NetBSD/sys/arch/dreamcast/dev/maple/mmemcard.c
2006-03-28 17:38:24 +00:00

944 lines
24 KiB
C

/* $NetBSD: mmemcard.c,v 1.8 2006/03/28 17:38:24 thorpej Exp $ */
/*-
* Copyright (c) 2002 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by ITOH Yasufumi.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: mmemcard.c,v 1.8 2006/03/28 17:38:24 thorpej Exp $");
#include <sys/param.h>
#include <sys/buf.h>
#include <sys/bufq.h>
#include <sys/device.h>
#include <sys/disklabel.h>
#include <sys/disk.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/stat.h>
#include <sys/systm.h>
#include <sys/vnode.h>
#include <sys/conf.h>
#include <dreamcast/dev/maple/maple.h>
#include <dreamcast/dev/maple/mapleconf.h>
#define MMEM_MAXACCSIZE 1012 /* (255*4) - 8 = 253*32 / 8 */
struct mmem_funcdef { /* XXX assuming little-endian structure packing */
unsigned unused : 8,
ra : 4, /* number of access / read */
wa : 4, /* number of access / write */
bb : 8, /* block size / 32 - 1 */
pt : 8; /* number of partition - 1 */
};
struct mmem_request_read_data {
uint32_t func_code;
uint8_t pt;
uint8_t phase;
uint16_t block;
};
struct mmem_response_read_data {
uint32_t func_code; /* function code (big endian) */
uint32_t blkno; /* 512byte block number (big endian) */
uint8_t data[MMEM_MAXACCSIZE];
};
struct mmem_request_write_data {
uint32_t func_code;
uint8_t pt;
uint8_t phase; /* 0, 1, 2, 3: for each 128 byte */
uint16_t block;
uint8_t data[MMEM_MAXACCSIZE];
};
#define MMEM_SIZE_REQW(sc) ((sc)->sc_waccsz + 8)
struct mmem_request_get_media_info {
uint32_t func_code;
uint32_t pt; /* pt (1 byte) and unused 3 bytes */
};
struct mmem_media_info {
uint16_t maxblk, minblk;
uint16_t infpos;
uint16_t fatpos, fatsz;
uint16_t dirpos, dirsz;
uint16_t icon;
uint16_t datasz;
uint16_t rsvd[3];
};
struct mmem_response_media_info {
uint32_t func_code; /* function code (big endian) */
struct mmem_media_info info;
};
struct mmem_softc {
struct device sc_dev;
struct device *sc_parent;
struct maple_unit *sc_unit;
struct maple_devinfo *sc_devinfo;
enum mmem_stat {
MMEM_INIT, /* during initialization */
MMEM_INIT2, /* during initialization */
MMEM_IDLE, /* init done, not in I/O */
MMEM_READ, /* in read operation */
MMEM_WRITE1, /* in write operation (read and compare) */
MMEM_WRITE2, /* in write operation (write) */
MMEM_DETACH /* detaching */
} sc_stat;
int sc_npt; /* number of partitions */
int sc_bsize; /* block size */
int sc_wacc; /* number of write access per block */
int sc_waccsz; /* size of a write access */
int sc_racc; /* number of read access per block */
int sc_raccsz; /* size of a read access */
struct mmem_pt {
int pt_flags;
#define MMEM_PT_OK 1 /* partition is alive */
struct disk pt_dk; /* disk(9) */
struct mmem_media_info pt_info; /* geometry per part */
char pt_name[16 /* see device.h */ + 4 /* ".255" */];
} *sc_pt;
/* write request buffer (only one is used at a time) */
union {
struct mmem_request_read_data req_read;
struct mmem_request_write_data req_write;
struct mmem_request_get_media_info req_minfo;
} sc_req;
#define sc_reqr sc_req.req_read
#define sc_reqw sc_req.req_write
#define sc_reqm sc_req.req_minfo
/* pending buffers */
struct bufq_state *sc_q;
/* current I/O access */
struct buf *sc_bp;
int sc_cnt;
char *sc_iobuf;
int sc_retry;
#define MMEM_MAXRETRY 12
};
/*
* minor number layout (mmemdetach() depends on this layout):
*
* 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
* |---------------------| |---------------------| |---------|
* unit part disklabel partition
*/
#define MMEM_PART(diskunit) ((diskunit) & 0xff)
#define MMEM_UNIT(diskunit) ((diskunit) >> 8)
#define MMEM_DISKMINOR(unit, part, disklabel_partition) \
DISKMINOR(((unit) << 8) | (part), (disklabel_partition))
static int mmemmatch(struct device *, struct cfdata *, void *);
static void mmemattach(struct device *, struct device *, void *);
static void mmem_defaultlabel(struct mmem_softc *, struct mmem_pt *,
struct disklabel *);
static int mmemdetach(struct device *, int);
static void mmem_intr(void *, struct maple_response *, int, int);
static void mmem_printerror(const char *, int, int, uint32_t);
static void mmemstart(struct mmem_softc *);
static void mmemstart_bp(struct mmem_softc *);
static void mmemstart_write2(struct mmem_softc *);
static void mmemdone(struct mmem_softc *, struct mmem_pt *, int);
dev_type_open(mmemopen);
dev_type_close(mmemclose);
dev_type_read(mmemread);
dev_type_write(mmemwrite);
dev_type_ioctl(mmemioctl);
dev_type_strategy(mmemstrategy);
const struct bdevsw mmem_bdevsw = {
mmemopen, mmemclose, mmemstrategy, mmemioctl, nodump,
nosize, D_DISK
};
const struct cdevsw mmem_cdevsw = {
mmemopen, mmemclose, mmemread, mmemwrite, mmemioctl,
nostop, notty, nopoll, nommap, nokqfilter, D_DISK
};
CFATTACH_DECL(mmem, sizeof(struct mmem_softc),
mmemmatch, mmemattach, mmemdetach, NULL);
extern struct cfdriver mmem_cd;
struct dkdriver mmemdkdriver = { mmemstrategy };
static int
mmemmatch(struct device *parent, struct cfdata *cf, void *aux)
{
struct maple_attach_args *ma = aux;
return ma->ma_function == MAPLE_FN_MEMCARD ? MAPLE_MATCH_FUNC : 0;
}
static void
mmemattach(struct device *parent, struct device *self, void *aux)
{
struct mmem_softc *sc = (void *)self;
struct maple_attach_args *ma = aux;
int i;
union {
uint32_t v;
struct mmem_funcdef s;
} funcdef;
sc->sc_parent = parent;
sc->sc_unit = ma->ma_unit;
sc->sc_devinfo = ma->ma_devinfo;
funcdef.v = maple_get_function_data(ma->ma_devinfo, MAPLE_FN_MEMCARD);
printf(": Memory card\n");
printf("%s: %d part, %d bytes/block, ",
sc->sc_dev.dv_xname,
sc->sc_npt = funcdef.s.pt + 1,
sc->sc_bsize = (funcdef.s.bb + 1) << 5);
if ((sc->sc_wacc = funcdef.s.wa) == 0)
printf("no write, ");
else
printf("%d acc/write, ", sc->sc_wacc);
if ((sc->sc_racc = funcdef.s.ra) == 0)
printf("no read\n");
else
printf("%d acc/read\n", sc->sc_racc);
/*
* start init sequence
*/
sc->sc_stat = MMEM_INIT;
bufq_alloc(&sc->sc_q, "disksort", BUFQ_SORT_RAWBLOCK);
/* check consistency */
if (sc->sc_wacc != 0) {
sc->sc_waccsz = sc->sc_bsize / sc->sc_wacc;
if (sc->sc_bsize != sc->sc_waccsz * sc->sc_wacc) {
printf("%s: write access isn't equally divided\n",
sc->sc_dev.dv_xname);
sc->sc_wacc = 0; /* no write */
} else if (sc->sc_waccsz > MMEM_MAXACCSIZE) {
printf("%s: write access size is too large\n",
sc->sc_dev.dv_xname);
sc->sc_wacc = 0; /* no write */
}
}
if (sc->sc_racc != 0) {
sc->sc_raccsz = sc->sc_bsize / sc->sc_racc;
if (sc->sc_bsize != sc->sc_raccsz * sc->sc_racc) {
printf("%s: read access isn't equally divided\n",
sc->sc_dev.dv_xname);
sc->sc_racc = 0; /* no read */
} else if (sc->sc_raccsz > MMEM_MAXACCSIZE) {
printf("%s: read access size is too large\n",
sc->sc_dev.dv_xname);
sc->sc_racc = 0; /* no read */
}
}
if (sc->sc_wacc == 0 && sc->sc_racc == 0) {
printf("%s: device doesn't support read nor write\n",
sc->sc_dev.dv_xname);
return;
}
/* per-part structure */
sc->sc_pt = malloc(sizeof(struct mmem_pt) * sc->sc_npt, M_DEVBUF,
M_WAITOK|M_ZERO);
for (i = 0; i < sc->sc_npt; i++) {
sprintf(sc->sc_pt[i].pt_name, "%s.%d", sc->sc_dev.dv_xname, i);
}
maple_set_callback(parent, sc->sc_unit, MAPLE_FN_MEMCARD,
mmem_intr, sc);
/*
* get capacity (start from partition 0)
*/
sc->sc_reqm.func_code = htobe32(MAPLE_FUNC(MAPLE_FN_MEMCARD));
sc->sc_reqm.pt = 0;
maple_command(sc->sc_parent, sc->sc_unit, MAPLE_FN_MEMCARD,
MAPLE_COMMAND_GETMINFO, sizeof sc->sc_reqm / 4, &sc->sc_reqm, 0);
}
static int
mmemdetach(struct device *self, int flags)
{
struct mmem_softc *sc = (struct mmem_softc *) self;
struct buf *bp;
int i;
int minor_l, minor_h;
sc->sc_stat = MMEM_DETACH; /* just in case */
/*
* kill pending I/O
*/
if ((bp = sc->sc_bp) != NULL) {
bp->b_error = EIO;
bp->b_flags |= B_ERROR;
bp->b_resid = bp->b_bcount;
biodone(bp);
}
while ((bp = BUFQ_GET(sc->sc_q)) != NULL) {
bp->b_error = EIO;
bp->b_flags |= B_ERROR;
bp->b_resid = bp->b_bcount;
biodone(bp);
}
bufq_free(sc->sc_q);
/*
* revoke vnodes
*/
#ifdef __HAVE_OLD_DISKLABEL
#error This code assumes DISKUNIT() is contiguous in minor number.
#endif
minor_l = MMEM_DISKMINOR(device_unit(self), 0, 0);
minor_h = MMEM_DISKMINOR(device_unit(self), sc->sc_npt - 1,
MAXPARTITIONS - 1);
vdevgone(bdevsw_lookup_major(&mmem_bdevsw), minor_l, minor_h, VBLK);
vdevgone(cdevsw_lookup_major(&mmem_cdevsw), minor_l, minor_h, VCHR);
/*
* free per-partition structure
*/
if (sc->sc_pt) {
/*
* detach disks
*/
for (i = 0; i < sc->sc_npt; i++) {
if (sc->sc_pt[i].pt_flags & MMEM_PT_OK)
disk_detach(&sc->sc_pt[i].pt_dk);
}
free(sc->sc_pt, M_DEVBUF);
}
return 0;
}
/* fake disklabel */
static void
mmem_defaultlabel(struct mmem_softc *sc, struct mmem_pt *pt,
struct disklabel *d)
{
memset(d, 0, sizeof *d);
#if 0
d->d_type = DTYPE_FLOPPY; /* XXX? */
#endif
strncpy(d->d_typename, sc->sc_devinfo->di_product_name,
sizeof d->d_typename);
strcpy(d->d_packname, "fictitious");
d->d_secsize = sc->sc_bsize;
d->d_ntracks = 1; /* XXX */
d->d_nsectors = d->d_secpercyl = 8; /* XXX */
d->d_secperunit = pt->pt_info.maxblk - pt->pt_info.minblk + 1;
d->d_ncylinders = d->d_secperunit / d->d_secpercyl;
d->d_rpm = 1; /* when 4 acc/write */
d->d_npartitions = RAW_PART + 1;
d->d_partitions[RAW_PART].p_size = d->d_secperunit;
d->d_magic = d->d_magic2 = DISKMAGIC;
d->d_checksum = dkcksum(d);
}
/*
* called back from maple bus driver
*/
static void
mmem_intr(void *dev, struct maple_response *response, int sz, int flags)
{
struct mmem_softc *sc = dev;
struct mmem_response_read_data *r = (void *) response->data;
struct mmem_response_media_info *rm = (void *) response->data;
struct buf *bp;
int part;
struct mmem_pt *pt;
char pbuf[9];
int off;
switch (sc->sc_stat) {
case MMEM_INIT:
/* checking part geometry */
part = sc->sc_reqm.pt;
pt = &sc->sc_pt[part];
switch ((maple_response_t) response->response_code) {
case MAPLE_RESPONSE_DATATRF:
pt->pt_info = rm->info;
format_bytes(pbuf, sizeof(pbuf),
(uint64_t)
((pt->pt_info.maxblk - pt->pt_info.minblk + 1)
* sc->sc_bsize));
printf("%s: %s, blk %d %d, inf %d, fat %d %d, dir %d %d, icon %d, data %d\n",
pt->pt_name,
pbuf,
pt->pt_info.maxblk, pt->pt_info.minblk,
pt->pt_info.infpos,
pt->pt_info.fatpos, pt->pt_info.fatsz,
pt->pt_info.dirpos, pt->pt_info.dirsz,
pt->pt_info.icon,
pt->pt_info.datasz);
pt->pt_dk.dk_driver = &mmemdkdriver;
pt->pt_dk.dk_name = pt->pt_name;
disk_attach(&pt->pt_dk);
mmem_defaultlabel(sc, pt, pt->pt_dk.dk_label);
/* this partition is active */
pt->pt_flags = MMEM_PT_OK;
break;
default:
printf("%s: init: unexpected response %#x, sz %d\n",
pt->pt_name, be32toh(response->response_code), sz);
break;
}
if (++part == sc->sc_npt) {
#if 1
/*
* XXX Read a block and discard the contents (only to
* turn off the access indicator on Visual Memory).
*/
pt = &sc->sc_pt[0];
sc->sc_reqr.func_code =
htobe32(MAPLE_FUNC(MAPLE_FN_MEMCARD));
sc->sc_reqr.pt = 0;
sc->sc_reqr.block = htobe16(pt->pt_info.minblk);
sc->sc_reqr.phase = 0;
maple_command(sc->sc_parent, sc->sc_unit,
MAPLE_FN_MEMCARD, MAPLE_COMMAND_BREAD,
sizeof sc->sc_reqr / 4, &sc->sc_reqr, 0);
sc->sc_stat = MMEM_INIT2;
#else
sc->sc_stat = MMEM_IDLE; /* init done */
#endif
} else {
sc->sc_reqm.pt = part;
maple_command(sc->sc_parent, sc->sc_unit,
MAPLE_FN_MEMCARD, MAPLE_COMMAND_GETMINFO,
sizeof sc->sc_reqm / 4, &sc->sc_reqm, 0);
}
break;
case MMEM_INIT2:
/* XXX just discard */
sc->sc_stat = MMEM_IDLE; /* init done */
break;
case MMEM_READ:
bp = sc->sc_bp;
switch ((maple_response_t) response->response_code) {
case MAPLE_RESPONSE_DATATRF: /* read done */
off = sc->sc_raccsz * sc->sc_reqr.phase;
memcpy(sc->sc_iobuf + off, r->data + off,
sc->sc_raccsz);
if (++sc->sc_reqr.phase == sc->sc_racc) {
/* all phase done */
pt = &sc->sc_pt[sc->sc_reqr.pt];
mmemdone(sc, pt, 0);
} else {
/* go next phase */
maple_command(sc->sc_parent, sc->sc_unit,
MAPLE_FN_MEMCARD, MAPLE_COMMAND_BREAD,
sizeof sc->sc_reqr / 4, &sc->sc_reqr, 0);
}
break;
case MAPLE_RESPONSE_FILEERR:
mmem_printerror(sc->sc_pt[sc->sc_reqr.pt].pt_name,
1, bp->b_rawblkno,
r->func_code /* XXX */);
mmemstart_bp(sc); /* retry */
break;
default:
printf("%s: read: unexpected response %#x %#x, sz %d\n",
sc->sc_pt[sc->sc_reqr.pt].pt_name,
be32toh(response->response_code),
be32toh(r->func_code), sz);
mmemstart_bp(sc); /* retry */
break;
}
break;
case MMEM_WRITE1: /* read before write / verify after write */
bp = sc->sc_bp;
switch ((maple_response_t) response->response_code) {
case MAPLE_RESPONSE_DATATRF: /* read done */
off = sc->sc_raccsz * sc->sc_reqr.phase;
if (memcmp(r->data + off, sc->sc_iobuf + off,
sc->sc_raccsz)) {
/*
* data differ, start writing
*/
mmemstart_write2(sc);
} else if (++sc->sc_reqr.phase == sc->sc_racc) {
/*
* all phase done and compared equal
*/
pt = &sc->sc_pt[sc->sc_reqr.pt];
mmemdone(sc, pt, 0);
} else {
/* go next phase */
maple_command(sc->sc_parent, sc->sc_unit,
MAPLE_FN_MEMCARD, MAPLE_COMMAND_BREAD,
sizeof sc->sc_reqr / 4, &sc->sc_reqr, 0);
}
break;
case MAPLE_RESPONSE_FILEERR:
mmem_printerror(sc->sc_pt[sc->sc_reqr.pt].pt_name,
1, bp->b_rawblkno,
r->func_code /* XXX */);
mmemstart_write2(sc); /* start writing */
break;
default:
printf("%s: verify: unexpected response %#x %#x, sz %d\n",
sc->sc_pt[sc->sc_reqr.pt].pt_name,
be32toh(response->response_code),
be32toh(r->func_code), sz);
mmemstart_write2(sc); /* start writing */
break;
}
break;
case MMEM_WRITE2: /* write */
bp = sc->sc_bp;
switch ((maple_response_t) response->response_code) {
case MAPLE_RESPONSE_OK: /* write done */
if (sc->sc_reqw.phase == sc->sc_wacc) {
/* all phase done */
mmemstart_bp(sc); /* start verify */
} else if (++sc->sc_reqw.phase == sc->sc_wacc) {
/* check error */
maple_command(sc->sc_parent, sc->sc_unit,
MAPLE_FN_MEMCARD, MAPLE_COMMAND_GETLASTERR,
2 /* no data */ , &sc->sc_reqw,
MAPLE_FLAG_CMD_PERIODIC_TIMING);
} else {
/* go next phase */
memcpy(sc->sc_reqw.data, sc->sc_iobuf +
sc->sc_waccsz * sc->sc_reqw.phase,
sc->sc_waccsz);
maple_command(sc->sc_parent, sc->sc_unit,
MAPLE_FN_MEMCARD, MAPLE_COMMAND_BWRITE,
MMEM_SIZE_REQW(sc) / 4, &sc->sc_reqw,
MAPLE_FLAG_CMD_PERIODIC_TIMING);
}
break;
case MAPLE_RESPONSE_FILEERR:
mmem_printerror(sc->sc_pt[sc->sc_reqw.pt].pt_name,
0, bp->b_rawblkno,
r->func_code /* XXX */);
mmemstart_write2(sc); /* retry writing */
break;
default:
printf("%s: write: unexpected response %#x, %#x, sz %d\n",
sc->sc_pt[sc->sc_reqw.pt].pt_name,
be32toh(response->response_code),
be32toh(r->func_code), sz);
mmemstart_write2(sc); /* retry writing */
break;
}
break;
default:
break;
}
}
static void
mmem_printerror(const char *head, int rd, int blk, uint32_t code)
{
printf("%s: error %sing blk %d:", head, rd? "read" : "writ", blk);
NTOHL(code);
if (code & 1)
printf(" PT error");
if (code & 2)
printf(" Phase error");
if (code & 4)
printf(" Block error");
if (code & 010)
printf(" Write error");
if (code & 020)
printf(" Length error");
if (code & 040)
printf(" CRC error");
if (code & ~077)
printf(" Unknown error %#x", code & ~077);
printf("\n");
}
int
mmemopen(dev_t dev, int flags, int devtype, struct lwp *l)
{
int diskunit, unit, part, labelpart;
struct mmem_softc *sc;
struct mmem_pt *pt;
diskunit = DISKUNIT(dev);
unit = MMEM_UNIT(diskunit);
part = MMEM_PART(diskunit);
labelpart = DISKPART(dev);
if ((sc = device_lookup(&mmem_cd, unit)) == NULL
|| sc->sc_stat == MMEM_INIT
|| sc->sc_stat == MMEM_INIT2
|| part >= sc->sc_npt || (pt = &sc->sc_pt[part])->pt_flags == 0)
return ENXIO;
switch (devtype) {
case S_IFCHR:
pt->pt_dk.dk_copenmask |= (1 << labelpart);
break;
case S_IFBLK:
pt->pt_dk.dk_bopenmask |= (1 << labelpart);
break;
}
return 0;
}
int
mmemclose(dev_t dev, int flags, int devtype, struct lwp *l)
{
int diskunit, unit, part, labelpart;
struct mmem_softc *sc;
struct mmem_pt *pt;
diskunit = DISKUNIT(dev);
unit = MMEM_UNIT(diskunit);
part = MMEM_PART(diskunit);
sc = mmem_cd.cd_devs[unit];
pt = &sc->sc_pt[part];
labelpart = DISKPART(dev);
switch (devtype) {
case S_IFCHR:
pt->pt_dk.dk_copenmask &= ~(1 << labelpart);
break;
case S_IFBLK:
pt->pt_dk.dk_bopenmask &= ~(1 << labelpart);
break;
}
return 0;
}
void
mmemstrategy(struct buf *bp)
{
int diskunit, unit, part, labelpart;
struct mmem_softc *sc;
struct mmem_pt *pt;
daddr_t off, nblk, cnt;
diskunit = DISKUNIT(bp->b_dev);
unit = MMEM_UNIT(diskunit);
part = MMEM_PART(diskunit);
if ((sc = device_lookup(&mmem_cd, unit)) == NULL
|| sc->sc_stat == MMEM_INIT
|| sc->sc_stat == MMEM_INIT2
|| part >= sc->sc_npt || (pt = &sc->sc_pt[part])->pt_flags == 0)
goto inval;
#if 0
printf("%s: mmemstrategy: blkno %d, count %ld\n",
pt->pt_name, bp->b_blkno, bp->b_bcount);
#endif
if (bp->b_flags & B_READ) {
if (sc->sc_racc == 0)
goto inval; /* no read */
} else if (sc->sc_wacc == 0) {
bp->b_error = EROFS; /* no write */
goto bad;
}
if (bp->b_blkno & ~(~(daddr_t)0 >> (DEV_BSHIFT + 1 /* sign bit */))
|| (bp->b_bcount % sc->sc_bsize) != 0)
goto inval;
cnt = howmany(bp->b_bcount, sc->sc_bsize);
if (cnt == 0)
goto done; /* no work */
off = bp->b_blkno * DEV_BSIZE / sc->sc_bsize;
/* offset to disklabel partition */
labelpart = DISKPART(bp->b_dev);
if (labelpart == RAW_PART) {
nblk = pt->pt_info.maxblk - pt->pt_info.minblk + 1;
} else {
off +=
nblk = pt->pt_dk.dk_label->d_partitions[labelpart].p_offset;
nblk += pt->pt_dk.dk_label->d_partitions[labelpart].p_size;
}
/* deal with the EOF condition */
if (off + cnt > nblk) {
if (off >= nblk) {
if (off == nblk)
goto done;
goto inval;
}
cnt = nblk - off;
bp->b_resid = bp->b_bcount - (cnt * sc->sc_bsize);
}
bp->b_rawblkno = off;
/* queue this transfer */
BUFQ_PUT(sc->sc_q, bp);
if (sc->sc_stat == MMEM_IDLE)
mmemstart(sc);
return;
inval: bp->b_error = EINVAL;
bad: bp->b_flags |= B_ERROR;
done: bp->b_resid = bp->b_bcount;
biodone(bp);
}
/*
* start I/O operations
*/
static void
mmemstart(struct mmem_softc *sc)
{
struct buf *bp;
struct mmem_pt *pt;
int s;
if ((bp = BUFQ_GET(sc->sc_q)) == NULL) {
sc->sc_stat = MMEM_IDLE;
maple_enable_unit_ping(sc->sc_parent, sc->sc_unit,
MAPLE_FN_MEMCARD, 1);
return;
}
sc->sc_bp = bp;
sc->sc_cnt = howmany(bp->b_bcount - bp->b_resid, sc->sc_bsize);
KASSERT(sc->sc_cnt);
sc->sc_iobuf = bp->b_data;
sc->sc_retry = 0;
pt = &sc->sc_pt[MMEM_PART(DISKUNIT(bp->b_dev))];
s = splbio();
disk_busy(&pt->pt_dk);
splx(s);
/*
* I/O access will fail if the removal detection (by maple driver)
* occurs before finishing the I/O, so disable it.
* We are sending commands, and the removal detection is still alive.
*/
maple_enable_unit_ping(sc->sc_parent, sc->sc_unit, MAPLE_FN_MEMCARD, 0);
mmemstart_bp(sc);
}
/*
* start/retry a specified I/O operation
*/
static void
mmemstart_bp(struct mmem_softc *sc)
{
struct buf *bp;
int diskunit, part;
struct mmem_pt *pt;
bp = sc->sc_bp;
diskunit = DISKUNIT(bp->b_dev);
part = MMEM_PART(diskunit);
pt = &sc->sc_pt[part];
/* handle retry */
if (sc->sc_retry++ > MMEM_MAXRETRY) {
/* retry count exceeded */
mmemdone(sc, pt, EIO);
return;
}
/*
* Start the first phase (phase# = 0).
*/
/* start read */
sc->sc_stat = (bp->b_flags & B_READ) ? MMEM_READ : MMEM_WRITE1;
sc->sc_reqr.func_code = htobe32(MAPLE_FUNC(MAPLE_FN_MEMCARD));
sc->sc_reqr.pt = part;
sc->sc_reqr.block = htobe16(bp->b_rawblkno);
sc->sc_reqr.phase = 0; /* first phase */
maple_command(sc->sc_parent, sc->sc_unit, MAPLE_FN_MEMCARD,
MAPLE_COMMAND_BREAD, sizeof sc->sc_reqr / 4, &sc->sc_reqr, 0);
}
static void
mmemstart_write2(struct mmem_softc *sc)
{
struct buf *bp;
int diskunit, part;
struct mmem_pt *pt;
bp = sc->sc_bp;
diskunit = DISKUNIT(bp->b_dev);
part = MMEM_PART(diskunit);
pt = &sc->sc_pt[part];
/* handle retry */
if (sc->sc_retry++ > MMEM_MAXRETRY - 2 /* spare for verify read */) {
/* retry count exceeded */
mmemdone(sc, pt, EIO);
return;
}
/*
* Start the first phase (phase# = 0).
*/
/* start write */
sc->sc_stat = MMEM_WRITE2;
sc->sc_reqw.func_code = htobe32(MAPLE_FUNC(MAPLE_FN_MEMCARD));
sc->sc_reqw.pt = part;
sc->sc_reqw.block = htobe16(bp->b_rawblkno);
sc->sc_reqw.phase = 0; /* first phase */
memcpy(sc->sc_reqw.data, sc->sc_iobuf /* + sc->sc_waccsz * phase */,
sc->sc_waccsz);
maple_command(sc->sc_parent, sc->sc_unit, MAPLE_FN_MEMCARD,
MAPLE_COMMAND_BWRITE, MMEM_SIZE_REQW(sc) / 4, &sc->sc_reqw,
MAPLE_FLAG_CMD_PERIODIC_TIMING);
}
static void
mmemdone(struct mmem_softc *sc, struct mmem_pt *pt, int err)
{
struct buf *bp = sc->sc_bp;
int s;
int bcnt;
KASSERT(bp);
if (err) {
bcnt = sc->sc_iobuf - bp->b_data;
bp->b_resid = bp->b_bcount - bcnt;
/* raise error if no block is read */
if (bcnt == 0) {
bp->b_error = err;
bp->b_flags |= B_ERROR;
}
goto term_xfer;
}
sc->sc_iobuf += sc->sc_bsize;
if (--sc->sc_cnt == 0) {
term_xfer:
/* terminate current transfer */
sc->sc_bp = NULL;
s = splbio();
disk_unbusy(&pt->pt_dk, sc->sc_iobuf - bp->b_data,
sc->sc_stat == MMEM_READ);
biodone(bp);
splx(s);
/* go next transfer */
mmemstart(sc);
} else {
/* go next block */
bp->b_rawblkno++;
sc->sc_retry = 0;
mmemstart_bp(sc);
}
}
int
mmemread(dev_t dev, struct uio *uio, int flags)
{
return physio(mmemstrategy, NULL, dev, B_READ, minphys, uio);
}
int
mmemwrite(dev_t dev, struct uio *uio, int flags)
{
return physio(mmemstrategy, NULL, dev, B_WRITE, minphys, uio);
}
int
mmemioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct lwp *l)
{
int diskunit, unit, part;
struct mmem_softc *sc;
struct mmem_pt *pt;
diskunit = DISKUNIT(dev);
unit = MMEM_UNIT(diskunit);
part = MMEM_PART(diskunit);
sc = mmem_cd.cd_devs[unit];
pt = &sc->sc_pt[part];
switch (cmd) {
case DIOCGDINFO:
*(struct disklabel *)data = *pt->pt_dk.dk_label; /* XXX */
break;
default:
/* generic maple ioctl */
return maple_unit_ioctl(sc->sc_parent, sc->sc_unit, cmd, data,
flag, l);
}
return 0;
}