
|
#endif
|
|
|
|
struct arc4_stream {
|
|
uint8_t i;
|
|
uint8_t j;
|
|
uint8_t s[256];
|
|
};
|
|
|
|
static int rs_initialized;
|
|
static struct arc4_stream rs;
|
|
|
|
static inline void arc4_init(struct arc4_stream *);
|
|
static inline void arc4_addrandom(struct arc4_stream *, u_char *, int);
|
|
static void arc4_stir(struct arc4_stream *);
|
|
static inline uint8_t arc4_getbyte(struct arc4_stream *);
|
|
static inline uint32_t arc4_getword(struct arc4_stream *);
|
|
|
|
static inline void
|
|
arc4_init(struct arc4_stream *as)
|
|
{
|
|
int n;
|
|
|
|
for (n = 0; n < 256; n++)
|
|
as->s[n] = n;
|
|
as->i = 0;
|
|
as->j = 0;
|
|
}
|
|
|
|
static inline void
|
|
arc4_addrandom(struct arc4_stream *as, u_char *dat, int datlen)
|
|
{
|
|
int n;
|
|
uint8_t si;
|
|
|
|
as->i--;
|
|
for (n = 0; n < 256; n++) {
|
|
as->i = (as->i + 1);
|
|
si = as->s[as->i];
|
|
as->j = (as->j + si + dat[n % datlen]);
|
|
as->s[as->i] = as->s[as->j];
|
|
as->s[as->j] = si;
|
|
}
|
|
as->j = as->i;
|
|
}
|
|
|
|
static void
|
|
arc4_stir(struct arc4_stream *as)
|
|
{
|
|
int fd;
|
|
struct {
|
|
struct timeval tv;
|
|
u_int rnd[(128 - sizeof(struct timeval)) / sizeof(u_int)];
|
|
} rdat;
|
|
int n;
|
|
|
|
gettimeofday(&rdat.tv, NULL);
|
|
fd = open("/dev/urandom", O_RDONLY);
|
|
if (fd != -1) {
|
|
read(fd, rdat.rnd, sizeof(rdat.rnd));
|
|
close(fd);
|
|
}
|
|
#ifdef KERN_URND
|
|
else {
|
|
int mib[2];
|
|
u_int i;
|
|
size_t len;
|
|
|
|
/* Device could not be opened, we might be chrooted, take
|
|
* randomness from sysctl. */
|
|
|
|
mib[0] = CTL_KERN;
|
|
mib[1] = KERN_URND;
|
|
|
|
for (i = 0; i < sizeof(rdat.rnd) / sizeof(u_int); i++) {
|
|
len = sizeof(u_int);
|
|
if (sysctl(mib, 2, &rdat.rnd[i], &len, NULL, 0) == -1)
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
/* fd < 0 or failed sysctl ? Ah, what the heck. We'll just take
|
|
* whatever was on the stack... */
|
|
|
|
arc4_addrandom(as, (void *) &rdat, sizeof(rdat));
|
|
|
|
/*
|
|
* Throw away the first N words of output, as suggested in the
|
|
* paper "Weaknesses in the Key Scheduling Algorithm of RC4"
|
|
* by Fluher, Mantin, and Shamir. (N = 256 in our case.)
|
|
*/
|
|
for (n = 0; n < 256 * 4; n++)
|
|
arc4_getbyte(as);
|
|
}
|
|
|
|
static inline uint8_t
|
|
arc4_getbyte(struct arc4_stream *as)
|
|
{
|
|
uint8_t si, sj;
|
|
|
|
as->i = (as->i + 1);
|
|
si = as->s[as->i];
|
|
as->j = (as->j + si);
|
|
sj = as->s[as->j];
|
|
as->s[as->i] = sj;
|
|
as->s[as->j] = si;
|
|
return (as->s[(si + sj) & 0xff]);
|
|
}
|
|
|
|
static inline uint32_t
|
|
arc4_getword(struct arc4_stream *as)
|
|
{
|
|
uint32_t val;
|
|
val = arc4_getbyte(as) << 24;
|
|
val |= arc4_getbyte(as) << 16;
|
|
val |= arc4_getbyte(as) << 8;
|
|
val |= arc4_getbyte(as);
|
|
return val;
|
|
}
|
|
|
|
void
|
|
arc4random_stir(void)
|
|
{
|
|
if (!rs_initialized) {
|
|
arc4_init(&rs);
|
|
rs_initialized = 1;
|
|
}
|
|
arc4_stir(&rs);
|
|
}
|
|
|
|
void
|
|
arc4random_addrandom(u_char *dat, int datlen)
|
|
{
|
|
if (!rs_initialized)
|
|
arc4random_stir();
|
|
arc4_addrandom(&rs, dat, datlen);
|
|
}
|
|
|
|
uint32_t
|
|
arc4random(void)
|
|
{
|
|
if (!rs_initialized)
|
|
arc4random_stir();
|
|
return arc4_getword(&rs);
|
|
}
|
|
|
|
void
|
|
arc4random_buf(void *buf, size_t len)
|
|
{
|
|
uint8_t *bp = buf;
|
|
uint8_t *ep = bp + len;
|
|
|
|
bp[0] = arc4_getbyte(&rs) % 3;
|
|
while (bp[0]--)
|
|
(void)arc4_getbyte(&rs);
|
|
|
|
while (bp < ep)
|
|
*bp++ = arc4_getbyte(&rs);
|
|
}
|
|
|
|
/*-
|
|
* Written by Damien Miller.
|
|
* With simplifications by Jinmei Tatuya.
|
|
*/
|
|
|
|
/*
|
|
* Calculate a uniformly distributed random number less than
|
|
* upper_bound avoiding "modulo bias".
|
|
*
|
|
* Uniformity is achieved by generating new random numbers
|
|
* until the one returned is outside the range
|
|
* [0, 2^32 % upper_bound[. This guarantees the selected
|
|
* random number will be inside the range
|
|
* [2^32 % upper_bound, 2^32[ which maps back to
|
|
* [0, upper_bound[ after reduction modulo upper_bound.
|
|
*/
|
|
uint32_t
|
|
arc4random_uniform(uint32_t upper_bound)
|
|
{
|
|
uint32_t r, min;
|
|
|
|
if (upper_bound < 2)
|
|
return 0;
|
|
|
|
#if defined(ULONG_MAX) && (ULONG_MAX > 0xFFFFFFFFUL)
|
|
min = 0x100000000UL % upper_bound;
|
|
#else
|
|
/* calculate (2^32 % upper_bound) avoiding 64-bit math */
|
|
if (upper_bound > 0x80000000U)
|
|
/* 2^32 - upper_bound (only one "value area") */
|
|
min = 1 + ~upper_bound;
|
|
else
|
|
/* ((2^32 - x) % x) == (2^32 % x) when x <= 2^31 */
|
|
min = (0xFFFFFFFFU - upper_bound + 1) % upper_bound;
|
|
#endif
|
|
|
|
/*
|
|
* This could theoretically loop forever but each retry has
|
|
* p > 0.5 (worst case, usually far better) of selecting a
|
|
* number inside the range we need, so it should rarely need
|
|
* to re-roll (at all).
|
|
*/
|
|
if (!rs_initialized)
|
|
arc4random_stir();
|
|
if (arc4_getbyte(&rs) & 1)
|
|
(void)arc4_getbyte(&rs);
|
|
do
|
|
r = arc4_getword(&rs);
|
|
while (r < min);
|
|
|
|
return r % upper_bound;
|
|
}
|
|
|
|
|
|
#if 0
|
|
/*-------- Test code for i386 --------*/
|
|
#include <stdio.h>
|
|
#include <machine/pctr.h>
|
|
int
|
|
main(int argc, char **argv)
|
|
{
|
|
const int iter = 1000000;
|
|
int i;
|
|
pctrval v;
|
|
|
|
v = rdtsc();
|
|
for (i = 0; i < iter; i++)
|
|
arc4random();
|
|
v = rdtsc() - v;
|
|
v /= iter;
|
|
|
|
printf("%qd cycles\n", v);
|
|
}
|
|
#endif
|