aad01611e7
Patches provided by Joel Baker in PR 22364, verified by myself.
469 lines
14 KiB
C
469 lines
14 KiB
C
/* $NetBSD: pmap_bootstrap.c,v 1.5 2003/08/07 16:27:15 agc Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* the Systems Programming Group of the University of Utah Computer
|
|
* Science Department.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)pmap_bootstrap.c 8.1 (Berkeley) 6/10/93
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: pmap_bootstrap.c,v 1.5 2003/08/07 16:27:15 agc Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/msgbuf.h>
|
|
#include <sys/proc.h>
|
|
|
|
#include <machine/frame.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/vmparam.h>
|
|
#include <machine/pte.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#define RELOC(v, t) *((t*)((u_int)&(v) + firstpa - KERNBASE))
|
|
|
|
extern char *etext;
|
|
extern int Sysptsize;
|
|
extern char *proc0paddr;
|
|
extern st_entry_t *Sysseg;
|
|
extern pt_entry_t *Sysptmap, *Sysmap;
|
|
|
|
extern int physmem;
|
|
extern vm_offset_t avail_start, avail_end, virtual_avail, virtual_end;
|
|
extern int protection_codes[];
|
|
|
|
void pmap_bootstrap __P((vm_offset_t, vm_offset_t));
|
|
|
|
/*
|
|
* Special purpose kernel virtual addresses, used for mapping
|
|
* physical pages for a variety of temporary or permanent purposes:
|
|
*
|
|
* CADDR1, CADDR2: pmap zero/copy operations
|
|
* vmmap: /dev/mem, crash dumps, parity error checking
|
|
* msgbufp: kernel message buffer
|
|
*/
|
|
caddr_t CADDR1, CADDR2, vmmap;
|
|
extern caddr_t msgbufaddr;
|
|
|
|
/*
|
|
* Bootstrap the VM system.
|
|
*
|
|
* Called with MMU off so we must relocate all global references by `firstpa'
|
|
* (don't call any functions here!) `nextpa' is the first available physical
|
|
* memory address. Returns an updated first PA reflecting the memory we
|
|
* have allocated. MMU is still off when we return.
|
|
*
|
|
* XXX assumes sizeof(u_int) == sizeof(pt_entry_t)
|
|
* XXX a PIC compiler would make this much easier.
|
|
*/
|
|
void
|
|
pmap_bootstrap(nextpa, firstpa)
|
|
vm_offset_t nextpa;
|
|
vm_offset_t firstpa;
|
|
{
|
|
vm_offset_t kstpa, kptpa, kptmpa, lkptpa, p0upa;
|
|
u_int nptpages, kstsize;
|
|
st_entry_t protoste, *ste;
|
|
pt_entry_t protopte, *pte, *epte;
|
|
|
|
/*
|
|
* Calculate important physical addresses:
|
|
*
|
|
* kstpa kernel segment table 1 page (!040)
|
|
* N pages (040)
|
|
*
|
|
* kptpa statically allocated
|
|
* kernel PT pages Sysptsize+ pages
|
|
*
|
|
* iiopa internal IO space
|
|
* PT pages IIOMAPSIZE pages
|
|
*
|
|
* eiopa external IO space
|
|
* PT pages EIOMAPSIZE pages
|
|
*
|
|
* [ Sysptsize is the number of pages of PT, IIOMAPSIZE and
|
|
* EIOMAPSIZE are the number of PTEs, hence we need to round
|
|
* the total to a page boundary with IO maps at the end. ]
|
|
*
|
|
* kptmpa kernel PT map 1 page
|
|
*
|
|
* lkptpa last kernel PT page 1 page
|
|
*
|
|
* p0upa proc 0 u-area UPAGES pages
|
|
*
|
|
* The KVA corresponding to any of these PAs is:
|
|
* (PA - firstpa + KERNBASE).
|
|
*/
|
|
if (RELOC(mmutype, int) == MMU_68040)
|
|
kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
|
|
else
|
|
kstsize = 1;
|
|
kstpa = nextpa;
|
|
nextpa += kstsize * PAGE_SIZE;
|
|
kptpa = nextpa;
|
|
nptpages = RELOC(Sysptsize, int);
|
|
nextpa += nptpages * PAGE_SIZE;
|
|
kptmpa = nextpa;
|
|
nextpa += PAGE_SIZE;
|
|
lkptpa = nextpa;
|
|
nextpa += PAGE_SIZE;
|
|
p0upa = nextpa;
|
|
nextpa += USPACE;
|
|
|
|
/*
|
|
* Initialize segment table and kernel page table map.
|
|
*
|
|
* On 68030s and earlier MMUs the two are identical except for
|
|
* the valid bits so both are initialized with essentially the
|
|
* same values. On the 68040, which has a mandatory 3-level
|
|
* structure, the segment table holds the level 1 table and part
|
|
* (or all) of the level 2 table and hence is considerably
|
|
* different. Here the first level consists of 128 descriptors
|
|
* (512 bytes) each mapping 32mb of address space. Each of these
|
|
* points to blocks of 128 second level descriptors (512 bytes)
|
|
* each mapping 256kb. Note that there may be additional "segment
|
|
* table" pages depending on how large MAXKL2SIZE is.
|
|
*
|
|
* Portions of the last segment of KVA space (0xFFF00000 -
|
|
* 0xFFFFFFFF) are mapped for a couple of purposes. 0xFFF00000
|
|
* for UPAGES is used for mapping the current process u-area
|
|
* (u + kernel stack). The very last page (0xFFFFF000) is mapped
|
|
* to the last physical page of RAM to give us a region in which
|
|
* PA == VA. We use the first part of this page for enabling
|
|
* and disabling mapping. The last part of this page also contains
|
|
* info left by the boot ROM.
|
|
*
|
|
* XXX cramming two levels of mapping into the single "segment"
|
|
* table on the 68040 is intended as a temporary hack to get things
|
|
* working. The 224mb of address space that this allows will most
|
|
* likely be insufficient in the future (at least for the kernel).
|
|
*/
|
|
if (RELOC(mmutype, int) == MMU_68040) {
|
|
int num;
|
|
|
|
/*
|
|
* First invalidate the entire "segment table" pages
|
|
* (levels 1 and 2 have the same "invalid" value).
|
|
*/
|
|
pte = (u_int *)kstpa;
|
|
epte = &pte[kstsize * NPTEPG];
|
|
while (pte < epte)
|
|
*pte++ = SG_NV;
|
|
|
|
/*
|
|
* Initialize level 2 descriptors (which immediately
|
|
* follow the level 1 table). We need:
|
|
* NPTEPG / SG4_LEV3SIZE
|
|
* level 2 descriptors to map each of the nptpages+1
|
|
* pages of PTEs. Note that we set the "used" bit
|
|
* now to save the HW the expense of doing it.
|
|
*/
|
|
num = (nptpages + 1) * (NPTEPG / SG4_LEV3SIZE);
|
|
pte = &((u_int *)kstpa)[SG4_LEV1SIZE];
|
|
epte = &pte[num];
|
|
protoste = kptpa | SG_U | SG_RW | SG_V;
|
|
while (pte < epte) {
|
|
*pte++ = protoste;
|
|
protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
|
|
}
|
|
|
|
/*
|
|
* Initialize level 1 descriptors. We need:
|
|
* roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE
|
|
* level 1 descriptors to map the `num' level 2's.
|
|
*/
|
|
pte = (u_int *)kstpa;
|
|
epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE];
|
|
protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V;
|
|
while (pte < epte) {
|
|
*pte++ = protoste;
|
|
protoste += (SG4_LEV2SIZE * sizeof(st_entry_t));
|
|
}
|
|
|
|
/*
|
|
* Initialize the final level 1 descriptor to map the last
|
|
* block of level 2 descriptors.
|
|
*/
|
|
ste = &((u_int *)kstpa)[SG4_LEV1SIZE-1];
|
|
pte = &((u_int *)kstpa)[kstsize*NPTEPG - SG4_LEV2SIZE];
|
|
*ste = (u_int)pte | SG_U | SG_RW | SG_V;
|
|
/*
|
|
* Now initialize the final portion of that block of
|
|
* descriptors to map the "last PT page".
|
|
*/
|
|
pte = &((u_int *)kstpa)[kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE];
|
|
epte = &pte[NPTEPG/SG4_LEV3SIZE];
|
|
protoste = lkptpa | SG_U | SG_RW | SG_V;
|
|
while (pte < epte) {
|
|
*pte++ = protoste;
|
|
protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
|
|
}
|
|
|
|
/*
|
|
* Initialize Sysptmap
|
|
*/
|
|
pte = (u_int *)kptmpa;
|
|
epte = &pte[nptpages+1];
|
|
protopte = kptpa | PG_RW | PG_CI | PG_V;
|
|
while (pte < epte) {
|
|
*pte++ = protopte;
|
|
protopte += PAGE_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Invalidate all but the last remaining entry.
|
|
*/
|
|
epte = &((u_int *)kptmpa)[NPTEPG-1];
|
|
while (pte < epte) {
|
|
*pte++ = PG_NV;
|
|
}
|
|
/*
|
|
* Initialize the last to point to the page
|
|
* table page allocated earlier.
|
|
*/
|
|
*pte = lkptpa | PG_RW | PG_CI | PG_V;
|
|
} else {
|
|
/*
|
|
* Map the page table pages in both the HW segment table
|
|
* and the software Sysptmap. Note that Sysptmap is also
|
|
* considered a PT page hence the +1.
|
|
*/
|
|
ste = (u_int *)kstpa;
|
|
pte = (u_int *)kptmpa;
|
|
epte = &pte[nptpages+1];
|
|
protoste = kptpa | SG_RW | SG_V;
|
|
protopte = kptpa | PG_RW | PG_CI | PG_V;
|
|
while (pte < epte) {
|
|
*ste++ = protoste;
|
|
*pte++ = protopte;
|
|
protoste += PAGE_SIZE;
|
|
protopte += PAGE_SIZE;
|
|
}
|
|
/*
|
|
* Invalidate all but the last remaining entries in both.
|
|
*/
|
|
epte = &((u_int *)kptmpa)[NPTEPG-1];
|
|
while (pte < epte) {
|
|
*ste++ = SG_NV;
|
|
*pte++ = PG_NV;
|
|
}
|
|
/*
|
|
* Initialize the last to point to point to the page
|
|
* table page allocated earlier.
|
|
*/
|
|
*ste = lkptpa | SG_RW | SG_V;
|
|
*pte = lkptpa | PG_RW | PG_CI | PG_V;
|
|
}
|
|
/*
|
|
* Invalidate all but the final entry in the last kernel PT page
|
|
* (u-area PTEs will be validated later). The final entry maps
|
|
* the last page of physical memory.
|
|
*/
|
|
pte = (u_int *)lkptpa;
|
|
epte = &pte[NPTEPG];
|
|
while (pte < epte)
|
|
*pte++ = PG_NV;
|
|
|
|
/*
|
|
* Initialize kernel page table.
|
|
* Start by invalidating the `nptpages' that we have allocated.
|
|
*/
|
|
pte = (u_int *)kptpa;
|
|
epte = &pte[nptpages * NPTEPG];
|
|
while (pte < epte)
|
|
*pte++ = PG_NV;
|
|
|
|
/*
|
|
* Validate PTEs for kernel text (RO).
|
|
*/
|
|
pte = &((u_int *)kptpa)[m68k_btop(KERNBASE)];
|
|
epte = &((u_int *)kptpa)[m68k_btop(m68k_trunc_page(&etext))];
|
|
protopte = firstpa | PG_RO | PG_V;
|
|
while (pte < epte) {
|
|
*pte++ = protopte;
|
|
protopte += PAGE_SIZE;
|
|
}
|
|
/*
|
|
* Validate PTEs for kernel data/bss, dynamic data allocated
|
|
* by us so far (nextpa - firstpa bytes), and pages for proc0
|
|
* u-area and page table allocated below (RW).
|
|
*/
|
|
epte = &((u_int *)kptpa)[m68k_btop(KERNBASE + nextpa - firstpa)];
|
|
protopte = (protopte & ~PG_PROT) | PG_RW;
|
|
/*
|
|
* Enable copy-back caching of data pages
|
|
*/
|
|
if (RELOC(mmutype, int) == MMU_68040)
|
|
protopte |= PG_CCB;
|
|
|
|
while (pte < epte) {
|
|
*pte++ = protopte;
|
|
protopte += PAGE_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Calculate important exported kernel virtual addresses
|
|
*/
|
|
/*
|
|
* Sysseg: base of kernel segment table
|
|
*/
|
|
RELOC(Sysseg, st_entry_t *) =
|
|
(st_entry_t *)(kstpa - firstpa + KERNBASE);
|
|
/*
|
|
* Sysptmap: base of kernel page table map
|
|
*/
|
|
RELOC(Sysptmap, pt_entry_t *) =
|
|
(pt_entry_t *)(kptmpa - firstpa + KERNBASE);
|
|
/*
|
|
* Sysmap: kernel page table (as mapped through Sysptmap)
|
|
* Immediately follows `nptpages' of static kernel page table.
|
|
*/
|
|
RELOC(Sysmap, pt_entry_t *) =
|
|
(pt_entry_t *)m68k_ptob(nptpages * NPTEPG);
|
|
|
|
/*
|
|
* Setup u-area for process 0.
|
|
*/
|
|
/*
|
|
* Zero the u-area.
|
|
* NOTE: `pte' and `epte' aren't PTEs here.
|
|
*/
|
|
pte = (u_int *)p0upa;
|
|
epte = (u_int *)(p0upa + USPACE);
|
|
while (pte < epte)
|
|
*pte++ = 0;
|
|
/*
|
|
* Remember the u-area address so it can be loaded in the
|
|
* proc struct p_addr field later.
|
|
*/
|
|
RELOC(proc0paddr, char *) = (char *)(p0upa - firstpa + KERNBASE);
|
|
|
|
/*
|
|
* VM data structures are now initialized, set up data for
|
|
* the pmap module.
|
|
*
|
|
* Note about avail_end: msgbuf is initialized just after
|
|
* avail_end in machdep.c. Since the last page is used
|
|
* for rebooting the system (code is copied there and
|
|
* excution continues from copied code before the MMU
|
|
* is disabled), the msgbuf will get trounced between
|
|
* reboots if it's placed in the last physical page.
|
|
* To work around this, we move avail_end back one more
|
|
* page so the msgbuf can be preserved.
|
|
*/
|
|
RELOC(avail_start, vm_offset_t) = nextpa;
|
|
RELOC(avail_end, vm_offset_t) = firstpa
|
|
+ m68k_ptob(RELOC(physmem, int))
|
|
- m68k_round_page(MSGBUFSIZE)
|
|
- PAGE_SIZE; /* if that start of last page??? */
|
|
RELOC(virtual_avail, vm_offset_t) =
|
|
KERNBASE + (nextpa - firstpa);
|
|
RELOC(virtual_end, vm_offset_t) = VM_MAX_KERNEL_ADDRESS;
|
|
|
|
/*
|
|
* Initialize protection array.
|
|
* XXX don't use a switch statement, it might produce an
|
|
* absolute "jmp" table.
|
|
*/
|
|
{
|
|
int *kp;
|
|
|
|
kp = &RELOC(protection_codes, int);
|
|
kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0;
|
|
kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO;
|
|
kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
|
|
kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
|
|
kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
|
|
kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
|
|
kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
|
|
kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
|
|
}
|
|
|
|
/*
|
|
* Kernel page/segment table allocated in locore,
|
|
* just initialize pointers.
|
|
*/
|
|
{
|
|
struct pmap *kpm = &RELOC(kernel_pmap_store, struct pmap);
|
|
|
|
kpm->pm_stab = RELOC(Sysseg, st_entry_t *);
|
|
kpm->pm_ptab = RELOC(Sysmap, pt_entry_t *);
|
|
simple_lock_init(&kpm->pm_lock);
|
|
kpm->pm_count = 1;
|
|
kpm->pm_stpa = (st_entry_t *)kstpa;
|
|
/*
|
|
* For the 040 we also initialize the free level 2
|
|
* descriptor mask noting that we have used:
|
|
* 0: level 1 table
|
|
* 1 to `num': map page tables
|
|
* MAXKL2SIZE-1: maps last-page page table
|
|
*/
|
|
if (RELOC(mmutype, int) == MMU_68040) {
|
|
int num;
|
|
|
|
kpm->pm_stfree = ~l2tobm(0);
|
|
num = roundup((nptpages + 1) * (NPTEPG / SG4_LEV3SIZE),
|
|
SG4_LEV2SIZE) / SG4_LEV2SIZE;
|
|
while (num)
|
|
kpm->pm_stfree &= ~l2tobm(num--);
|
|
kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1);
|
|
for (num = MAXKL2SIZE;
|
|
num < sizeof(kpm->pm_stfree)*NBBY;
|
|
num++)
|
|
kpm->pm_stfree &= ~l2tobm(num);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate some fixed, special purpose kernel virtual addresses
|
|
*/
|
|
{
|
|
vm_offset_t va = RELOC(virtual_avail, vm_offset_t);
|
|
|
|
RELOC(CADDR1, caddr_t) = (caddr_t)va;
|
|
va += PAGE_SIZE;
|
|
RELOC(CADDR2, caddr_t) = (caddr_t)va;
|
|
va += PAGE_SIZE;
|
|
RELOC(vmmap, caddr_t) = (caddr_t)va;
|
|
va += PAGE_SIZE;
|
|
RELOC(msgbufaddr, caddr_t) = (caddr_t)va;
|
|
va += m68k_round_page(MSGBUFSIZE);
|
|
RELOC(virtual_avail, vm_offset_t) = va;
|
|
}
|
|
}
|
|
|
|
void
|
|
pmap_init_md(void)
|
|
{
|
|
/* Nothing here. */
|
|
}
|