NetBSD/sys/dev/spi/spi.c

683 lines
16 KiB
C

/* $NetBSD: spi.c,v 1.23 2022/01/19 13:33:11 thorpej Exp $ */
/*-
* Copyright (c) 2006 Urbana-Champaign Independent Media Center.
* Copyright (c) 2006 Garrett D'Amore.
* All rights reserved.
*
* Portions of this code were written by Garrett D'Amore for the
* Champaign-Urbana Community Wireless Network Project.
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgements:
* This product includes software developed by the Urbana-Champaign
* Independent Media Center.
* This product includes software developed by Garrett D'Amore.
* 4. Urbana-Champaign Independent Media Center's name and Garrett
* D'Amore's name may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
* MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
* MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: spi.c,v 1.23 2022/01/19 13:33:11 thorpej Exp $");
#include "locators.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/conf.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/errno.h>
#include <dev/spi/spivar.h>
#include <dev/spi/spi_io.h>
#include "ioconf.h"
#include "locators.h"
struct spi_softc {
device_t sc_dev;
struct spi_controller sc_controller;
int sc_mode;
int sc_speed;
int sc_slave;
int sc_nslaves;
struct spi_handle *sc_slaves;
kmutex_t sc_lock;
kcondvar_t sc_cv;
kmutex_t sc_dev_lock;
int sc_flags;
#define SPIC_BUSY 1
};
static dev_type_open(spi_open);
static dev_type_close(spi_close);
static dev_type_ioctl(spi_ioctl);
const struct cdevsw spi_cdevsw = {
.d_open = spi_open,
.d_close = spi_close,
.d_read = noread,
.d_write = nowrite,
.d_ioctl = spi_ioctl,
.d_stop = nostop,
.d_tty = notty,
.d_poll = nopoll,
.d_mmap = nommap,
.d_kqfilter = nokqfilter,
.d_discard = nodiscard,
.d_flag = D_OTHER | D_MPSAFE
};
/*
* SPI slave device. We have one of these per slave.
*/
struct spi_handle {
struct spi_softc *sh_sc;
struct spi_controller *sh_controller;
int sh_slave;
int sh_mode;
int sh_speed;
int sh_flags;
#define SPIH_ATTACHED 1
};
#define SPI_MAXDATA 4096
/*
* API for bus drivers.
*/
int
spibus_print(void *aux, const char *pnp)
{
if (pnp != NULL)
aprint_normal("spi at %s", pnp);
return (UNCONF);
}
static int
spi_match(device_t parent, cfdata_t cf, void *aux)
{
return 1;
}
static int
spi_print(void *aux, const char *pnp)
{
struct spi_attach_args *sa = aux;
if (sa->sa_handle->sh_slave != -1)
aprint_normal(" slave %d", sa->sa_handle->sh_slave);
return (UNCONF);
}
static int
spi_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
{
struct spi_softc *sc = device_private(parent);
struct spi_attach_args sa;
int addr;
addr = cf->cf_loc[SPICF_SLAVE];
if ((addr < 0) || (addr >= sc->sc_controller.sct_nslaves)) {
return -1;
}
memset(&sa, 0, sizeof sa);
sa.sa_handle = &sc->sc_slaves[addr];
if (ISSET(sa.sa_handle->sh_flags, SPIH_ATTACHED))
return -1;
if (config_probe(parent, cf, &sa)) {
SET(sa.sa_handle->sh_flags, SPIH_ATTACHED);
config_attach(parent, cf, &sa, spi_print, CFARGS_NONE);
}
return 0;
}
/*
* XXX this is the same as i2c_fill_compat. It could be refactored into a
* common fill_compat function with pointers to compat & ncompat instead
* of attach_args as the first parameter.
*/
static void
spi_fill_compat(struct spi_attach_args *sa, const char *compat, size_t len,
char **buffer)
{
int count, i;
const char *c, *start, **ptr;
*buffer = NULL;
for (i = count = 0, c = compat; i < len; i++, c++)
if (*c == 0)
count++;
count += 2;
ptr = malloc(sizeof(char*)*count, M_TEMP, M_WAITOK);
if (!ptr)
return;
for (i = count = 0, start = c = compat; i < len; i++, c++) {
if (*c == 0) {
ptr[count++] = start;
start = c + 1;
}
}
if (start < compat + len) {
/* last string not 0 terminated */
size_t l = c - start;
*buffer = malloc(l + 1, M_TEMP, M_WAITOK);
memcpy(*buffer, start, l);
(*buffer)[l] = 0;
ptr[count++] = *buffer;
}
ptr[count] = NULL;
sa->sa_compat = ptr;
sa->sa_ncompat = count;
}
static void
spi_direct_attach_child_devices(device_t parent, struct spi_softc *sc,
prop_array_t child_devices)
{
unsigned int count;
prop_dictionary_t child;
prop_data_t cdata;
uint32_t slave;
uint64_t cookie;
struct spi_attach_args sa;
int loc[SPICF_NLOCS];
char *buf;
int i;
memset(loc, 0, sizeof loc);
count = prop_array_count(child_devices);
for (i = 0; i < count; i++) {
child = prop_array_get(child_devices, i);
if (!child)
continue;
if (!prop_dictionary_get_uint32(child, "slave", &slave))
continue;
if(slave >= sc->sc_controller.sct_nslaves)
continue;
if (!prop_dictionary_get_uint64(child, "cookie", &cookie))
continue;
if (!(cdata = prop_dictionary_get(child, "compatible")))
continue;
loc[SPICF_SLAVE] = slave;
memset(&sa, 0, sizeof sa);
sa.sa_handle = &sc->sc_slaves[i];
sa.sa_prop = child;
sa.sa_cookie = cookie;
if (ISSET(sa.sa_handle->sh_flags, SPIH_ATTACHED))
continue;
SET(sa.sa_handle->sh_flags, SPIH_ATTACHED);
buf = NULL;
spi_fill_compat(&sa,
prop_data_value(cdata),
prop_data_size(cdata), &buf);
config_found(parent, &sa, spi_print,
CFARGS(.locators = loc));
if (sa.sa_compat)
free(sa.sa_compat, M_TEMP);
if (buf)
free(buf, M_TEMP);
}
}
int
spi_compatible_match(const struct spi_attach_args *sa, const cfdata_t cf,
const struct device_compatible_entry *compats)
{
if (sa->sa_ncompat > 0)
return device_compatible_match(sa->sa_compat, sa->sa_ncompat,
compats);
return 1;
}
const struct device_compatible_entry *
spi_compatible_lookup(const struct spi_attach_args *sa,
const struct device_compatible_entry *compats)
{
return device_compatible_lookup(sa->sa_compat, sa->sa_ncompat,
compats);
}
/*
* API for device drivers.
*
* We provide wrapper routines to decouple the ABI for the SPI
* device drivers from the ABI for the SPI bus drivers.
*/
static void
spi_attach(device_t parent, device_t self, void *aux)
{
struct spi_softc *sc = device_private(self);
struct spibus_attach_args *sba = aux;
int i;
aprint_naive(": SPI bus\n");
aprint_normal(": SPI bus\n");
mutex_init(&sc->sc_dev_lock, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_VM);
cv_init(&sc->sc_cv, "spictl");
sc->sc_dev = self;
sc->sc_controller = *sba->sba_controller;
sc->sc_nslaves = sba->sba_controller->sct_nslaves;
/* allocate slave structures */
sc->sc_slaves = malloc(sizeof (struct spi_handle) * sc->sc_nslaves,
M_DEVBUF, M_WAITOK | M_ZERO);
sc->sc_speed = 0;
sc->sc_mode = -1;
sc->sc_slave = -1;
/*
* Initialize slave handles
*/
for (i = 0; i < sc->sc_nslaves; i++) {
sc->sc_slaves[i].sh_slave = i;
sc->sc_slaves[i].sh_sc = sc;
sc->sc_slaves[i].sh_controller = &sc->sc_controller;
}
/* First attach devices known to be present via fdt */
if (sba->sba_child_devices) {
spi_direct_attach_child_devices(self, sc, sba->sba_child_devices);
}
/* Then do any other devices the user may have manually wired */
config_search(self, NULL,
CFARGS(.search = spi_search));
}
static int
spi_open(dev_t dev, int flag, int fmt, lwp_t *l)
{
struct spi_softc *sc = device_lookup_private(&spi_cd, minor(dev));
if (sc == NULL)
return ENXIO;
return 0;
}
static int
spi_close(dev_t dev, int flag, int fmt, lwp_t *l)
{
return 0;
}
static int
spi_ioctl(dev_t dev, u_long cmd, void *data, int flag, lwp_t *l)
{
struct spi_softc *sc = device_lookup_private(&spi_cd, minor(dev));
struct spi_handle *sh;
spi_ioctl_configure_t *sic;
spi_ioctl_transfer_t *sit;
uint8_t *sbuf, *rbuf;
int error;
if (sc == NULL)
return ENXIO;
mutex_enter(&sc->sc_dev_lock);
switch (cmd) {
case SPI_IOCTL_CONFIGURE:
sic = (spi_ioctl_configure_t *)data;
if (sic->sic_addr < 0 || sic->sic_addr >= sc->sc_nslaves) {
error = EINVAL;
break;
}
sh = &sc->sc_slaves[sic->sic_addr];
error = spi_configure(sc->sc_dev, sh, sic->sic_mode,
sic->sic_speed);
break;
case SPI_IOCTL_TRANSFER:
sit = (spi_ioctl_transfer_t *)data;
if (sit->sit_addr < 0 || sit->sit_addr >= sc->sc_nslaves) {
error = EINVAL;
break;
}
if ((sit->sit_send && sit->sit_sendlen == 0)
|| (sit->sit_recv && sit->sit_recv == 0)) {
error = EINVAL;
break;
}
sh = &sc->sc_slaves[sit->sit_addr];
sbuf = rbuf = NULL;
error = 0;
if (sit->sit_send && sit->sit_sendlen <= SPI_MAXDATA) {
sbuf = malloc(sit->sit_sendlen, M_DEVBUF, M_WAITOK);
error = copyin(sit->sit_send, sbuf, sit->sit_sendlen);
}
if (sit->sit_recv && sit->sit_recvlen <= SPI_MAXDATA) {
rbuf = malloc(sit->sit_recvlen, M_DEVBUF, M_WAITOK);
}
if (error == 0) {
if (sbuf && rbuf)
error = spi_send_recv(sh,
sit->sit_sendlen, sbuf,
sit->sit_recvlen, rbuf);
else if (sbuf)
error = spi_send(sh,
sit->sit_sendlen, sbuf);
else if (rbuf)
error = spi_recv(sh,
sit->sit_recvlen, rbuf);
}
if (rbuf) {
if (error == 0)
error = copyout(rbuf, sit->sit_recv,
sit->sit_recvlen);
free(rbuf, M_DEVBUF);
}
if (sbuf) {
free(sbuf, M_DEVBUF);
}
break;
default:
error = ENODEV;
break;
}
mutex_exit(&sc->sc_dev_lock);
return error;
}
CFATTACH_DECL_NEW(spi, sizeof(struct spi_softc),
spi_match, spi_attach, NULL, NULL);
/*
* Configure. This should be the first thing that the SPI driver
* should do, to configure which mode (e.g. SPI_MODE_0, which is the
* same as Philips Microwire mode), and speed. If the bus driver
* cannot run fast enough, then it should just configure the fastest
* mode that it can support. If the bus driver cannot run slow
* enough, then the device is incompatible and an error should be
* returned.
*/
int
spi_configure(device_t dev __unused, struct spi_handle *sh, int mode, int speed)
{
sh->sh_mode = mode;
sh->sh_speed = speed;
/* No need to report errors; no failures. */
return 0;
}
/*
* Acquire controller
*/
static void
spi_acquire(struct spi_handle *sh)
{
struct spi_softc *sc = sh->sh_sc;
mutex_enter(&sc->sc_lock);
while ((sc->sc_flags & SPIC_BUSY) != 0)
cv_wait(&sc->sc_cv, &sc->sc_lock);
sc->sc_flags |= SPIC_BUSY;
mutex_exit(&sc->sc_lock);
}
/*
* Release controller
*/
static void
spi_release(struct spi_handle *sh)
{
struct spi_softc *sc = sh->sh_sc;
mutex_enter(&sc->sc_lock);
sc->sc_flags &= ~SPIC_BUSY;
cv_broadcast(&sc->sc_cv);
mutex_exit(&sc->sc_lock);
}
void
spi_transfer_init(struct spi_transfer *st)
{
mutex_init(&st->st_lock, MUTEX_DEFAULT, IPL_VM);
cv_init(&st->st_cv, "spixfr");
st->st_flags = 0;
st->st_errno = 0;
st->st_done = NULL;
st->st_chunks = NULL;
st->st_private = NULL;
st->st_slave = -1;
}
void
spi_chunk_init(struct spi_chunk *chunk, int cnt, const uint8_t *wptr,
uint8_t *rptr)
{
chunk->chunk_write = chunk->chunk_wptr = wptr;
chunk->chunk_read = chunk->chunk_rptr = rptr;
chunk->chunk_rresid = chunk->chunk_wresid = chunk->chunk_count = cnt;
chunk->chunk_next = NULL;
}
void
spi_transfer_add(struct spi_transfer *st, struct spi_chunk *chunk)
{
struct spi_chunk **cpp;
/* this is an O(n) insert -- perhaps we should use a simpleq? */
for (cpp = &st->st_chunks; *cpp; cpp = &(*cpp)->chunk_next);
*cpp = chunk;
}
int
spi_transfer(struct spi_handle *sh, struct spi_transfer *st)
{
struct spi_softc *sc = sh->sh_sc;
struct spi_controller *tag = sh->sh_controller;
struct spi_chunk *chunk;
int error;
/*
* Initialize "resid" counters and pointers, so that callers
* and bus drivers don't have to.
*/
for (chunk = st->st_chunks; chunk; chunk = chunk->chunk_next) {
chunk->chunk_wresid = chunk->chunk_rresid = chunk->chunk_count;
chunk->chunk_wptr = chunk->chunk_write;
chunk->chunk_rptr = chunk->chunk_read;
}
/*
* Match slave and parameters to handle
*/
st->st_slave = sh->sh_slave;
/*
* Reserve controller during transaction
*/
spi_acquire(sh);
st->st_spiprivate = (void *)sh;
/*
* Reconfigure controller
*
* XXX backends don't configure per-slave parameters
* Whenever we switch slaves or change mode or speed, we
* need to tell the backend.
*/
if (sc->sc_slave != sh->sh_slave
|| sc->sc_mode != sh->sh_mode
|| sc->sc_speed != sh->sh_speed) {
error = (*tag->sct_configure)(tag->sct_cookie,
sh->sh_slave, sh->sh_mode, sh->sh_speed);
if (error)
return error;
}
sc->sc_mode = sh->sh_mode;
sc->sc_speed = sh->sh_speed;
sc->sc_slave = sh->sh_slave;
error = (*tag->sct_transfer)(tag->sct_cookie, st);
return error;
}
void
spi_wait(struct spi_transfer *st)
{
struct spi_handle *sh = st->st_spiprivate;
mutex_enter(&st->st_lock);
while (!(st->st_flags & SPI_F_DONE)) {
cv_wait(&st->st_cv, &st->st_lock);
}
mutex_exit(&st->st_lock);
cv_destroy(&st->st_cv);
mutex_destroy(&st->st_lock);
/*
* End transaction
*/
spi_release(sh);
}
void
spi_done(struct spi_transfer *st, int err)
{
mutex_enter(&st->st_lock);
if ((st->st_errno = err) != 0) {
st->st_flags |= SPI_F_ERROR;
}
st->st_flags |= SPI_F_DONE;
if (st->st_done != NULL) {
(*st->st_done)(st);
} else {
cv_broadcast(&st->st_cv);
}
mutex_exit(&st->st_lock);
}
/*
* Some convenience routines. These routines block until the work
* is done.
*
* spi_recv - receives data from the bus
*
* spi_send - sends data to the bus
*
* spi_send_recv - sends data to the bus, and then receives. Note that this is
* done synchronously, i.e. send a command and get the response. This is
* not full duplex. If you wnat full duplex, you can't use these convenience
* wrappers.
*/
int
spi_recv(struct spi_handle *sh, int cnt, uint8_t *data)
{
struct spi_transfer trans;
struct spi_chunk chunk;
spi_transfer_init(&trans);
spi_chunk_init(&chunk, cnt, NULL, data);
spi_transfer_add(&trans, &chunk);
/* enqueue it and wait for it to complete */
spi_transfer(sh, &trans);
spi_wait(&trans);
if (trans.st_flags & SPI_F_ERROR)
return trans.st_errno;
return 0;
}
int
spi_send(struct spi_handle *sh, int cnt, const uint8_t *data)
{
struct spi_transfer trans;
struct spi_chunk chunk;
spi_transfer_init(&trans);
spi_chunk_init(&chunk, cnt, data, NULL);
spi_transfer_add(&trans, &chunk);
/* enqueue it and wait for it to complete */
spi_transfer(sh, &trans);
spi_wait(&trans);
if (trans.st_flags & SPI_F_ERROR)
return trans.st_errno;
return 0;
}
int
spi_send_recv(struct spi_handle *sh, int scnt, const uint8_t *snd,
int rcnt, uint8_t *rcv)
{
struct spi_transfer trans;
struct spi_chunk chunk1, chunk2;
spi_transfer_init(&trans);
spi_chunk_init(&chunk1, scnt, snd, NULL);
spi_chunk_init(&chunk2, rcnt, NULL, rcv);
spi_transfer_add(&trans, &chunk1);
spi_transfer_add(&trans, &chunk2);
/* enqueue it and wait for it to complete */
spi_transfer(sh, &trans);
spi_wait(&trans);
if (trans.st_flags & SPI_F_ERROR)
return trans.st_errno;
return 0;
}