NetBSD/usr.sbin/cpuctl/arch/i386.c

2522 lines
66 KiB
C

/* $NetBSD: i386.c,v 1.127 2022/01/29 08:20:45 msaitoh Exp $ */
/*-
* Copyright (c) 1999, 2000, 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Frank van der Linden, and by Jason R. Thorpe.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c)2008 YAMAMOTO Takashi,
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#ifndef lint
__RCSID("$NetBSD: i386.c,v 1.127 2022/01/29 08:20:45 msaitoh Exp $");
#endif /* not lint */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/bitops.h>
#include <sys/sysctl.h>
#include <sys/ioctl.h>
#include <sys/cpuio.h>
#include <errno.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <err.h>
#include <assert.h>
#include <math.h>
#include <util.h>
#include <machine/specialreg.h>
#include <machine/cpu.h>
#include <x86/cpuvar.h>
#include <x86/cputypes.h>
#include <x86/cpu_ucode.h>
#include "../cpuctl.h"
#include "cpuctl_i386.h"
/* Size of buffer for printing humanized numbers */
#define HUMAN_BUFSIZE sizeof("999KB")
struct cpu_nocpuid_nameclass {
int cpu_vendor;
const char *cpu_vendorname;
const char *cpu_name;
int cpu_class;
void (*cpu_setup)(struct cpu_info *);
void (*cpu_cacheinfo)(struct cpu_info *);
void (*cpu_info)(struct cpu_info *);
};
struct cpu_cpuid_nameclass {
const char *cpu_id;
int cpu_vendor;
const char *cpu_vendorname;
struct cpu_cpuid_family {
int cpu_class;
const char *cpu_models[256];
const char *cpu_model_default;
void (*cpu_setup)(struct cpu_info *);
void (*cpu_probe)(struct cpu_info *);
void (*cpu_info)(struct cpu_info *);
} cpu_family[CPU_MAXFAMILY - CPU_MINFAMILY + 1];
};
static const struct x86_cache_info intel_cpuid_cache_info[] = INTEL_CACHE_INFO;
/*
* Map Brand ID from cpuid instruction to brand name.
* Source: Table 3-24, Mapping of Brand Indices; and Intel 64 and IA-32
* Processor Brand Strings, Chapter 3 in "Intel (R) 64 and IA-32
* Architectures Software Developer's Manual, Volume 2A".
*/
static const char * const i386_intel_brand[] = {
"", /* Unsupported */
"Celeron", /* Intel (R) Celeron (TM) processor */
"Pentium III", /* Intel (R) Pentium (R) III processor */
"Pentium III Xeon", /* Intel (R) Pentium (R) III Xeon (TM) processor */
"Pentium III", /* Intel (R) Pentium (R) III processor */
"", /* 0x05: Reserved */
"Mobile Pentium III",/* Mobile Intel (R) Pentium (R) III processor-M */
"Mobile Celeron", /* Mobile Intel (R) Celeron (R) processor */
"Pentium 4", /* Intel (R) Pentium (R) 4 processor */
"Pentium 4", /* Intel (R) Pentium (R) 4 processor */
"Celeron", /* Intel (R) Celeron (TM) processor */
"Xeon", /* Intel (R) Xeon (TM) processor */
"Xeon MP", /* Intel (R) Xeon (TM) processor MP */
"", /* 0x0d: Reserved */
"Mobile Pentium 4", /* Mobile Intel (R) Pentium (R) 4 processor-M */
"Mobile Celeron", /* Mobile Intel (R) Celeron (R) processor */
"", /* 0x10: Reserved */
"Mobile Genuine", /* Moblie Genuine Intel (R) processor */
"Celeron M", /* Intel (R) Celeron (R) M processor */
"Mobile Celeron", /* Mobile Intel (R) Celeron (R) processor */
"Celeron", /* Intel (R) Celeron (R) processor */
"Mobile Genuine", /* Moblie Genuine Intel (R) processor */
"Pentium M", /* Intel (R) Pentium (R) M processor */
"Mobile Celeron", /* Mobile Intel (R) Celeron (R) processor */
};
/*
* AMD processors don't have Brand IDs, so we need these names for probe.
*/
static const char * const amd_brand[] = {
"",
"Duron", /* AMD Duron(tm) */
"MP", /* AMD Athlon(tm) MP */
"XP", /* AMD Athlon(tm) XP */
"4" /* AMD Athlon(tm) 4 */
};
int cpu_vendor;
static char cpu_brand_string[49];
static char amd_brand_name[48];
static int use_pae, largepagesize;
/* Setup functions */
static void disable_tsc(struct cpu_info *);
static void amd_family5_setup(struct cpu_info *);
static void cyrix6x86_cpu_setup(struct cpu_info *);
static void winchip_cpu_setup(struct cpu_info *);
/* Brand/Model name functions */
static const char *intel_family6_name(struct cpu_info *);
static const char *amd_amd64_name(struct cpu_info *);
/* Probe functions */
static void amd_family6_probe(struct cpu_info *);
static void powernow_probe(struct cpu_info *);
static void intel_family_new_probe(struct cpu_info *);
static void via_cpu_probe(struct cpu_info *);
/* (Cache) Info functions */
static void intel_cpu_cacheinfo(struct cpu_info *);
static void amd_cpu_cacheinfo(struct cpu_info *);
static void via_cpu_cacheinfo(struct cpu_info *);
static void tmx86_get_longrun_status(u_int *, u_int *, u_int *);
static void transmeta_cpu_info(struct cpu_info *);
/* Common functions */
static void cpu_probe_base_features(struct cpu_info *, const char *);
static void cpu_probe_hv_features(struct cpu_info *, const char *);
static void cpu_probe_features(struct cpu_info *);
static void print_bits(const char *, const char *, const char *, uint32_t);
static void identifycpu_cpuids(struct cpu_info *);
static const char *print_cache_config(struct cpu_info *, int, const char *,
const char *);
static const char *print_tlb_config(struct cpu_info *, int, const char *,
const char *);
static void x86_print_cache_and_tlb_info(struct cpu_info *);
/*
* Note: these are just the ones that may not have a cpuid instruction.
* We deal with the rest in a different way.
*/
const struct cpu_nocpuid_nameclass i386_nocpuid_cpus[] = {
{ CPUVENDOR_INTEL, "Intel", "386SX", CPUCLASS_386,
NULL, NULL, NULL }, /* CPU_386SX */
{ CPUVENDOR_INTEL, "Intel", "386DX", CPUCLASS_386,
NULL, NULL, NULL }, /* CPU_386 */
{ CPUVENDOR_INTEL, "Intel", "486SX", CPUCLASS_486,
NULL, NULL, NULL }, /* CPU_486SX */
{ CPUVENDOR_INTEL, "Intel", "486DX", CPUCLASS_486,
NULL, NULL, NULL }, /* CPU_486 */
{ CPUVENDOR_CYRIX, "Cyrix", "486DLC", CPUCLASS_486,
NULL, NULL, NULL }, /* CPU_486DLC */
{ CPUVENDOR_CYRIX, "Cyrix", "6x86", CPUCLASS_486,
NULL, NULL, NULL }, /* CPU_6x86 */
{ CPUVENDOR_NEXGEN,"NexGen","586", CPUCLASS_386,
NULL, NULL, NULL }, /* CPU_NX586 */
};
const char *classnames[] = {
"386",
"486",
"586",
"686"
};
const char *modifiers[] = {
"",
"OverDrive",
"Dual",
""
};
const struct cpu_cpuid_nameclass i386_cpuid_cpus[] = {
{
/*
* For Intel processors, check Chapter 35Model-specific
* registers (MSRS), in "Intel (R) 64 and IA-32 Architectures
* Software Developer's Manual, Volume 3C".
*/
"GenuineIntel",
CPUVENDOR_INTEL,
"Intel",
/* Family 4 */
{ {
CPUCLASS_486,
{
"486DX", "486DX", "486SX", "486DX2", "486SL",
"486SX2", 0, "486DX2 W/B Enhanced",
"486DX4", 0, 0, 0, 0, 0, 0, 0,
},
"486", /* Default */
NULL,
NULL,
intel_cpu_cacheinfo,
},
/* Family 5 */
{
CPUCLASS_586,
{
"Pentium (P5 A-step)", "Pentium (P5)",
"Pentium (P54C)", "Pentium (P24T)",
"Pentium/MMX", "Pentium", 0,
"Pentium (P54C)", "Pentium/MMX (Tillamook)",
"Quark X1000", 0, 0, 0, 0, 0, 0,
},
"Pentium", /* Default */
NULL,
NULL,
intel_cpu_cacheinfo,
},
/* Family 6 */
{
CPUCLASS_686,
{
[0x00] = "Pentium Pro (A-step)",
[0x01] = "Pentium Pro",
[0x03] = "Pentium II (Klamath)",
[0x04] = "Pentium Pro",
[0x05] = "Pentium II/Celeron (Deschutes)",
[0x06] = "Celeron (Mendocino)",
[0x07] = "Pentium III (Katmai)",
[0x08] = "Pentium III (Coppermine)",
[0x09] = "Pentium M (Banias)",
[0x0a] = "Pentium III Xeon (Cascades)",
[0x0b] = "Pentium III (Tualatin)",
[0x0d] = "Pentium M (Dothan)",
[0x0e] = "Pentium Core Duo, Core solo",
[0x0f] = "Xeon 30xx, 32xx, 51xx, 53xx, 73xx, "
"Core 2 Quad 6xxx, "
"Core 2 Extreme 6xxx, "
"Core 2 Duo 4xxx, 5xxx, 6xxx, 7xxx "
"and Pentium DC",
[0x15] = "EP80579 Integrated Processor",
[0x16] = "Celeron (45nm)",
[0x17] = "Xeon 31xx, 33xx, 52xx, 54xx, "
"Core 2 Quad 8xxx and 9xxx",
[0x1a] = "Core i7, Xeon 34xx, 35xx and 55xx "
"(Nehalem)",
[0x1c] = "45nm Atom Family",
[0x1d] = "XeonMP 74xx (Nehalem)",
[0x1e] = "Core i7 and i5",
[0x1f] = "Core i7 and i5",
[0x25] = "Xeon 36xx & 56xx, i7, i5 and i3",
[0x26] = "Atom Family",
[0x27] = "Atom Family",
[0x2a] = "Xeon E3-12xx, 2nd gen i7, i5, "
"i3 2xxx",
[0x2c] = "Xeon 36xx & 56xx, i7, i5 and i3",
[0x2d] = "Xeon E5 Sandy Bridge family, "
"Core i7-39xx Extreme",
[0x2e] = "Xeon 75xx & 65xx",
[0x2f] = "Xeon E7 family",
[0x35] = "Atom Family",
[0x36] = "Atom S1000",
[0x37] = "Atom E3000, Z3[67]00",
[0x3a] = "Xeon E3-1200v2 and 3rd gen core, "
"Ivy Bridge",
[0x3c] = "4th gen Core, Xeon E3-12xx v3 "
"(Haswell)",
[0x3d] = "Core M-5xxx, 5th gen Core (Broadwell)",
[0x3e] = "Xeon E5/E7 v2 (Ivy Bridge-E), "
"Core i7-49xx Extreme",
[0x3f] = "Xeon E5-4600/2600/1600 v3, Xeon E7 v3 (Haswell-E), "
"Core i7-59xx Extreme",
[0x45] = "4th gen Core, Xeon E3-12xx v3 "
"(Haswell)",
[0x46] = "4th gen Core, Xeon E3-12xx v3 "
"(Haswell)",
[0x47] = "5th gen Core, Xeon E3-1200 v4 (Broadwell)",
[0x4a] = "Atom Z3400",
[0x4c] = "Atom X[57]-Z8000 (Airmont)",
[0x4d] = "Atom C2000",
[0x4e] = "6th gen Core, Xeon E3-1[25]00 v5 (Skylake)",
[0x4f] = "Xeon E[57] v4 (Broadwell), Core i7-69xx Extreme",
[0x55] = "Xeon Scalable (Skylake, Cascade Lake, Copper Lake)",
[0x56] = "Xeon D-1500 (Broadwell)",
[0x57] = "Xeon Phi [357]200 (Knights Landing)",
[0x5a] = "Atom E3500",
[0x5c] = "Atom (Goldmont)",
[0x5d] = "Atom X3-C3000 (Silvermont)",
[0x5e] = "6th gen Core, Xeon E3-1[25]00 v5 (Skylake)",
[0x5f] = "Atom (Goldmont, Denverton)",
[0x66] = "8th gen Core i3 (Cannon Lake)",
[0x6a] = "3rd gen Xeon Scalable (Ice Lake)",
[0x6c] = "3rd gen Xeon Scalable (Ice Lake)",
[0x7a] = "Atom (Goldmont Plus)",
[0x7d] = "10th gen Core (Ice Lake)",
[0x7e] = "10th gen Core (Ice Lake)",
[0x85] = "Xeon Phi 7215, 7285, 7295 (Knights Mill)",
[0x86] = "Atom (Tremont)",
[0x8c] = "11th gen Core (Tiger Lake)",
[0x8d] = "11th gen Core (Tiger Lake)",
[0x8e] = "7th or 8th gen Core (Kaby Lake, Coffee Lake) or Xeon E (Coffee Lake)",
[0x8f] = "future Xeon (Sapphire Rapids)",
[0x96] = "Atom x6000E (Elkhart Lake)",
[0x97] = "12th gen Core (Alder Lake)",
[0x9a] = "12th gen Core (Alder Lake)",
[0x9c] = "Pentium Silver N6xxx, Celeron N45xx, Celeron N51xx (Jasper Lake)",
[0x9e] = "7th or 8th gen Core (Kaby Lake, Coffee Lake) or Xeon E (Coffee Lake)",
[0xa5] = "10th gen Core (Comet Lake)",
[0xa6] = "10th gen Core (Comet Lake)",
[0xa7] = "11th gen Core (Rocket Lake)",
[0xa8] = "11th gen Core (Rocket Lake)",
[0xbf] = "12th gen Core (Alder Lake)",
},
"Pentium Pro, II or III", /* Default */
NULL,
intel_family_new_probe,
intel_cpu_cacheinfo,
},
/* Family > 6 */
{
CPUCLASS_686,
{
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
},
"Pentium 4", /* Default */
NULL,
intel_family_new_probe,
intel_cpu_cacheinfo,
} }
},
{
"AuthenticAMD",
CPUVENDOR_AMD,
"AMD",
/* Family 4 */
{ {
CPUCLASS_486,
{
0, 0, 0, "Am486DX2 W/T",
0, 0, 0, "Am486DX2 W/B",
"Am486DX4 W/T or Am5x86 W/T 150",
"Am486DX4 W/B or Am5x86 W/B 150", 0, 0,
0, 0, "Am5x86 W/T 133/160",
"Am5x86 W/B 133/160",
},
"Am486 or Am5x86", /* Default */
NULL,
NULL,
NULL,
},
/* Family 5 */
{
CPUCLASS_586,
{
"K5", "K5", "K5", "K5", 0, 0, "K6",
"K6", "K6-2", "K6-III", "Geode LX", 0, 0,
"K6-2+/III+", 0, 0,
},
"K5 or K6", /* Default */
amd_family5_setup,
NULL,
amd_cpu_cacheinfo,
},
/* Family 6 */
{
CPUCLASS_686,
{
0, "Athlon Model 1", "Athlon Model 2",
"Duron", "Athlon Model 4 (Thunderbird)",
0, "Athlon", "Duron", "Athlon", 0,
"Athlon", 0, 0, 0, 0, 0,
},
"K7 (Athlon)", /* Default */
NULL,
amd_family6_probe,
amd_cpu_cacheinfo,
},
/* Family > 6 */
{
CPUCLASS_686,
{
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
},
"Unknown K8 (Athlon)", /* Default */
NULL,
amd_family6_probe,
amd_cpu_cacheinfo,
} }
},
{
"CyrixInstead",
CPUVENDOR_CYRIX,
"Cyrix",
/* Family 4 */
{ {
CPUCLASS_486,
{
0, 0, 0,
"MediaGX",
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
},
"486", /* Default */
cyrix6x86_cpu_setup, /* XXX ?? */
NULL,
NULL,
},
/* Family 5 */
{
CPUCLASS_586,
{
0, 0, "6x86", 0,
"MMX-enhanced MediaGX (GXm)", /* or Geode? */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
},
"6x86", /* Default */
cyrix6x86_cpu_setup,
NULL,
NULL,
},
/* Family 6 */
{
CPUCLASS_686,
{
"6x86MX", 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
},
"6x86MX", /* Default */
cyrix6x86_cpu_setup,
NULL,
NULL,
},
/* Family > 6 */
{
CPUCLASS_686,
{
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
},
"Unknown 6x86MX", /* Default */
NULL,
NULL,
NULL,
} }
},
{ /* MediaGX is now owned by National Semiconductor */
"Geode by NSC",
CPUVENDOR_CYRIX, /* XXX */
"National Semiconductor",
/* Family 4, NSC never had any of these */
{ {
CPUCLASS_486,
{
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
},
"486 compatible", /* Default */
NULL,
NULL,
NULL,
},
/* Family 5: Geode family, formerly MediaGX */
{
CPUCLASS_586,
{
0, 0, 0, 0,
"Geode GX1",
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
},
"Geode", /* Default */
cyrix6x86_cpu_setup,
NULL,
amd_cpu_cacheinfo,
},
/* Family 6, not yet available from NSC */
{
CPUCLASS_686,
{
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
},
"Pentium Pro compatible", /* Default */
NULL,
NULL,
NULL,
},
/* Family > 6, not yet available from NSC */
{
CPUCLASS_686,
{
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
},
"Pentium Pro compatible", /* Default */
NULL,
NULL,
NULL,
} }
},
{
"CentaurHauls",
CPUVENDOR_IDT,
"IDT",
/* Family 4, IDT never had any of these */
{ {
CPUCLASS_486,
{
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
},
"486 compatible", /* Default */
NULL,
NULL,
NULL,
},
/* Family 5 */
{
CPUCLASS_586,
{
0, 0, 0, 0, "WinChip C6", 0, 0, 0,
"WinChip 2", "WinChip 3", 0, 0, 0, 0, 0, 0,
},
"WinChip", /* Default */
winchip_cpu_setup,
NULL,
NULL,
},
/* Family 6, VIA acquired IDT Centaur design subsidiary */
{
CPUCLASS_686,
{
0, 0, 0, 0, 0, 0, "C3 Samuel",
"C3 Samuel 2/Ezra", "C3 Ezra-T",
"C3 Nehemiah", "C7 Esther", 0, 0, "C7 Esther",
0, "VIA Nano",
},
"Unknown VIA/IDT", /* Default */
NULL,
via_cpu_probe,
via_cpu_cacheinfo,
},
/* Family > 6, not yet available from VIA */
{
CPUCLASS_686,
{
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
},
"Pentium Pro compatible", /* Default */
NULL,
NULL,
NULL,
} }
},
{
"GenuineTMx86",
CPUVENDOR_TRANSMETA,
"Transmeta",
/* Family 4, Transmeta never had any of these */
{ {
CPUCLASS_486,
{
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
},
"486 compatible", /* Default */
NULL,
NULL,
NULL,
},
/* Family 5 */
{
CPUCLASS_586,
{
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
},
"Crusoe", /* Default */
NULL,
NULL,
transmeta_cpu_info,
},
/* Family 6, not yet available from Transmeta */
{
CPUCLASS_686,
{
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
},
"Pentium Pro compatible", /* Default */
NULL,
NULL,
NULL,
},
/* Family > 6, not yet available from Transmeta */
{
CPUCLASS_686,
{
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
},
"Pentium Pro compatible", /* Default */
NULL,
NULL,
NULL,
} }
}
};
/*
* disable the TSC such that we don't use the TSC in microtime(9)
* because some CPUs got the implementation wrong.
*/
static void
disable_tsc(struct cpu_info *ci)
{
if (ci->ci_feat_val[0] & CPUID_TSC) {
ci->ci_feat_val[0] &= ~CPUID_TSC;
aprint_error("WARNING: broken TSC disabled\n");
}
}
static void
amd_family5_setup(struct cpu_info *ci)
{
switch (ci->ci_model) {
case 0: /* AMD-K5 Model 0 */
/*
* According to the AMD Processor Recognition App Note,
* the AMD-K5 Model 0 uses the wrong bit to indicate
* support for global PTEs, instead using bit 9 (APIC)
* rather than bit 13 (i.e. "0x200" vs. 0x2000". Oops!).
*/
if (ci->ci_feat_val[0] & CPUID_APIC)
ci->ci_feat_val[0] =
(ci->ci_feat_val[0] & ~CPUID_APIC) | CPUID_PGE;
/*
* XXX But pmap_pg_g is already initialized -- need to kick
* XXX the pmap somehow. How does the MP branch do this?
*/
break;
}
}
static void
cyrix6x86_cpu_setup(struct cpu_info *ci)
{
/*
* Do not disable the TSC on the Geode GX, it's reported to
* work fine.
*/
if (ci->ci_signature != 0x552)
disable_tsc(ci);
}
static void
winchip_cpu_setup(struct cpu_info *ci)
{
switch (ci->ci_model) {
case 4: /* WinChip C6 */
disable_tsc(ci);
}
}
static const char *
intel_family6_name(struct cpu_info *ci)
{
const char *ret = NULL;
u_int l2cache = ci->ci_cinfo[CAI_L2CACHE].cai_totalsize;
if (ci->ci_model == 5) {
switch (l2cache) {
case 0:
case 128 * 1024:
ret = "Celeron (Covington)";
break;
case 256 * 1024:
ret = "Mobile Pentium II (Dixon)";
break;
case 512 * 1024:
ret = "Pentium II";
break;
case 1 * 1024 * 1024:
case 2 * 1024 * 1024:
ret = "Pentium II Xeon";
break;
}
} else if (ci->ci_model == 6) {
switch (l2cache) {
case 256 * 1024:
case 512 * 1024:
ret = "Mobile Pentium II";
break;
}
} else if (ci->ci_model == 7) {
switch (l2cache) {
case 512 * 1024:
ret = "Pentium III";
break;
case 1 * 1024 * 1024:
case 2 * 1024 * 1024:
ret = "Pentium III Xeon";
break;
}
} else if (ci->ci_model >= 8) {
if (ci->ci_brand_id && ci->ci_brand_id < 0x10) {
switch (ci->ci_brand_id) {
case 0x3:
if (ci->ci_signature == 0x6B1)
ret = "Celeron";
break;
case 0x8:
if (ci->ci_signature >= 0xF13)
ret = "genuine processor";
break;
case 0xB:
if (ci->ci_signature >= 0xF13)
ret = "Xeon MP";
break;
case 0xE:
if (ci->ci_signature < 0xF13)
ret = "Xeon";
break;
}
if (ret == NULL)
ret = i386_intel_brand[ci->ci_brand_id];
}
}
return ret;
}
/*
* Identify AMD64 CPU names from cpuid.
*
* Based on:
* "Revision Guide for AMD Athlon 64 and AMD Opteron Processors"
* http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25759.pdf
* "Revision Guide for AMD NPT Family 0Fh Processors"
* http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33610.pdf
* and other miscellaneous reports.
*
* This is all rather pointless, these are cross 'brand' since the raw
* silicon is shared.
*/
static const char *
amd_amd64_name(struct cpu_info *ci)
{
static char family_str[32];
/* Only called if family >= 15 */
switch (ci->ci_family) {
case 15:
switch (ci->ci_model) {
case 0x21: /* rev JH-E1/E6 */
case 0x41: /* rev JH-F2 */
return "Dual-Core Opteron";
case 0x23: /* rev JH-E6 (Toledo) */
return "Dual-Core Opteron or Athlon 64 X2";
case 0x43: /* rev JH-F2 (Windsor) */
return "Athlon 64 FX or Athlon 64 X2";
case 0x24: /* rev SH-E5 (Lancaster?) */
return "Mobile Athlon 64 or Turion 64";
case 0x05: /* rev SH-B0/B3/C0/CG (SledgeHammer?) */
return "Opteron or Athlon 64 FX";
case 0x15: /* rev SH-D0 */
case 0x25: /* rev SH-E4 */
return "Opteron";
case 0x27: /* rev DH-E4, SH-E4 */
return "Athlon 64 or Athlon 64 FX or Opteron";
case 0x48: /* rev BH-F2 */
return "Turion 64 X2";
case 0x04: /* rev SH-B0/C0/CG (ClawHammer) */
case 0x07: /* rev SH-CG (ClawHammer) */
case 0x0b: /* rev CH-CG */
case 0x14: /* rev SH-D0 */
case 0x17: /* rev SH-D0 */
case 0x1b: /* rev CH-D0 */
return "Athlon 64";
case 0x2b: /* rev BH-E4 (Manchester) */
case 0x4b: /* rev BH-F2 (Windsor) */
return "Athlon 64 X2";
case 0x6b: /* rev BH-G1 (Brisbane) */
return "Athlon X2 or Athlon 64 X2";
case 0x08: /* rev CH-CG */
case 0x0c: /* rev DH-CG (Newcastle) */
case 0x0e: /* rev DH-CG (Newcastle?) */
case 0x0f: /* rev DH-CG (Newcastle/Paris) */
case 0x18: /* rev CH-D0 */
case 0x1c: /* rev DH-D0 (Winchester) */
case 0x1f: /* rev DH-D0 (Winchester/Victoria) */
case 0x2c: /* rev DH-E3/E6 */
case 0x2f: /* rev DH-E3/E6 (Venice/Palermo) */
case 0x4f: /* rev DH-F2 (Orleans/Manila) */
case 0x5f: /* rev DH-F2 (Orleans/Manila) */
case 0x6f: /* rev DH-G1 */
return "Athlon 64 or Sempron";
default:
break;
}
return "Unknown AMD64 CPU";
#if 0
case 16:
return "Family 10h";
case 17:
return "Family 11h";
case 18:
return "Family 12h";
case 19:
return "Family 14h";
case 20:
return "Family 15h";
#endif
default:
break;
}
snprintf(family_str, sizeof family_str, "Family %xh", ci->ci_family);
return family_str;
}
static void
intel_family_new_probe(struct cpu_info *ci)
{
uint32_t descs[4];
x86_cpuid(0x80000000, descs);
/*
* Determine extended feature flags.
*/
if (descs[0] >= 0x80000001) {
x86_cpuid(0x80000001, descs);
ci->ci_feat_val[2] |= descs[3];
ci->ci_feat_val[3] |= descs[2];
}
}
static void
via_cpu_probe(struct cpu_info *ci)
{
u_int stepping = CPUID_TO_STEPPING(ci->ci_signature);
u_int descs[4];
u_int lfunc;
/*
* Determine the largest extended function value.
*/
x86_cpuid(0x80000000, descs);
lfunc = descs[0];
/*
* Determine the extended feature flags.
*/
if (lfunc >= 0x80000001) {
x86_cpuid(0x80000001, descs);
ci->ci_feat_val[2] |= descs[3];
}
if (ci->ci_model < 0x9 || (ci->ci_model == 0x9 && stepping < 3))
return;
/* Nehemiah or Esther */
x86_cpuid(0xc0000000, descs);
lfunc = descs[0];
if (lfunc < 0xc0000001) /* no ACE, no RNG */
return;
x86_cpuid(0xc0000001, descs);
lfunc = descs[3];
ci->ci_feat_val[4] = lfunc;
}
static void
amd_family6_probe(struct cpu_info *ci)
{
uint32_t descs[4];
char *p;
size_t i;
x86_cpuid(0x80000000, descs);
/*
* Determine the extended feature flags.
*/
if (descs[0] >= 0x80000001) {
x86_cpuid(0x80000001, descs);
ci->ci_feat_val[2] |= descs[3]; /* %edx */
ci->ci_feat_val[3] = descs[2]; /* %ecx */
}
if (*cpu_brand_string == '\0')
return;
for (i = 1; i < __arraycount(amd_brand); i++)
if ((p = strstr(cpu_brand_string, amd_brand[i])) != NULL) {
ci->ci_brand_id = i;
strlcpy(amd_brand_name, p, sizeof(amd_brand_name));
break;
}
}
static void
intel_cpu_cacheinfo(struct cpu_info *ci)
{
const struct x86_cache_info *cai;
u_int descs[4];
int iterations, i, j;
int type, level, ways, linesize, sets;
int caitype = -1;
uint8_t desc;
/* Return if the cpu is old pre-cpuid instruction cpu */
if (ci->ci_cpu_type >= 0)
return;
if (ci->ci_max_cpuid < 2)
return;
/*
* Parse the cache info from `cpuid leaf 2', if we have it.
* XXX This is kinda ugly, but hey, so is the architecture...
*/
x86_cpuid(2, descs);
iterations = descs[0] & 0xff;
while (iterations-- > 0) {
for (i = 0; i < 4; i++) {
if (descs[i] & 0x80000000)
continue;
for (j = 0; j < 4; j++) {
/*
* The least significant byte in EAX
* ((desc[0] >> 0) & 0xff) is always 0x01 and
* it should be ignored.
*/
if (i == 0 && j == 0)
continue;
desc = (descs[i] >> (j * 8)) & 0xff;
if (desc == 0)
continue;
cai = cpu_cacheinfo_lookup(
intel_cpuid_cache_info, desc);
if (cai != NULL)
ci->ci_cinfo[cai->cai_index] = *cai;
else if ((verbose != 0) && (desc != 0xff)
&& (desc != 0xfe))
aprint_error_dev(ci->ci_dev, "error:"
" Unknown cacheinfo desc %02x\n",
desc);
}
}
x86_cpuid(2, descs);
}
if (ci->ci_max_cpuid < 4)
return;
/* Parse the cache info from `cpuid leaf 4', if we have it. */
cpu_dcp_cacheinfo(ci, 4);
if (ci->ci_max_cpuid < 0x18)
return;
/* Parse the TLB info from `cpuid leaf 18H', if we have it. */
x86_cpuid(0x18, descs);
iterations = descs[0];
for (i = 0; i <= iterations; i++) {
uint32_t pgsize;
bool full;
x86_cpuid2(0x18, i, descs);
type = __SHIFTOUT(descs[3], CPUID_DATP_TCTYPE);
if (type == CPUID_DATP_TCTYPE_N)
continue;
level = __SHIFTOUT(descs[3], CPUID_DATP_TCLEVEL);
pgsize = __SHIFTOUT(descs[1], CPUID_DATP_PGSIZE);
switch (level) {
case 1:
if (type == CPUID_DATP_TCTYPE_I) {
switch (pgsize) {
case CPUID_DATP_PGSIZE_4KB:
caitype = CAI_ITLB;
break;
case CPUID_DATP_PGSIZE_2MB
| CPUID_DATP_PGSIZE_4MB:
caitype = CAI_ITLB2;
break;
case CPUID_DATP_PGSIZE_1GB:
caitype = CAI_L1_1GBITLB;
break;
default:
aprint_error_dev(ci->ci_dev,
"error: unknown ITLB size (%d)\n",
pgsize);
caitype = CAI_ITLB;
break;
}
} else if (type == CPUID_DATP_TCTYPE_D) {
switch (pgsize) {
case CPUID_DATP_PGSIZE_4KB:
caitype = CAI_DTLB;
break;
case CPUID_DATP_PGSIZE_2MB
| CPUID_DATP_PGSIZE_4MB:
caitype = CAI_DTLB2;
break;
case CPUID_DATP_PGSIZE_1GB:
caitype = CAI_L1_1GBDTLB;
break;
default:
aprint_error_dev(ci->ci_dev,
"error: unknown DTLB size (%d)\n",
pgsize);
caitype = CAI_DTLB;
break;
}
} else if (type == CPUID_DATP_TCTYPE_L)
caitype = CAI_L1_LD_TLB;
else if (type == CPUID_DATP_TCTYPE_S)
caitype = CAI_L1_ST_TLB;
else
caitype = -1;
break;
case 2:
if (type == CPUID_DATP_TCTYPE_I)
caitype = CAI_L2_ITLB;
else if (type == CPUID_DATP_TCTYPE_D)
caitype = CAI_L2_DTLB;
else if (type == CPUID_DATP_TCTYPE_U) {
if (pgsize == CPUID_DATP_PGSIZE_4KB)
caitype = CAI_L2_STLB;
else if (pgsize == (CPUID_DATP_PGSIZE_4KB
| CPUID_DATP_PGSIZE_2MB))
caitype = CAI_L2_STLB2;
else if (pgsize == (CPUID_DATP_PGSIZE_2MB
| CPUID_DATP_PGSIZE_4MB))
caitype = CAI_L2_STLB3;
else if ((pgsize & CPUID_DATP_PGSIZE_1GB)
!= 0) {
/* FIXME: 1GB max TLB */
caitype = CAI_L2_STLB3;
linesize = 1024 * 1024 * 1024;
} else if ((pgsize & CPUID_DATP_PGSIZE_4MB)
!= 0) {
/* FIXME: 4MB max TLB */
caitype = CAI_L2_STLB3;
linesize = 4 * 1024 * 1024;
} else if ((pgsize & CPUID_DATP_PGSIZE_2MB)
!= 0) {
/* FIXME: 2MB max TLB */
caitype = CAI_L2_STLB2;
linesize = 2 * 1024 * 1024;
} else {
aprint_error_dev(ci->ci_dev, "error: "
"unknown L2 STLB size (%d)\n",
pgsize);
caitype = CAI_L2_STLB;
linesize = 4 * 1024;
}
} else
caitype = -1;
break;
case 3:
/* XXX need work for L3 TLB */
caitype = CAI_L3CACHE;
break;
default:
caitype = -1;
break;
}
if (caitype == -1) {
aprint_error_dev(ci->ci_dev,
"error: unknown TLB level&type (%d & %d)\n",
level, type);
continue;
}
switch (pgsize) {
case CPUID_DATP_PGSIZE_4KB:
linesize = 4 * 1024;
break;
case CPUID_DATP_PGSIZE_2MB:
linesize = 2 * 1024 * 1024;
break;
case CPUID_DATP_PGSIZE_4MB:
linesize = 4 * 1024 * 1024;
break;
case CPUID_DATP_PGSIZE_1GB:
linesize = 1024 * 1024 * 1024;
break;
default:
if ((pgsize & CPUID_DATP_PGSIZE_1GB) != 0)
linesize = 1024 * 1024 * 1024; /* MAX 1G */
else if ((pgsize & CPUID_DATP_PGSIZE_4MB) != 0)
linesize = 4 * 1024 * 1024; /* MAX 4M */
else if ((pgsize & CPUID_DATP_PGSIZE_2MB) != 0)
linesize = 2 * 1024 * 1024; /* MAX 2M */
else
linesize = 4 * 1024; /* XXX default to 4K */
aprint_error_dev(ci->ci_dev, "WARNING: Currently "
"this info can't print correctly "
"(level = %d, pgsize = %d)\n",
level, pgsize);
break;
}
ways = __SHIFTOUT(descs[1], CPUID_DATP_WAYS);
sets = descs[2];
full = descs[3] & CPUID_DATP_FULLASSOC;
ci->ci_cinfo[caitype].cai_totalsize
= ways * sets; /* entries */
ci->ci_cinfo[caitype].cai_associativity
= full ? 0xff : ways;
ci->ci_cinfo[caitype].cai_linesize = linesize; /* pg size */
}
}
static const struct x86_cache_info amd_cpuid_l2l3cache_assoc_info[] =
AMD_L2L3CACHE_INFO;
static void
amd_cpu_cacheinfo(struct cpu_info *ci)
{
const struct x86_cache_info *cp;
struct x86_cache_info *cai;
u_int descs[4];
u_int lfunc;
/* K5 model 0 has none of this info. */
if (ci->ci_family == 5 && ci->ci_model == 0)
return;
/* Determine the largest extended function value. */
x86_cpuid(0x80000000, descs);
lfunc = descs[0];
if (lfunc < 0x80000005)
return;
/* Determine L1 cache/TLB info. */
x86_cpuid(0x80000005, descs);
/* K6-III and higher have large page TLBs. */
if ((ci->ci_family == 5 && ci->ci_model >= 9) || ci->ci_family >= 6) {
cai = &ci->ci_cinfo[CAI_ITLB2];
cai->cai_totalsize = AMD_L1_EAX_ITLB_ENTRIES(descs[0]);
cai->cai_associativity = AMD_L1_EAX_ITLB_ASSOC(descs[0]);
cai->cai_linesize = largepagesize;
cai = &ci->ci_cinfo[CAI_DTLB2];
cai->cai_totalsize = AMD_L1_EAX_DTLB_ENTRIES(descs[0]);
cai->cai_associativity = AMD_L1_EAX_DTLB_ASSOC(descs[0]);
cai->cai_linesize = largepagesize;
}
cai = &ci->ci_cinfo[CAI_ITLB];
cai->cai_totalsize = AMD_L1_EBX_ITLB_ENTRIES(descs[1]);
cai->cai_associativity = AMD_L1_EBX_ITLB_ASSOC(descs[1]);
cai->cai_linesize = (4 * 1024);
cai = &ci->ci_cinfo[CAI_DTLB];
cai->cai_totalsize = AMD_L1_EBX_DTLB_ENTRIES(descs[1]);
cai->cai_associativity = AMD_L1_EBX_DTLB_ASSOC(descs[1]);
cai->cai_linesize = (4 * 1024);
cai = &ci->ci_cinfo[CAI_DCACHE];
cai->cai_totalsize = AMD_L1_ECX_DC_SIZE(descs[2]);
cai->cai_associativity = AMD_L1_ECX_DC_ASSOC(descs[2]);
cai->cai_linesize = AMD_L1_ECX_DC_LS(descs[2]);
cai = &ci->ci_cinfo[CAI_ICACHE];
cai->cai_totalsize = AMD_L1_EDX_IC_SIZE(descs[3]);
cai->cai_associativity = AMD_L1_EDX_IC_ASSOC(descs[3]);
cai->cai_linesize = AMD_L1_EDX_IC_LS(descs[3]);
if (lfunc < 0x80000006)
return;
/* Determine L2 cache/TLB info. */
x86_cpuid(0x80000006, descs);
cai = &ci->ci_cinfo[CAI_L2_ITLB];
cai->cai_totalsize = AMD_L2_EBX_IUTLB_ENTRIES(descs[1]);
cai->cai_associativity = AMD_L2_EBX_IUTLB_ASSOC(descs[1]);
cai->cai_linesize = (4 * 1024);
cp = cpu_cacheinfo_lookup(amd_cpuid_l2l3cache_assoc_info,
cai->cai_associativity);
if (cp != NULL)
cai->cai_associativity = cp->cai_associativity;
else
cai->cai_associativity = 0; /* XXX Unknown/reserved */
cai = &ci->ci_cinfo[CAI_L2_ITLB2];
cai->cai_totalsize = AMD_L2_EAX_IUTLB_ENTRIES(descs[0]);
cai->cai_associativity = AMD_L2_EAX_IUTLB_ASSOC(descs[0]);
cai->cai_linesize = largepagesize;
cp = cpu_cacheinfo_lookup(amd_cpuid_l2l3cache_assoc_info,
cai->cai_associativity);
if (cp != NULL)
cai->cai_associativity = cp->cai_associativity;
else
cai->cai_associativity = 0; /* XXX Unknown/reserved */
cai = &ci->ci_cinfo[CAI_L2_DTLB];
cai->cai_totalsize = AMD_L2_EBX_DTLB_ENTRIES(descs[1]);
cai->cai_associativity = AMD_L2_EBX_DTLB_ASSOC(descs[1]);
cai->cai_linesize = (4 * 1024);
cp = cpu_cacheinfo_lookup(amd_cpuid_l2l3cache_assoc_info,
cai->cai_associativity);
if (cp != NULL)
cai->cai_associativity = cp->cai_associativity;
else
cai->cai_associativity = 0; /* XXX Unknown/reserved */
cai = &ci->ci_cinfo[CAI_L2_DTLB2];
cai->cai_totalsize = AMD_L2_EAX_DTLB_ENTRIES(descs[0]);
cai->cai_associativity = AMD_L2_EAX_DTLB_ASSOC(descs[0]);
cai->cai_linesize = largepagesize;
cp = cpu_cacheinfo_lookup(amd_cpuid_l2l3cache_assoc_info,
cai->cai_associativity);
if (cp != NULL)
cai->cai_associativity = cp->cai_associativity;
else
cai->cai_associativity = 0; /* XXX Unknown/reserved */
cai = &ci->ci_cinfo[CAI_L2CACHE];
cai->cai_totalsize = AMD_L2_ECX_C_SIZE(descs[2]);
cai->cai_associativity = AMD_L2_ECX_C_ASSOC(descs[2]);
cai->cai_linesize = AMD_L2_ECX_C_LS(descs[2]);
cp = cpu_cacheinfo_lookup(amd_cpuid_l2l3cache_assoc_info,
cai->cai_associativity);
if (cp != NULL)
cai->cai_associativity = cp->cai_associativity;
else
cai->cai_associativity = 0; /* XXX Unknown/reserved */
/* Determine L3 cache info on AMD Family 10h and newer processors */
if (ci->ci_family >= 0x10) {
cai = &ci->ci_cinfo[CAI_L3CACHE];
cai->cai_totalsize = AMD_L3_EDX_C_SIZE(descs[3]);
cai->cai_associativity = AMD_L3_EDX_C_ASSOC(descs[3]);
cai->cai_linesize = AMD_L3_EDX_C_LS(descs[3]);
cp = cpu_cacheinfo_lookup(amd_cpuid_l2l3cache_assoc_info,
cai->cai_associativity);
if (cp != NULL)
cai->cai_associativity = cp->cai_associativity;
else
cai->cai_associativity = 0; /* XXX Unkn/Rsvd */
}
if (lfunc < 0x80000019)
return;
/* Determine 1GB TLB info. */
x86_cpuid(0x80000019, descs);
cai = &ci->ci_cinfo[CAI_L1_1GBITLB];
cai->cai_totalsize = AMD_L1_1GB_EAX_IUTLB_ENTRIES(descs[0]);
cai->cai_associativity = AMD_L1_1GB_EAX_IUTLB_ASSOC(descs[0]);
cai->cai_linesize = (1024 * 1024 * 1024);
cp = cpu_cacheinfo_lookup(amd_cpuid_l2l3cache_assoc_info,
cai->cai_associativity);
if (cp != NULL)
cai->cai_associativity = cp->cai_associativity;
else
cai->cai_associativity = 0; /* XXX Unknown/reserved */
cai = &ci->ci_cinfo[CAI_L1_1GBDTLB];
cai->cai_totalsize = AMD_L1_1GB_EAX_DTLB_ENTRIES(descs[0]);
cai->cai_associativity = AMD_L1_1GB_EAX_DTLB_ASSOC(descs[0]);
cai->cai_linesize = (1024 * 1024 * 1024);
cp = cpu_cacheinfo_lookup(amd_cpuid_l2l3cache_assoc_info,
cai->cai_associativity);
if (cp != NULL)
cai->cai_associativity = cp->cai_associativity;
else
cai->cai_associativity = 0; /* XXX Unknown/reserved */
cai = &ci->ci_cinfo[CAI_L2_1GBITLB];
cai->cai_totalsize = AMD_L2_1GB_EBX_IUTLB_ENTRIES(descs[1]);
cai->cai_associativity = AMD_L2_1GB_EBX_IUTLB_ASSOC(descs[1]);
cai->cai_linesize = (1024 * 1024 * 1024);
cp = cpu_cacheinfo_lookup(amd_cpuid_l2l3cache_assoc_info,
cai->cai_associativity);
if (cp != NULL)
cai->cai_associativity = cp->cai_associativity;
else
cai->cai_associativity = 0; /* XXX Unknown/reserved */
cai = &ci->ci_cinfo[CAI_L2_1GBDTLB];
cai->cai_totalsize = AMD_L2_1GB_EBX_DUTLB_ENTRIES(descs[1]);
cai->cai_associativity = AMD_L2_1GB_EBX_DUTLB_ASSOC(descs[1]);
cai->cai_linesize = (1024 * 1024 * 1024);
cp = cpu_cacheinfo_lookup(amd_cpuid_l2l3cache_assoc_info,
cai->cai_associativity);
if (cp != NULL)
cai->cai_associativity = cp->cai_associativity;
else
cai->cai_associativity = 0; /* XXX Unknown/reserved */
if (lfunc < 0x8000001d)
return;
if (ci->ci_feat_val[3] & CPUID_TOPOEXT)
cpu_dcp_cacheinfo(ci, 0x8000001d);
}
static void
via_cpu_cacheinfo(struct cpu_info *ci)
{
struct x86_cache_info *cai;
int stepping;
u_int descs[4];
u_int lfunc;
stepping = CPUID_TO_STEPPING(ci->ci_signature);
/*
* Determine the largest extended function value.
*/
x86_cpuid(0x80000000, descs);
lfunc = descs[0];
/*
* Determine L1 cache/TLB info.
*/
if (lfunc < 0x80000005) {
/* No L1 cache info available. */
return;
}
x86_cpuid(0x80000005, descs);
cai = &ci->ci_cinfo[CAI_ITLB];
cai->cai_totalsize = VIA_L1_EBX_ITLB_ENTRIES(descs[1]);
cai->cai_associativity = VIA_L1_EBX_ITLB_ASSOC(descs[1]);
cai->cai_linesize = (4 * 1024);
cai = &ci->ci_cinfo[CAI_DTLB];
cai->cai_totalsize = VIA_L1_EBX_DTLB_ENTRIES(descs[1]);
cai->cai_associativity = VIA_L1_EBX_DTLB_ASSOC(descs[1]);
cai->cai_linesize = (4 * 1024);
cai = &ci->ci_cinfo[CAI_DCACHE];
cai->cai_totalsize = VIA_L1_ECX_DC_SIZE(descs[2]);
cai->cai_associativity = VIA_L1_ECX_DC_ASSOC(descs[2]);
cai->cai_linesize = VIA_L1_EDX_IC_LS(descs[2]);
if (ci->ci_model == 9 && stepping == 8) {
/* Erratum: stepping 8 reports 4 when it should be 2 */
cai->cai_associativity = 2;
}
cai = &ci->ci_cinfo[CAI_ICACHE];
cai->cai_totalsize = VIA_L1_EDX_IC_SIZE(descs[3]);
cai->cai_associativity = VIA_L1_EDX_IC_ASSOC(descs[3]);
cai->cai_linesize = VIA_L1_EDX_IC_LS(descs[3]);
if (ci->ci_model == 9 && stepping == 8) {
/* Erratum: stepping 8 reports 4 when it should be 2 */
cai->cai_associativity = 2;
}
/*
* Determine L2 cache/TLB info.
*/
if (lfunc < 0x80000006) {
/* No L2 cache info available. */
return;
}
x86_cpuid(0x80000006, descs);
cai = &ci->ci_cinfo[CAI_L2CACHE];
if (ci->ci_model >= 9) {
cai->cai_totalsize = VIA_L2N_ECX_C_SIZE(descs[2]);
cai->cai_associativity = VIA_L2N_ECX_C_ASSOC(descs[2]);
cai->cai_linesize = VIA_L2N_ECX_C_LS(descs[2]);
} else {
cai->cai_totalsize = VIA_L2_ECX_C_SIZE(descs[2]);
cai->cai_associativity = VIA_L2_ECX_C_ASSOC(descs[2]);
cai->cai_linesize = VIA_L2_ECX_C_LS(descs[2]);
}
}
static void
tmx86_get_longrun_status(u_int *frequency, u_int *voltage, u_int *percentage)
{
u_int descs[4];
x86_cpuid(0x80860007, descs);
*frequency = descs[0];
*voltage = descs[1];
*percentage = descs[2];
}
static void
transmeta_cpu_info(struct cpu_info *ci)
{
u_int descs[4], nreg;
u_int frequency, voltage, percentage;
x86_cpuid(0x80860000, descs);
nreg = descs[0];
if (nreg >= 0x80860001) {
x86_cpuid(0x80860001, descs);
aprint_verbose_dev(ci->ci_dev, "Processor revision %u.%u.%u.%u\n",
(descs[1] >> 24) & 0xff,
(descs[1] >> 16) & 0xff,
(descs[1] >> 8) & 0xff,
descs[1] & 0xff);
}
if (nreg >= 0x80860002) {
x86_cpuid(0x80860002, descs);
aprint_verbose_dev(ci->ci_dev, "Code Morphing Software Rev: %u.%u.%u-%u-%u\n",
(descs[1] >> 24) & 0xff,
(descs[1] >> 16) & 0xff,
(descs[1] >> 8) & 0xff,
descs[1] & 0xff,
descs[2]);
}
if (nreg >= 0x80860006) {
union {
char text[65];
u_int descs[4][4];
} info;
int i;
for (i=0; i<4; i++) {
x86_cpuid(0x80860003 + i, info.descs[i]);
}
info.text[64] = '\0';
aprint_verbose_dev(ci->ci_dev, "%s\n", info.text);
}
if (nreg >= 0x80860007) {
tmx86_get_longrun_status(&frequency,
&voltage, &percentage);
aprint_verbose_dev(ci->ci_dev, "LongRun <%dMHz %dmV %d%%>\n",
frequency, voltage, percentage);
}
}
static void
cpu_probe_base_features(struct cpu_info *ci, const char *cpuname)
{
u_int descs[4];
int i;
uint32_t brand[12];
memset(ci, 0, sizeof(*ci));
ci->ci_dev = cpuname;
ci->ci_cpu_type = x86_identify();
if (ci->ci_cpu_type >= 0) {
/* Old pre-cpuid instruction cpu */
ci->ci_max_cpuid = -1;
return;
}
/*
* This CPU supports cpuid instruction, so we can call x86_cpuid()
* function.
*/
/*
* Fn0000_0000:
* - Save cpuid max level.
* - Save vendor string.
*/
x86_cpuid(0, descs);
ci->ci_max_cpuid = descs[0];
/* Save vendor string */
ci->ci_vendor[0] = descs[1];
ci->ci_vendor[2] = descs[2];
ci->ci_vendor[1] = descs[3];
ci->ci_vendor[3] = 0;
/*
* Fn8000_0000:
* - Get cpuid extended function's max level.
*/
x86_cpuid(0x80000000, descs);
if (descs[0] >= 0x80000000)
ci->ci_max_ext_cpuid = descs[0];
else {
/* Set lower value than 0x80000000 */
ci->ci_max_ext_cpuid = 0;
}
/*
* Fn8000_000[2-4]:
* - Save brand string.
*/
if (ci->ci_max_ext_cpuid >= 0x80000004) {
x86_cpuid(0x80000002, brand);
x86_cpuid(0x80000003, brand + 4);
x86_cpuid(0x80000004, brand + 8);
for (i = 0; i < 48; i++)
if (((char *) brand)[i] != ' ')
break;
memcpy(cpu_brand_string, ((char *) brand) + i, 48 - i);
}
if (ci->ci_max_cpuid < 1)
return;
/*
* Fn0000_0001:
* - Get CPU family, model and stepping (from eax).
* - Initial local APIC ID and brand ID (from ebx)
* - CPUID2 (from ecx)
* - CPUID (from edx)
*/
x86_cpuid(1, descs);
ci->ci_signature = descs[0];
/* Extract full family/model values */
ci->ci_family = CPUID_TO_FAMILY(ci->ci_signature);
ci->ci_model = CPUID_TO_MODEL(ci->ci_signature);
/* Brand is low order 8 bits of ebx */
ci->ci_brand_id = __SHIFTOUT(descs[1], CPUID_BRAND_INDEX);
/* Initial local APIC ID */
ci->ci_initapicid = __SHIFTOUT(descs[1], CPUID_LOCAL_APIC_ID);
ci->ci_feat_val[1] = descs[2];
ci->ci_feat_val[0] = descs[3];
if (ci->ci_max_cpuid < 3)
return;
/*
* If the processor serial number misfeature is present and supported,
* extract it here.
*/
if ((ci->ci_feat_val[0] & CPUID_PSN) != 0) {
ci->ci_cpu_serial[0] = ci->ci_signature;
x86_cpuid(3, descs);
ci->ci_cpu_serial[2] = descs[2];
ci->ci_cpu_serial[1] = descs[3];
}
if (ci->ci_max_cpuid < 0x7)
return;
x86_cpuid(7, descs);
ci->ci_feat_val[5] = descs[1];
ci->ci_feat_val[6] = descs[2];
ci->ci_feat_val[7] = descs[3];
if (ci->ci_max_cpuid < 0xd)
return;
/* Get support XCR0 bits */
x86_cpuid2(0xd, 0, descs);
ci->ci_feat_val[8] = descs[0]; /* Actually 64 bits */
ci->ci_cur_xsave = descs[1];
ci->ci_max_xsave = descs[2];
/* Additional flags (eg xsaveopt support) */
x86_cpuid2(0xd, 1, descs);
ci->ci_feat_val[9] = descs[0]; /* Actually 64 bits */
}
static void
cpu_probe_hv_features(struct cpu_info *ci, const char *cpuname)
{
uint32_t descs[4];
char hv_sig[13];
char *p;
const char *hv_name;
int i;
/*
* [RFC] CPUID usage for interaction between Hypervisors and Linux.
* http://lkml.org/lkml/2008/10/1/246
*
* KB1009458: Mechanisms to determine if software is running in
* a VMware virtual machine
* http://kb.vmware.com/kb/1009458
*/
if ((ci->ci_feat_val[1] & CPUID2_RAZ) != 0) {
x86_cpuid(0x40000000, descs);
for (i = 1, p = hv_sig; i < 4; i++, p += sizeof(descs) / 4)
memcpy(p, &descs[i], sizeof(descs[i]));
*p = '\0';
/*
* HV vendor ID string
* ------------+--------------
* HAXM "HAXMHAXMHAXM"
* KVM "KVMKVMKVM"
* Microsoft "Microsoft Hv"
* QEMU(TCG) "TCGTCGTCGTCG"
* VMware "VMwareVMware"
* Xen "XenVMMXenVMM"
* NetBSD "___ NVMM ___"
*/
if (strncmp(hv_sig, "HAXMHAXMHAXM", 12) == 0)
hv_name = "HAXM";
else if (strncmp(hv_sig, "KVMKVMKVM", 9) == 0)
hv_name = "KVM";
else if (strncmp(hv_sig, "Microsoft Hv", 12) == 0)
hv_name = "Hyper-V";
else if (strncmp(hv_sig, "TCGTCGTCGTCG", 12) == 0)
hv_name = "QEMU(TCG)";
else if (strncmp(hv_sig, "VMwareVMware", 12) == 0)
hv_name = "VMware";
else if (strncmp(hv_sig, "XenVMMXenVMM", 12) == 0)
hv_name = "Xen";
else if (strncmp(hv_sig, "___ NVMM ___", 12) == 0)
hv_name = "NVMM";
else
hv_name = "unknown";
printf("%s: Running on hypervisor: %s\n", cpuname, hv_name);
}
}
static void
cpu_probe_features(struct cpu_info *ci)
{
const struct cpu_cpuid_nameclass *cpup = NULL;
unsigned int i;
if (ci->ci_max_cpuid < 1)
return;
for (i = 0; i < __arraycount(i386_cpuid_cpus); i++) {
if (!strncmp((char *)ci->ci_vendor,
i386_cpuid_cpus[i].cpu_id, 12)) {
cpup = &i386_cpuid_cpus[i];
break;
}
}
if (cpup == NULL)
return;
i = ci->ci_family - CPU_MINFAMILY;
if (i >= __arraycount(cpup->cpu_family))
i = __arraycount(cpup->cpu_family) - 1;
if (cpup->cpu_family[i].cpu_probe == NULL)
return;
(*cpup->cpu_family[i].cpu_probe)(ci);
}
static void
print_bits(const char *cpuname, const char *hdr, const char *fmt, uint32_t val)
{
char buf[32 * 16];
char *bp;
#define MAX_LINE_LEN 79 /* get from command arg or 'stty cols' ? */
if (val == 0 || fmt == NULL)
return;
snprintb_m(buf, sizeof(buf), fmt, val,
MAX_LINE_LEN - strlen(cpuname) - 2 - strlen(hdr) - 1);
bp = buf;
while (*bp != '\0') {
aprint_verbose("%s: %s %s\n", cpuname, hdr, bp);
bp += strlen(bp) + 1;
}
}
static void
dump_descs(uint32_t leafstart, uint32_t leafend, const char *cpuname,
const char *blockname)
{
uint32_t descs[4];
uint32_t leaf;
aprint_verbose("%s: highest %s info %08x\n", cpuname, blockname,
leafend);
if (verbose) {
for (leaf = leafstart; leaf <= leafend; leaf++) {
x86_cpuid(leaf, descs);
printf("%s: %08x: %08x %08x %08x %08x\n", cpuname,
leaf, descs[0], descs[1], descs[2], descs[3]);
}
}
}
static void
identifycpu_cpuids_intel_0x04(struct cpu_info *ci)
{
u_int lp_max = 1; /* logical processors per package */
u_int smt_max; /* smt per core */
u_int core_max = 1; /* core per package */
u_int smt_bits, core_bits;
uint32_t descs[4];
/*
* 253668.pdf 7.10.2
*/
if ((ci->ci_feat_val[0] & CPUID_HTT) != 0) {
x86_cpuid(1, descs);
lp_max = __SHIFTOUT(descs[1], CPUID_HTT_CORES);
}
x86_cpuid2(4, 0, descs);
core_max = __SHIFTOUT(descs[0], CPUID_DCP_CORE_P_PKG) + 1;
assert(lp_max >= core_max);
smt_max = lp_max / core_max;
smt_bits = ilog2(smt_max - 1) + 1;
core_bits = ilog2(core_max - 1) + 1;
if (smt_bits + core_bits)
ci->ci_packageid = ci->ci_initapicid >> (smt_bits + core_bits);
if (core_bits)
ci->ci_coreid = __SHIFTOUT(ci->ci_initapicid,
__BITS(smt_bits, smt_bits + core_bits - 1));
if (smt_bits)
ci->ci_smtid = __SHIFTOUT(ci->ci_initapicid,
__BITS((int)0, (int)(smt_bits - 1)));
}
static void
identifycpu_cpuids_intel_0x0b(struct cpu_info *ci)
{
const char *cpuname = ci->ci_dev;
u_int smt_bits, core_bits, core_shift = 0, pkg_shift = 0;
uint32_t descs[4];
int i;
x86_cpuid(0x0b, descs);
if (descs[1] == 0) {
identifycpu_cpuids_intel_0x04(ci);
return;
}
for (i = 0; ; i++) {
unsigned int shiftnum, lvltype;
x86_cpuid2(0x0b, i, descs);
/* On invalid level, (EAX and) EBX return 0 */
if (descs[1] == 0)
break;
shiftnum = __SHIFTOUT(descs[0], CPUID_TOP_SHIFTNUM);
lvltype = __SHIFTOUT(descs[2], CPUID_TOP_LVLTYPE);
switch (lvltype) {
case CPUID_TOP_LVLTYPE_SMT:
core_shift = shiftnum;
break;
case CPUID_TOP_LVLTYPE_CORE:
pkg_shift = shiftnum;
break;
case CPUID_TOP_LVLTYPE_INVAL:
aprint_verbose("%s: Invalid level type\n", cpuname);
break;
default:
aprint_verbose("%s: Unknown level type(%d) \n",
cpuname, lvltype);
break;
}
}
assert(pkg_shift >= core_shift);
smt_bits = core_shift;
core_bits = pkg_shift - core_shift;
ci->ci_packageid = ci->ci_initapicid >> pkg_shift;
if (core_bits)
ci->ci_coreid = __SHIFTOUT(ci->ci_initapicid,
__BITS(core_shift, pkg_shift - 1));
if (smt_bits)
ci->ci_smtid = __SHIFTOUT(ci->ci_initapicid,
__BITS((int)0, core_shift - 1));
}
static void
identifycpu_cpuids_intel(struct cpu_info *ci)
{
const char *cpuname = ci->ci_dev;
if (ci->ci_max_cpuid >= 0x0b)
identifycpu_cpuids_intel_0x0b(ci);
else if (ci->ci_max_cpuid >= 4)
identifycpu_cpuids_intel_0x04(ci);
aprint_verbose("%s: Cluster/Package ID %u\n", cpuname,
ci->ci_packageid);
aprint_verbose("%s: Core ID %u\n", cpuname, ci->ci_coreid);
aprint_verbose("%s: SMT ID %u\n", cpuname, ci->ci_smtid);
}
static void
identifycpu_cpuids_amd(struct cpu_info *ci)
{
const char *cpuname = ci->ci_dev;
u_int lp_max, core_max;
int n, cpu_family, apic_id, smt_bits, core_bits = 0;
uint32_t descs[4];
apic_id = ci->ci_initapicid;
cpu_family = CPUID_TO_FAMILY(ci->ci_signature);
if (cpu_family < 0xf)
return;
if ((ci->ci_feat_val[0] & CPUID_HTT) != 0) {
x86_cpuid(1, descs);
lp_max = __SHIFTOUT(descs[1], CPUID_HTT_CORES);
if (cpu_family >= 0x10 && ci->ci_max_ext_cpuid >= 0x8000008) {
x86_cpuid(0x8000008, descs);
core_max = (descs[2] & 0xff) + 1;
n = (descs[2] >> 12) & 0x0f;
if (n != 0)
core_bits = n;
}
} else {
lp_max = 1;
}
core_max = lp_max;
smt_bits = ilog2((lp_max / core_max) - 1) + 1;
if (core_bits == 0)
core_bits = ilog2(core_max - 1) + 1;
#if 0 /* MSRs need kernel mode */
if (cpu_family < 0x11) {
const uint64_t reg = rdmsr(MSR_NB_CFG);
if ((reg & NB_CFG_INITAPICCPUIDLO) == 0) {
const u_int node_id = apic_id & __BITS(0, 2);
apic_id = (cpu_family == 0xf) ?
(apic_id >> core_bits) | (node_id << core_bits) :
(apic_id >> 5) | (node_id << 2);
}
}
#endif
if (cpu_family >= 0x17) {
x86_cpuid(0x8000001e, descs);
const u_int threads = ((descs[1] >> 8) & 0xff) + 1;
smt_bits = ilog2(threads);
core_bits -= smt_bits;
}
if (smt_bits + core_bits) {
if (smt_bits + core_bits < 32)
ci->ci_packageid = 0;
}
if (core_bits) {
u_int core_mask = __BITS(smt_bits, smt_bits + core_bits - 1);
ci->ci_coreid = __SHIFTOUT(apic_id, core_mask);
}
if (smt_bits) {
u_int smt_mask = __BITS(0, smt_bits - 1);
ci->ci_smtid = __SHIFTOUT(apic_id, smt_mask);
}
aprint_verbose("%s: Cluster/Package ID %u\n", cpuname,
ci->ci_packageid);
aprint_verbose("%s: Core ID %u\n", cpuname, ci->ci_coreid);
aprint_verbose("%s: SMT ID %u\n", cpuname, ci->ci_smtid);
}
static void
identifycpu_cpuids(struct cpu_info *ci)
{
const char *cpuname = ci->ci_dev;
aprint_verbose("%s: Initial APIC ID %u\n", cpuname, ci->ci_initapicid);
ci->ci_packageid = ci->ci_initapicid;
ci->ci_coreid = 0;
ci->ci_smtid = 0;
if (cpu_vendor == CPUVENDOR_INTEL)
identifycpu_cpuids_intel(ci);
else if (cpu_vendor == CPUVENDOR_AMD)
identifycpu_cpuids_amd(ci);
}
void
identifycpu(int fd, const char *cpuname)
{
const char *name = "", *modifier, *vendorname, *brand = "";
int class = CPUCLASS_386;
unsigned int i;
int modif, family;
const struct cpu_cpuid_nameclass *cpup = NULL;
const struct cpu_cpuid_family *cpufam;
struct cpu_info *ci, cistore;
u_int descs[4];
size_t sz;
struct cpu_ucode_version ucode;
union {
struct cpu_ucode_version_amd amd;
struct cpu_ucode_version_intel1 intel1;
} ucvers;
ci = &cistore;
cpu_probe_base_features(ci, cpuname);
dump_descs(0x00000000, ci->ci_max_cpuid, cpuname, "basic");
if ((ci->ci_feat_val[1] & CPUID2_RAZ) != 0) {
x86_cpuid(0x40000000, descs);
dump_descs(0x40000000, descs[0], cpuname, "hypervisor");
}
dump_descs(0x80000000, ci->ci_max_ext_cpuid, cpuname, "extended");
cpu_probe_hv_features(ci, cpuname);
cpu_probe_features(ci);
if (ci->ci_cpu_type >= 0) {
/* Old pre-cpuid instruction cpu */
if (ci->ci_cpu_type >= (int)__arraycount(i386_nocpuid_cpus))
errx(1, "unknown cpu type %d", ci->ci_cpu_type);
name = i386_nocpuid_cpus[ci->ci_cpu_type].cpu_name;
cpu_vendor = i386_nocpuid_cpus[ci->ci_cpu_type].cpu_vendor;
vendorname = i386_nocpuid_cpus[ci->ci_cpu_type].cpu_vendorname;
class = i386_nocpuid_cpus[ci->ci_cpu_type].cpu_class;
ci->ci_info = i386_nocpuid_cpus[ci->ci_cpu_type].cpu_info;
modifier = "";
} else {
/* CPU which support cpuid instruction */
modif = (ci->ci_signature >> 12) & 0x3;
family = ci->ci_family;
if (family < CPU_MINFAMILY)
errx(1, "identifycpu: strange family value");
if (family > CPU_MAXFAMILY)
family = CPU_MAXFAMILY;
for (i = 0; i < __arraycount(i386_cpuid_cpus); i++) {
if (!strncmp((char *)ci->ci_vendor,
i386_cpuid_cpus[i].cpu_id, 12)) {
cpup = &i386_cpuid_cpus[i];
break;
}
}
if (cpup == NULL) {
cpu_vendor = CPUVENDOR_UNKNOWN;
if (ci->ci_vendor[0] != '\0')
vendorname = (char *)&ci->ci_vendor[0];
else
vendorname = "Unknown";
class = family - 3;
modifier = "";
name = "";
ci->ci_info = NULL;
} else {
cpu_vendor = cpup->cpu_vendor;
vendorname = cpup->cpu_vendorname;
modifier = modifiers[modif];
cpufam = &cpup->cpu_family[family - CPU_MINFAMILY];
name = cpufam->cpu_models[ci->ci_model];
if (name == NULL || *name == '\0')
name = cpufam->cpu_model_default;
class = cpufam->cpu_class;
ci->ci_info = cpufam->cpu_info;
if (cpu_vendor == CPUVENDOR_INTEL) {
if (ci->ci_family == 6 && ci->ci_model >= 5) {
const char *tmp;
tmp = intel_family6_name(ci);
if (tmp != NULL)
name = tmp;
}
if (ci->ci_family == 15 &&
ci->ci_brand_id <
__arraycount(i386_intel_brand) &&
i386_intel_brand[ci->ci_brand_id])
name =
i386_intel_brand[ci->ci_brand_id];
}
if (cpu_vendor == CPUVENDOR_AMD) {
if (ci->ci_family == 6 && ci->ci_model >= 6) {
if (ci->ci_brand_id == 1)
/*
* It's Duron. We override the
* name, since it might have
* been misidentified as Athlon.
*/
name =
amd_brand[ci->ci_brand_id];
else
brand = amd_brand_name;
}
if (CPUID_TO_BASEFAMILY(ci->ci_signature)
== 0xf) {
/* Identify AMD64 CPU names. */
const char *tmp;
tmp = amd_amd64_name(ci);
if (tmp != NULL)
name = tmp;
}
}
if (cpu_vendor == CPUVENDOR_IDT && ci->ci_family >= 6)
vendorname = "VIA";
}
}
ci->ci_cpu_class = class;
sz = sizeof(ci->ci_tsc_freq);
(void)sysctlbyname("machdep.tsc_freq", &ci->ci_tsc_freq, &sz, NULL, 0);
sz = sizeof(use_pae);
(void)sysctlbyname("machdep.pae", &use_pae, &sz, NULL, 0);
largepagesize = (use_pae ? 2 * 1024 * 1024 : 4 * 1024 * 1024);
/*
* The 'cpu_brand_string' is much more useful than the 'cpu_model'
* we try to determine from the family/model values.
*/
if (*cpu_brand_string != '\0')
aprint_normal("%s: \"%s\"\n", cpuname, cpu_brand_string);
aprint_normal("%s: %s", cpuname, vendorname);
if (*modifier)
aprint_normal(" %s", modifier);
if (*name)
aprint_normal(" %s", name);
if (*brand)
aprint_normal(" %s", brand);
aprint_normal(" (%s-class)", classnames[class]);
if (ci->ci_tsc_freq != 0)
aprint_normal(", %ju.%02ju MHz",
((uintmax_t)ci->ci_tsc_freq + 4999) / 1000000,
(((uintmax_t)ci->ci_tsc_freq + 4999) / 10000) % 100);
aprint_normal("\n");
(void)cpu_tsc_freq_cpuid(ci);
aprint_normal_dev(ci->ci_dev, "family %#x model %#x stepping %#x",
ci->ci_family, ci->ci_model, CPUID_TO_STEPPING(ci->ci_signature));
if (ci->ci_signature != 0)
aprint_normal(" (id %#x)", ci->ci_signature);
aprint_normal("\n");
if (ci->ci_info)
(*ci->ci_info)(ci);
/*
* display CPU feature flags
*/
print_bits(cpuname, "features", CPUID_FLAGS1, ci->ci_feat_val[0]);
print_bits(cpuname, "features1", CPUID2_FLAGS1, ci->ci_feat_val[1]);
/* These next two are actually common definitions! */
print_bits(cpuname, "features2",
cpu_vendor == CPUVENDOR_INTEL ? CPUID_INTEL_EXT_FLAGS
: CPUID_EXT_FLAGS, ci->ci_feat_val[2]);
print_bits(cpuname, "features3",
cpu_vendor == CPUVENDOR_INTEL ? CPUID_INTEL_FLAGS4
: CPUID_AMD_FLAGS4, ci->ci_feat_val[3]);
print_bits(cpuname, "padloack features", CPUID_FLAGS_PADLOCK,
ci->ci_feat_val[4]);
if ((cpu_vendor == CPUVENDOR_INTEL) || (cpu_vendor == CPUVENDOR_AMD))
print_bits(cpuname, "features5", CPUID_SEF_FLAGS,
ci->ci_feat_val[5]);
if ((cpu_vendor == CPUVENDOR_INTEL) || (cpu_vendor == CPUVENDOR_AMD))
print_bits(cpuname, "features6", CPUID_SEF_FLAGS1,
ci->ci_feat_val[6]);
if (cpu_vendor == CPUVENDOR_INTEL)
print_bits(cpuname, "features7", CPUID_SEF_FLAGS2,
ci->ci_feat_val[7]);
print_bits(cpuname, "xsave features", XCR0_FLAGS1, ci->ci_feat_val[8]);
print_bits(cpuname, "xsave instructions", CPUID_PES1_FLAGS,
ci->ci_feat_val[9]);
if (ci->ci_max_xsave != 0) {
aprint_normal("%s: xsave area size: current %d, maximum %d",
cpuname, ci->ci_cur_xsave, ci->ci_max_xsave);
aprint_normal(", xgetbv %sabled\n",
ci->ci_feat_val[1] & CPUID2_OSXSAVE ? "en" : "dis");
if (ci->ci_feat_val[1] & CPUID2_OSXSAVE)
print_bits(cpuname, "enabled xsave", XCR0_FLAGS1,
x86_xgetbv());
}
x86_print_cache_and_tlb_info(ci);
if (ci->ci_max_cpuid >= 3 && (ci->ci_feat_val[0] & CPUID_PSN)) {
aprint_verbose("%s: serial number %04X-%04X-%04X-%04X-%04X-%04X\n",
cpuname,
ci->ci_cpu_serial[0] / 65536, ci->ci_cpu_serial[0] % 65536,
ci->ci_cpu_serial[1] / 65536, ci->ci_cpu_serial[1] % 65536,
ci->ci_cpu_serial[2] / 65536, ci->ci_cpu_serial[2] % 65536);
}
if (ci->ci_cpu_class == CPUCLASS_386)
errx(1, "NetBSD requires an 80486 or later processor");
if (ci->ci_cpu_type == CPU_486DLC) {
#ifndef CYRIX_CACHE_WORKS
aprint_error("WARNING: CYRIX 486DLC CACHE UNCHANGED.\n");
#else
#ifndef CYRIX_CACHE_REALLY_WORKS
aprint_error("WARNING: CYRIX 486DLC CACHE ENABLED IN HOLD-FLUSH MODE.\n");
#else
aprint_error("WARNING: CYRIX 486DLC CACHE ENABLED.\n");
#endif
#endif
}
/*
* Everything past this point requires a Pentium or later.
*/
if (ci->ci_max_cpuid < 0)
return;
identifycpu_cpuids(ci);
if ((ci->ci_max_cpuid >= 5)
&& ((cpu_vendor == CPUVENDOR_INTEL)
|| (cpu_vendor == CPUVENDOR_AMD))) {
uint16_t lmin, lmax;
x86_cpuid(5, descs);
print_bits(cpuname, "MONITOR/MWAIT extensions",
CPUID_MON_FLAGS, descs[2]);
lmin = __SHIFTOUT(descs[0], CPUID_MON_MINSIZE);
lmax = __SHIFTOUT(descs[1], CPUID_MON_MAXSIZE);
aprint_normal("%s: monitor-line size %hu", cpuname, lmin);
if (lmin != lmax)
aprint_normal("-%hu", lmax);
aprint_normal("\n");
for (i = 0; i <= 7; i++) {
unsigned int num = CPUID_MON_SUBSTATE(descs[3], i);
if (num != 0)
aprint_normal("%s: C%u substates %u\n",
cpuname, i, num);
}
}
if ((ci->ci_max_cpuid >= 6)
&& ((cpu_vendor == CPUVENDOR_INTEL)
|| (cpu_vendor == CPUVENDOR_AMD))) {
x86_cpuid(6, descs);
print_bits(cpuname, "DSPM-eax", CPUID_DSPM_FLAGS, descs[0]);
print_bits(cpuname, "DSPM-ecx", CPUID_DSPM_FLAGS1, descs[2]);
}
if ((ci->ci_max_cpuid >= 7)
&& ((cpu_vendor == CPUVENDOR_INTEL)
|| (cpu_vendor == CPUVENDOR_AMD))) {
x86_cpuid(7, descs);
aprint_verbose("%s: SEF highest subleaf %08x\n",
cpuname, descs[0]);
if (descs[0] >= 1) {
x86_cpuid2(7, 1, descs);
print_bits(cpuname, "SEF-subleaf1-eax",
CPUID_SEF1_FLAGS_A, descs[0]);
}
}
if ((cpu_vendor == CPUVENDOR_INTEL) || (cpu_vendor == CPUVENDOR_AMD)) {
if (ci->ci_max_ext_cpuid >= 0x80000007)
powernow_probe(ci);
if (ci->ci_max_ext_cpuid >= 0x80000008) {
x86_cpuid(0x80000008, descs);
print_bits(cpuname, "AMD Extended features",
CPUID_CAPEX_FLAGS, descs[1]);
}
}
if (cpu_vendor == CPUVENDOR_AMD) {
if ((ci->ci_max_ext_cpuid >= 0x8000000a)
&& (ci->ci_feat_val[3] & CPUID_SVM) != 0) {
x86_cpuid(0x8000000a, descs);
aprint_verbose("%s: SVM Rev. %d\n", cpuname,
descs[0] & 0xf);
aprint_verbose("%s: SVM NASID %d\n", cpuname,
descs[1]);
print_bits(cpuname, "SVM features",
CPUID_AMD_SVM_FLAGS, descs[3]);
}
if (ci->ci_max_ext_cpuid >= 0x8000001f) {
x86_cpuid(0x8000001f, descs);
print_bits(cpuname, "Encrypted Memory features",
CPUID_AMD_ENCMEM_FLAGS, descs[0]);
}
} else if (cpu_vendor == CPUVENDOR_INTEL) {
if (ci->ci_max_cpuid >= 0x0a) {
x86_cpuid(0x0a, descs);
print_bits(cpuname, "Perfmon-eax",
CPUID_PERF_FLAGS0, descs[0]);
print_bits(cpuname, "Perfmon-ebx",
CPUID_PERF_FLAGS1, descs[1]);
print_bits(cpuname, "Perfmon-edx",
CPUID_PERF_FLAGS3, descs[3]);
}
if (ci->ci_max_cpuid >= 0x1a) {
x86_cpuid(0x1a, descs);
if (descs[0] != 0) {
aprint_verbose("%s: Hybrid: Core type %02x, "
"Native Model ID %07x\n",
cpuname,
(uint8_t)__SHIFTOUT(descs[0],
CPUID_HYBRID_CORETYPE),
(uint32_t)__SHIFTOUT(descs[0],
CPUID_HYBRID_NATIVEID));
}
}
}
#ifdef INTEL_ONDEMAND_CLOCKMOD
clockmod_init();
#endif
if (cpu_vendor == CPUVENDOR_AMD)
ucode.loader_version = CPU_UCODE_LOADER_AMD;
else if (cpu_vendor == CPUVENDOR_INTEL)
ucode.loader_version = CPU_UCODE_LOADER_INTEL1;
else
return;
ucode.data = &ucvers;
if (ioctl(fd, IOC_CPU_UCODE_GET_VERSION, &ucode) < 0) {
#ifdef __i386__
struct cpu_ucode_version_64 ucode_64;
if (errno != ENOTTY)
return;
/* Try the 64 bit ioctl */
memset(&ucode_64, 0, sizeof ucode_64);
ucode_64.data = &ucvers;
ucode_64.loader_version = ucode.loader_version;
if (ioctl(fd, IOC_CPU_UCODE_GET_VERSION_64, &ucode_64) < 0)
return;
#else
return;
#endif
}
if (cpu_vendor == CPUVENDOR_AMD)
printf("%s: UCode version: 0x%"PRIx64"\n", cpuname, ucvers.amd.version);
else if (cpu_vendor == CPUVENDOR_INTEL)
printf("%s: microcode version 0x%x, platform ID %d\n", cpuname,
ucvers.intel1.ucodeversion, ucvers.intel1.platformid);
}
static const char *
print_cache_config(struct cpu_info *ci, int cache_tag, const char *name,
const char *sep)
{
struct x86_cache_info *cai = &ci->ci_cinfo[cache_tag];
char human_num[HUMAN_BUFSIZE];
if (cai->cai_totalsize == 0)
return sep;
if (sep == NULL)
aprint_verbose_dev(ci->ci_dev, "");
else
aprint_verbose("%s", sep);
if (name != NULL)
aprint_verbose("%s ", name);
if (cai->cai_string != NULL) {
aprint_verbose("%s ", cai->cai_string);
} else {
(void)humanize_number(human_num, sizeof(human_num),
cai->cai_totalsize, "B", HN_AUTOSCALE, HN_NOSPACE);
aprint_verbose("%s %dB/line ", human_num, cai->cai_linesize);
}
switch (cai->cai_associativity) {
case 0:
aprint_verbose("disabled");
break;
case 1:
aprint_verbose("direct-mapped");
break;
case 0xff:
aprint_verbose("fully associative");
break;
default:
aprint_verbose("%d-way", cai->cai_associativity);
break;
}
return ", ";
}
static const char *
print_tlb_config(struct cpu_info *ci, int cache_tag, const char *name,
const char *sep)
{
struct x86_cache_info *cai = &ci->ci_cinfo[cache_tag];
char human_num[HUMAN_BUFSIZE];
if (cai->cai_totalsize == 0)
return sep;
if (sep == NULL)
aprint_verbose_dev(ci->ci_dev, "");
else
aprint_verbose("%s", sep);
if ((name != NULL) && (sep == NULL))
aprint_verbose("%s ", name);
if (cai->cai_string != NULL) {
aprint_verbose("%s", cai->cai_string);
} else {
(void)humanize_number(human_num, sizeof(human_num),
cai->cai_linesize, "B", HN_AUTOSCALE, HN_NOSPACE);
aprint_verbose("%d %s entries ", cai->cai_totalsize,
human_num);
switch (cai->cai_associativity) {
case 0:
aprint_verbose("disabled");
break;
case 1:
aprint_verbose("direct-mapped");
break;
case 0xff:
aprint_verbose("fully associative");
break;
default:
aprint_verbose("%d-way", cai->cai_associativity);
break;
}
}
return ", ";
}
static void
x86_print_cache_and_tlb_info(struct cpu_info *ci)
{
const char *sep = NULL;
if (ci->ci_cinfo[CAI_ICACHE].cai_totalsize != 0 ||
ci->ci_cinfo[CAI_DCACHE].cai_totalsize != 0) {
sep = print_cache_config(ci, CAI_ICACHE, "I-cache:", NULL);
sep = print_cache_config(ci, CAI_DCACHE, "D-cache:", sep);
if (sep != NULL)
aprint_verbose("\n");
}
if (ci->ci_cinfo[CAI_L2CACHE].cai_totalsize != 0) {
sep = print_cache_config(ci, CAI_L2CACHE, "L2 cache:", NULL);
if (sep != NULL)
aprint_verbose("\n");
}
if (ci->ci_cinfo[CAI_L3CACHE].cai_totalsize != 0) {
sep = print_cache_config(ci, CAI_L3CACHE, "L3 cache:", NULL);
if (sep != NULL)
aprint_verbose("\n");
}
if (ci->ci_cinfo[CAI_PREFETCH].cai_linesize != 0) {
aprint_verbose_dev(ci->ci_dev, "%dB prefetching",
ci->ci_cinfo[CAI_PREFETCH].cai_linesize);
if (sep != NULL)
aprint_verbose("\n");
}
sep = print_tlb_config(ci, CAI_ITLB, "ITLB:", NULL);
sep = print_tlb_config(ci, CAI_ITLB2, "ITLB:", sep);
sep = print_tlb_config(ci, CAI_L1_1GBITLB, "ITLB:", sep);
if (sep != NULL)
aprint_verbose("\n");
sep = print_tlb_config(ci, CAI_DTLB, "DTLB:", NULL);
sep = print_tlb_config(ci, CAI_DTLB2, "DTLB:", sep);
sep = print_tlb_config(ci, CAI_L1_1GBDTLB, "DTLB:", sep);
if (sep != NULL)
aprint_verbose("\n");
sep = print_tlb_config(ci, CAI_L1_LD_TLB, "Load only TLB:", NULL);
if (sep != NULL)
aprint_verbose("\n");
sep = print_tlb_config(ci, CAI_L1_ST_TLB, "Store only TLB:", NULL);
if (sep != NULL)
aprint_verbose("\n");
sep = print_tlb_config(ci, CAI_L2_ITLB, "L2 ITLB:", NULL);
sep = print_tlb_config(ci, CAI_L2_ITLB2, "L2 ITLB:", sep);
sep = print_tlb_config(ci, CAI_L2_1GBITLB, "L2 ITLB:", sep);
if (sep != NULL)
aprint_verbose("\n");
sep = print_tlb_config(ci, CAI_L2_DTLB, "L2 DTLB:", NULL);
sep = print_tlb_config(ci, CAI_L2_DTLB2, "L2 DTLB:", sep);
sep = print_tlb_config(ci, CAI_L2_1GBDTLB, "L2 DTLB:", sep);
if (sep != NULL)
aprint_verbose("\n");
sep = print_tlb_config(ci, CAI_L2_STLB, "L2 STLB:", NULL);
sep = print_tlb_config(ci, CAI_L2_STLB2, "L2 STLB:", sep);
sep = print_tlb_config(ci, CAI_L2_STLB3, "L2 STLB:", sep);
if (sep != NULL)
aprint_verbose("\n");
}
static void
powernow_probe(struct cpu_info *ci)
{
uint32_t regs[4];
char buf[256];
x86_cpuid(0x80000007, regs);
snprintb(buf, sizeof(buf), CPUID_APM_FLAGS, regs[3]);
aprint_normal_dev(ci->ci_dev, "Power Management features: %s\n", buf);
}
bool
identifycpu_bind(void)
{
return true;
}
int
ucodeupdate_check(int fd, struct cpu_ucode *uc)
{
struct cpu_info ci;
int loader_version, res;
struct cpu_ucode_version versreq;
cpu_probe_base_features(&ci, "unknown");
if (!strcmp((char *)ci.ci_vendor, "AuthenticAMD"))
loader_version = CPU_UCODE_LOADER_AMD;
else if (!strcmp((char *)ci.ci_vendor, "GenuineIntel"))
loader_version = CPU_UCODE_LOADER_INTEL1;
else
return -1;
/* check whether the kernel understands this loader version */
versreq.loader_version = loader_version;
versreq.data = 0;
res = ioctl(fd, IOC_CPU_UCODE_GET_VERSION, &versreq);
if (res)
return -1;
switch (loader_version) {
case CPU_UCODE_LOADER_AMD:
if (uc->cpu_nr != -1) {
/* printf? */
return -1;
}
uc->cpu_nr = CPU_UCODE_ALL_CPUS;
break;
case CPU_UCODE_LOADER_INTEL1:
if (uc->cpu_nr == -1)
uc->cpu_nr = CPU_UCODE_ALL_CPUS; /* for Xen */
else
uc->cpu_nr = CPU_UCODE_CURRENT_CPU;
break;
default: /* can't happen */
return -1;
}
uc->loader_version = loader_version;
return 0;
}