NetBSD/sys/arch/cesfic/cesfic/pmap_bootstrap.c
agc aad01611e7 Move UCB-licensed code from 4-clause to 3-clause licence.
Patches provided by Joel Baker in PR 22364, verified by myself.
2003-08-07 16:26:28 +00:00

469 lines
14 KiB
C

/* $NetBSD: pmap_bootstrap.c,v 1.5 2003/08/07 16:27:15 agc Exp $ */
/*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)pmap_bootstrap.c 8.1 (Berkeley) 6/10/93
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: pmap_bootstrap.c,v 1.5 2003/08/07 16:27:15 agc Exp $");
#include <sys/param.h>
#include <sys/msgbuf.h>
#include <sys/proc.h>
#include <machine/frame.h>
#include <machine/cpu.h>
#include <machine/vmparam.h>
#include <machine/pte.h>
#include <uvm/uvm_extern.h>
#define RELOC(v, t) *((t*)((u_int)&(v) + firstpa - KERNBASE))
extern char *etext;
extern int Sysptsize;
extern char *proc0paddr;
extern st_entry_t *Sysseg;
extern pt_entry_t *Sysptmap, *Sysmap;
extern int physmem;
extern vm_offset_t avail_start, avail_end, virtual_avail, virtual_end;
extern int protection_codes[];
void pmap_bootstrap __P((vm_offset_t, vm_offset_t));
/*
* Special purpose kernel virtual addresses, used for mapping
* physical pages for a variety of temporary or permanent purposes:
*
* CADDR1, CADDR2: pmap zero/copy operations
* vmmap: /dev/mem, crash dumps, parity error checking
* msgbufp: kernel message buffer
*/
caddr_t CADDR1, CADDR2, vmmap;
extern caddr_t msgbufaddr;
/*
* Bootstrap the VM system.
*
* Called with MMU off so we must relocate all global references by `firstpa'
* (don't call any functions here!) `nextpa' is the first available physical
* memory address. Returns an updated first PA reflecting the memory we
* have allocated. MMU is still off when we return.
*
* XXX assumes sizeof(u_int) == sizeof(pt_entry_t)
* XXX a PIC compiler would make this much easier.
*/
void
pmap_bootstrap(nextpa, firstpa)
vm_offset_t nextpa;
vm_offset_t firstpa;
{
vm_offset_t kstpa, kptpa, kptmpa, lkptpa, p0upa;
u_int nptpages, kstsize;
st_entry_t protoste, *ste;
pt_entry_t protopte, *pte, *epte;
/*
* Calculate important physical addresses:
*
* kstpa kernel segment table 1 page (!040)
* N pages (040)
*
* kptpa statically allocated
* kernel PT pages Sysptsize+ pages
*
* iiopa internal IO space
* PT pages IIOMAPSIZE pages
*
* eiopa external IO space
* PT pages EIOMAPSIZE pages
*
* [ Sysptsize is the number of pages of PT, IIOMAPSIZE and
* EIOMAPSIZE are the number of PTEs, hence we need to round
* the total to a page boundary with IO maps at the end. ]
*
* kptmpa kernel PT map 1 page
*
* lkptpa last kernel PT page 1 page
*
* p0upa proc 0 u-area UPAGES pages
*
* The KVA corresponding to any of these PAs is:
* (PA - firstpa + KERNBASE).
*/
if (RELOC(mmutype, int) == MMU_68040)
kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
else
kstsize = 1;
kstpa = nextpa;
nextpa += kstsize * PAGE_SIZE;
kptpa = nextpa;
nptpages = RELOC(Sysptsize, int);
nextpa += nptpages * PAGE_SIZE;
kptmpa = nextpa;
nextpa += PAGE_SIZE;
lkptpa = nextpa;
nextpa += PAGE_SIZE;
p0upa = nextpa;
nextpa += USPACE;
/*
* Initialize segment table and kernel page table map.
*
* On 68030s and earlier MMUs the two are identical except for
* the valid bits so both are initialized with essentially the
* same values. On the 68040, which has a mandatory 3-level
* structure, the segment table holds the level 1 table and part
* (or all) of the level 2 table and hence is considerably
* different. Here the first level consists of 128 descriptors
* (512 bytes) each mapping 32mb of address space. Each of these
* points to blocks of 128 second level descriptors (512 bytes)
* each mapping 256kb. Note that there may be additional "segment
* table" pages depending on how large MAXKL2SIZE is.
*
* Portions of the last segment of KVA space (0xFFF00000 -
* 0xFFFFFFFF) are mapped for a couple of purposes. 0xFFF00000
* for UPAGES is used for mapping the current process u-area
* (u + kernel stack). The very last page (0xFFFFF000) is mapped
* to the last physical page of RAM to give us a region in which
* PA == VA. We use the first part of this page for enabling
* and disabling mapping. The last part of this page also contains
* info left by the boot ROM.
*
* XXX cramming two levels of mapping into the single "segment"
* table on the 68040 is intended as a temporary hack to get things
* working. The 224mb of address space that this allows will most
* likely be insufficient in the future (at least for the kernel).
*/
if (RELOC(mmutype, int) == MMU_68040) {
int num;
/*
* First invalidate the entire "segment table" pages
* (levels 1 and 2 have the same "invalid" value).
*/
pte = (u_int *)kstpa;
epte = &pte[kstsize * NPTEPG];
while (pte < epte)
*pte++ = SG_NV;
/*
* Initialize level 2 descriptors (which immediately
* follow the level 1 table). We need:
* NPTEPG / SG4_LEV3SIZE
* level 2 descriptors to map each of the nptpages+1
* pages of PTEs. Note that we set the "used" bit
* now to save the HW the expense of doing it.
*/
num = (nptpages + 1) * (NPTEPG / SG4_LEV3SIZE);
pte = &((u_int *)kstpa)[SG4_LEV1SIZE];
epte = &pte[num];
protoste = kptpa | SG_U | SG_RW | SG_V;
while (pte < epte) {
*pte++ = protoste;
protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
}
/*
* Initialize level 1 descriptors. We need:
* roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE
* level 1 descriptors to map the `num' level 2's.
*/
pte = (u_int *)kstpa;
epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE];
protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V;
while (pte < epte) {
*pte++ = protoste;
protoste += (SG4_LEV2SIZE * sizeof(st_entry_t));
}
/*
* Initialize the final level 1 descriptor to map the last
* block of level 2 descriptors.
*/
ste = &((u_int *)kstpa)[SG4_LEV1SIZE-1];
pte = &((u_int *)kstpa)[kstsize*NPTEPG - SG4_LEV2SIZE];
*ste = (u_int)pte | SG_U | SG_RW | SG_V;
/*
* Now initialize the final portion of that block of
* descriptors to map the "last PT page".
*/
pte = &((u_int *)kstpa)[kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE];
epte = &pte[NPTEPG/SG4_LEV3SIZE];
protoste = lkptpa | SG_U | SG_RW | SG_V;
while (pte < epte) {
*pte++ = protoste;
protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
}
/*
* Initialize Sysptmap
*/
pte = (u_int *)kptmpa;
epte = &pte[nptpages+1];
protopte = kptpa | PG_RW | PG_CI | PG_V;
while (pte < epte) {
*pte++ = protopte;
protopte += PAGE_SIZE;
}
/*
* Invalidate all but the last remaining entry.
*/
epte = &((u_int *)kptmpa)[NPTEPG-1];
while (pte < epte) {
*pte++ = PG_NV;
}
/*
* Initialize the last to point to the page
* table page allocated earlier.
*/
*pte = lkptpa | PG_RW | PG_CI | PG_V;
} else {
/*
* Map the page table pages in both the HW segment table
* and the software Sysptmap. Note that Sysptmap is also
* considered a PT page hence the +1.
*/
ste = (u_int *)kstpa;
pte = (u_int *)kptmpa;
epte = &pte[nptpages+1];
protoste = kptpa | SG_RW | SG_V;
protopte = kptpa | PG_RW | PG_CI | PG_V;
while (pte < epte) {
*ste++ = protoste;
*pte++ = protopte;
protoste += PAGE_SIZE;
protopte += PAGE_SIZE;
}
/*
* Invalidate all but the last remaining entries in both.
*/
epte = &((u_int *)kptmpa)[NPTEPG-1];
while (pte < epte) {
*ste++ = SG_NV;
*pte++ = PG_NV;
}
/*
* Initialize the last to point to point to the page
* table page allocated earlier.
*/
*ste = lkptpa | SG_RW | SG_V;
*pte = lkptpa | PG_RW | PG_CI | PG_V;
}
/*
* Invalidate all but the final entry in the last kernel PT page
* (u-area PTEs will be validated later). The final entry maps
* the last page of physical memory.
*/
pte = (u_int *)lkptpa;
epte = &pte[NPTEPG];
while (pte < epte)
*pte++ = PG_NV;
/*
* Initialize kernel page table.
* Start by invalidating the `nptpages' that we have allocated.
*/
pte = (u_int *)kptpa;
epte = &pte[nptpages * NPTEPG];
while (pte < epte)
*pte++ = PG_NV;
/*
* Validate PTEs for kernel text (RO).
*/
pte = &((u_int *)kptpa)[m68k_btop(KERNBASE)];
epte = &((u_int *)kptpa)[m68k_btop(m68k_trunc_page(&etext))];
protopte = firstpa | PG_RO | PG_V;
while (pte < epte) {
*pte++ = protopte;
protopte += PAGE_SIZE;
}
/*
* Validate PTEs for kernel data/bss, dynamic data allocated
* by us so far (nextpa - firstpa bytes), and pages for proc0
* u-area and page table allocated below (RW).
*/
epte = &((u_int *)kptpa)[m68k_btop(KERNBASE + nextpa - firstpa)];
protopte = (protopte & ~PG_PROT) | PG_RW;
/*
* Enable copy-back caching of data pages
*/
if (RELOC(mmutype, int) == MMU_68040)
protopte |= PG_CCB;
while (pte < epte) {
*pte++ = protopte;
protopte += PAGE_SIZE;
}
/*
* Calculate important exported kernel virtual addresses
*/
/*
* Sysseg: base of kernel segment table
*/
RELOC(Sysseg, st_entry_t *) =
(st_entry_t *)(kstpa - firstpa + KERNBASE);
/*
* Sysptmap: base of kernel page table map
*/
RELOC(Sysptmap, pt_entry_t *) =
(pt_entry_t *)(kptmpa - firstpa + KERNBASE);
/*
* Sysmap: kernel page table (as mapped through Sysptmap)
* Immediately follows `nptpages' of static kernel page table.
*/
RELOC(Sysmap, pt_entry_t *) =
(pt_entry_t *)m68k_ptob(nptpages * NPTEPG);
/*
* Setup u-area for process 0.
*/
/*
* Zero the u-area.
* NOTE: `pte' and `epte' aren't PTEs here.
*/
pte = (u_int *)p0upa;
epte = (u_int *)(p0upa + USPACE);
while (pte < epte)
*pte++ = 0;
/*
* Remember the u-area address so it can be loaded in the
* proc struct p_addr field later.
*/
RELOC(proc0paddr, char *) = (char *)(p0upa - firstpa + KERNBASE);
/*
* VM data structures are now initialized, set up data for
* the pmap module.
*
* Note about avail_end: msgbuf is initialized just after
* avail_end in machdep.c. Since the last page is used
* for rebooting the system (code is copied there and
* excution continues from copied code before the MMU
* is disabled), the msgbuf will get trounced between
* reboots if it's placed in the last physical page.
* To work around this, we move avail_end back one more
* page so the msgbuf can be preserved.
*/
RELOC(avail_start, vm_offset_t) = nextpa;
RELOC(avail_end, vm_offset_t) = firstpa
+ m68k_ptob(RELOC(physmem, int))
- m68k_round_page(MSGBUFSIZE)
- PAGE_SIZE; /* if that start of last page??? */
RELOC(virtual_avail, vm_offset_t) =
KERNBASE + (nextpa - firstpa);
RELOC(virtual_end, vm_offset_t) = VM_MAX_KERNEL_ADDRESS;
/*
* Initialize protection array.
* XXX don't use a switch statement, it might produce an
* absolute "jmp" table.
*/
{
int *kp;
kp = &RELOC(protection_codes, int);
kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0;
kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO;
kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
}
/*
* Kernel page/segment table allocated in locore,
* just initialize pointers.
*/
{
struct pmap *kpm = &RELOC(kernel_pmap_store, struct pmap);
kpm->pm_stab = RELOC(Sysseg, st_entry_t *);
kpm->pm_ptab = RELOC(Sysmap, pt_entry_t *);
simple_lock_init(&kpm->pm_lock);
kpm->pm_count = 1;
kpm->pm_stpa = (st_entry_t *)kstpa;
/*
* For the 040 we also initialize the free level 2
* descriptor mask noting that we have used:
* 0: level 1 table
* 1 to `num': map page tables
* MAXKL2SIZE-1: maps last-page page table
*/
if (RELOC(mmutype, int) == MMU_68040) {
int num;
kpm->pm_stfree = ~l2tobm(0);
num = roundup((nptpages + 1) * (NPTEPG / SG4_LEV3SIZE),
SG4_LEV2SIZE) / SG4_LEV2SIZE;
while (num)
kpm->pm_stfree &= ~l2tobm(num--);
kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1);
for (num = MAXKL2SIZE;
num < sizeof(kpm->pm_stfree)*NBBY;
num++)
kpm->pm_stfree &= ~l2tobm(num);
}
}
/*
* Allocate some fixed, special purpose kernel virtual addresses
*/
{
vm_offset_t va = RELOC(virtual_avail, vm_offset_t);
RELOC(CADDR1, caddr_t) = (caddr_t)va;
va += PAGE_SIZE;
RELOC(CADDR2, caddr_t) = (caddr_t)va;
va += PAGE_SIZE;
RELOC(vmmap, caddr_t) = (caddr_t)va;
va += PAGE_SIZE;
RELOC(msgbufaddr, caddr_t) = (caddr_t)va;
va += m68k_round_page(MSGBUFSIZE);
RELOC(virtual_avail, vm_offset_t) = va;
}
}
void
pmap_init_md(void)
{
/* Nothing here. */
}