da32f22c2a
(Mostly.) The ufs-derived ones are fake structure member macros, which are gross and not very safe. Also, it seems that a lot of places in the lfs code were using the ffsv1 branch of them unconditionally, and this way it's guaranteed all those places have been updated. Found while doing this: for non-devices, have getattr produce NODEV in the rdev field instead of leaking the address of the first direct block.
431 lines
13 KiB
C
431 lines
13 KiB
C
/* $NetBSD: ulfs_bmap.c,v 1.7 2015/09/01 06:08:37 dholland Exp $ */
|
|
/* from NetBSD: ufs_bmap.c,v 1.50 2013/01/22 09:39:18 dholland Exp */
|
|
|
|
/*
|
|
* Copyright (c) 1989, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)ufs_bmap.c 8.8 (Berkeley) 8/11/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: ulfs_bmap.c,v 1.7 2015/09/01 06:08:37 dholland Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/trace.h>
|
|
#include <sys/fstrans.h>
|
|
|
|
#include <miscfs/specfs/specdev.h>
|
|
|
|
#include <ufs/lfs/ulfs_inode.h>
|
|
#include <ufs/lfs/ulfsmount.h>
|
|
#include <ufs/lfs/ulfs_extern.h>
|
|
#include <ufs/lfs/ulfs_bswap.h>
|
|
|
|
static bool
|
|
ulfs_issequential(const struct lfs *fs, daddr_t daddr0, daddr_t daddr1)
|
|
{
|
|
|
|
/* for ulfs, blocks in a hole is not 'contiguous'. */
|
|
if (daddr0 == 0)
|
|
return false;
|
|
|
|
return (daddr0 + fs->um_seqinc == daddr1);
|
|
}
|
|
|
|
/*
|
|
* This is used for block pointers in inodes and elsewhere, which can
|
|
* contain the magic value UNWRITTEN, which is -2. This is mishandled
|
|
* by u32 -> u64 promotion unless special-cased.
|
|
*
|
|
* XXX this should be rolled into better inode accessors and go away.
|
|
*/
|
|
static inline uint64_t
|
|
ulfs_fix_unwritten(uint32_t val)
|
|
{
|
|
if (val == (uint32_t)UNWRITTEN) {
|
|
return (uint64_t)(int64_t)UNWRITTEN;
|
|
} else {
|
|
return val;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Bmap converts the logical block number of a file to its physical block
|
|
* number on the disk. The conversion is done by using the logical block
|
|
* number to index into the array of block pointers described by the dinode.
|
|
*/
|
|
int
|
|
ulfs_bmap(void *v)
|
|
{
|
|
struct vop_bmap_args /* {
|
|
struct vnode *a_vp;
|
|
daddr_t a_bn;
|
|
struct vnode **a_vpp;
|
|
daddr_t *a_bnp;
|
|
int *a_runp;
|
|
} */ *ap = v;
|
|
int error;
|
|
|
|
/*
|
|
* Check for underlying vnode requests and ensure that logical
|
|
* to physical mapping is requested.
|
|
*/
|
|
if (ap->a_vpp != NULL)
|
|
*ap->a_vpp = VTOI(ap->a_vp)->i_devvp;
|
|
if (ap->a_bnp == NULL)
|
|
return (0);
|
|
|
|
fstrans_start(ap->a_vp->v_mount, FSTRANS_SHARED);
|
|
error = ulfs_bmaparray(ap->a_vp, ap->a_bn, ap->a_bnp, NULL, NULL,
|
|
ap->a_runp, ulfs_issequential);
|
|
fstrans_done(ap->a_vp->v_mount);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Indirect blocks are now on the vnode for the file. They are given negative
|
|
* logical block numbers. Indirect blocks are addressed by the negative
|
|
* address of the first data block to which they point. Double indirect blocks
|
|
* are addressed by one less than the address of the first indirect block to
|
|
* which they point. Triple indirect blocks are addressed by one less than
|
|
* the address of the first double indirect block to which they point.
|
|
*
|
|
* ulfs_bmaparray does the bmap conversion, and if requested returns the
|
|
* array of logical blocks which must be traversed to get to a block.
|
|
* Each entry contains the offset into that block that gets you to the
|
|
* next block and the disk address of the block (if it is assigned).
|
|
*/
|
|
|
|
int
|
|
ulfs_bmaparray(struct vnode *vp, daddr_t bn, daddr_t *bnp, struct indir *ap,
|
|
int *nump, int *runp, ulfs_issequential_callback_t is_sequential)
|
|
{
|
|
struct inode *ip;
|
|
struct buf *bp, *cbp;
|
|
struct ulfsmount *ump;
|
|
struct lfs *fs;
|
|
struct mount *mp;
|
|
struct indir a[ULFS_NIADDR + 1], *xap;
|
|
daddr_t daddr;
|
|
daddr_t metalbn;
|
|
int error, maxrun = 0, num;
|
|
|
|
ip = VTOI(vp);
|
|
mp = vp->v_mount;
|
|
ump = ip->i_ump;
|
|
fs = ip->i_lfs;
|
|
#ifdef DIAGNOSTIC
|
|
if ((ap != NULL && nump == NULL) || (ap == NULL && nump != NULL))
|
|
panic("ulfs_bmaparray: invalid arguments");
|
|
#endif
|
|
|
|
if (runp) {
|
|
/*
|
|
* XXX
|
|
* If MAXBSIZE is the largest transfer the disks can handle,
|
|
* we probably want maxrun to be 1 block less so that we
|
|
* don't create a block larger than the device can handle.
|
|
*/
|
|
*runp = 0;
|
|
maxrun = MAXPHYS / mp->mnt_stat.f_iosize - 1;
|
|
}
|
|
|
|
if (bn >= 0 && bn < ULFS_NDADDR) {
|
|
if (nump != NULL)
|
|
*nump = 0;
|
|
if (ump->um_fstype == ULFS1)
|
|
daddr = ulfs_fix_unwritten(ulfs_rw32(ip->i_din->u_32.di_db[bn],
|
|
ULFS_MPNEEDSWAP(fs)));
|
|
else
|
|
daddr = ulfs_rw64(ip->i_din->u_64.di_db[bn],
|
|
ULFS_MPNEEDSWAP(fs));
|
|
*bnp = blkptrtodb(fs, daddr);
|
|
/*
|
|
* Since this is FFS independent code, we are out of
|
|
* scope for the definitions of BLK_NOCOPY and
|
|
* BLK_SNAP, but we do know that they will fall in
|
|
* the range 1..um_seqinc, so we use that test and
|
|
* return a request for a zeroed out buffer if attempts
|
|
* are made to read a BLK_NOCOPY or BLK_SNAP block.
|
|
*/
|
|
if ((ip->i_flags & (SF_SNAPSHOT | SF_SNAPINVAL)) == SF_SNAPSHOT
|
|
&& daddr > 0 &&
|
|
daddr < fs->um_seqinc) {
|
|
*bnp = -1;
|
|
} else if (*bnp == 0) {
|
|
if ((ip->i_flags & (SF_SNAPSHOT | SF_SNAPINVAL))
|
|
== SF_SNAPSHOT) {
|
|
*bnp = blkptrtodb(fs, bn * fs->um_seqinc);
|
|
} else {
|
|
*bnp = -1;
|
|
}
|
|
} else if (runp) {
|
|
if (ump->um_fstype == ULFS1) {
|
|
for (++bn; bn < ULFS_NDADDR && *runp < maxrun &&
|
|
is_sequential(fs,
|
|
ulfs_fix_unwritten(ulfs_rw32(ip->i_din->u_32.di_db[bn - 1],
|
|
ULFS_MPNEEDSWAP(fs))),
|
|
ulfs_fix_unwritten(ulfs_rw32(ip->i_din->u_32.di_db[bn],
|
|
ULFS_MPNEEDSWAP(fs))));
|
|
++bn, ++*runp);
|
|
} else {
|
|
for (++bn; bn < ULFS_NDADDR && *runp < maxrun &&
|
|
is_sequential(fs,
|
|
ulfs_rw64(ip->i_din->u_64.di_db[bn - 1],
|
|
ULFS_MPNEEDSWAP(fs)),
|
|
ulfs_rw64(ip->i_din->u_64.di_db[bn],
|
|
ULFS_MPNEEDSWAP(fs)));
|
|
++bn, ++*runp);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
xap = ap == NULL ? a : ap;
|
|
if (!nump)
|
|
nump = #
|
|
if ((error = ulfs_getlbns(vp, bn, xap, nump)) != 0)
|
|
return (error);
|
|
|
|
num = *nump;
|
|
|
|
/* Get disk address out of indirect block array */
|
|
// XXX clean this up
|
|
if (ump->um_fstype == ULFS1)
|
|
daddr = ulfs_fix_unwritten(ulfs_rw32(ip->i_din->u_32.di_ib[xap->in_off],
|
|
ULFS_MPNEEDSWAP(fs)));
|
|
else
|
|
daddr = ulfs_rw64(ip->i_din->u_64.di_ib[xap->in_off],
|
|
ULFS_MPNEEDSWAP(fs));
|
|
|
|
for (bp = NULL, ++xap; --num; ++xap) {
|
|
/*
|
|
* Exit the loop if there is no disk address assigned yet and
|
|
* the indirect block isn't in the cache, or if we were
|
|
* looking for an indirect block and we've found it.
|
|
*/
|
|
|
|
metalbn = xap->in_lbn;
|
|
if (metalbn == bn)
|
|
break;
|
|
if (daddr == 0) {
|
|
mutex_enter(&bufcache_lock);
|
|
cbp = incore(vp, metalbn);
|
|
mutex_exit(&bufcache_lock);
|
|
if (cbp == NULL)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we get here, we've either got the block in the cache
|
|
* or we have a disk address for it, go fetch it.
|
|
*/
|
|
if (bp)
|
|
brelse(bp, 0);
|
|
|
|
xap->in_exists = 1;
|
|
bp = getblk(vp, metalbn, mp->mnt_stat.f_iosize, 0, 0);
|
|
if (bp == NULL) {
|
|
|
|
/*
|
|
* getblk() above returns NULL only iff we are
|
|
* pagedaemon. See the implementation of getblk
|
|
* for detail.
|
|
*/
|
|
|
|
return (ENOMEM);
|
|
}
|
|
if (bp->b_oflags & (BO_DONE | BO_DELWRI)) {
|
|
trace(TR_BREADHIT, pack(vp, size), metalbn);
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
else if (!daddr)
|
|
panic("ulfs_bmaparray: indirect block not in cache");
|
|
#endif
|
|
else {
|
|
trace(TR_BREADMISS, pack(vp, size), metalbn);
|
|
bp->b_blkno = blkptrtodb(fs, daddr);
|
|
bp->b_flags |= B_READ;
|
|
BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
|
|
VOP_STRATEGY(vp, bp);
|
|
curlwp->l_ru.ru_inblock++; /* XXX */
|
|
if ((error = biowait(bp)) != 0) {
|
|
brelse(bp, 0);
|
|
return (error);
|
|
}
|
|
}
|
|
if (ump->um_fstype == ULFS1) {
|
|
daddr = ulfs_fix_unwritten(ulfs_rw32(((u_int32_t *)bp->b_data)[xap->in_off],
|
|
ULFS_MPNEEDSWAP(fs)));
|
|
if (num == 1 && daddr && runp) {
|
|
for (bn = xap->in_off + 1;
|
|
bn < MNINDIR(fs) && *runp < maxrun &&
|
|
is_sequential(fs,
|
|
ulfs_fix_unwritten(ulfs_rw32(((int32_t *)bp->b_data)[bn-1],
|
|
ULFS_MPNEEDSWAP(fs))),
|
|
ulfs_fix_unwritten(ulfs_rw32(((int32_t *)bp->b_data)[bn],
|
|
ULFS_MPNEEDSWAP(fs))));
|
|
++bn, ++*runp);
|
|
}
|
|
} else {
|
|
daddr = ulfs_rw64(((u_int64_t *)bp->b_data)[xap->in_off],
|
|
ULFS_MPNEEDSWAP(fs));
|
|
if (num == 1 && daddr && runp) {
|
|
for (bn = xap->in_off + 1;
|
|
bn < MNINDIR(fs) && *runp < maxrun &&
|
|
is_sequential(fs,
|
|
ulfs_rw64(((int64_t *)bp->b_data)[bn-1],
|
|
ULFS_MPNEEDSWAP(fs)),
|
|
ulfs_rw64(((int64_t *)bp->b_data)[bn],
|
|
ULFS_MPNEEDSWAP(fs)));
|
|
++bn, ++*runp);
|
|
}
|
|
}
|
|
}
|
|
if (bp)
|
|
brelse(bp, 0);
|
|
|
|
/*
|
|
* Since this is FFS independent code, we are out of scope for the
|
|
* definitions of BLK_NOCOPY and BLK_SNAP, but we do know that they
|
|
* will fall in the range 1..um_seqinc, so we use that test and
|
|
* return a request for a zeroed out buffer if attempts are made
|
|
* to read a BLK_NOCOPY or BLK_SNAP block.
|
|
*/
|
|
if ((ip->i_flags & (SF_SNAPSHOT | SF_SNAPINVAL)) == SF_SNAPSHOT
|
|
&& daddr > 0 && daddr < fs->um_seqinc) {
|
|
*bnp = -1;
|
|
return (0);
|
|
}
|
|
*bnp = blkptrtodb(fs, daddr);
|
|
if (*bnp == 0) {
|
|
if ((ip->i_flags & (SF_SNAPSHOT | SF_SNAPINVAL))
|
|
== SF_SNAPSHOT) {
|
|
*bnp = blkptrtodb(fs, bn * fs->um_seqinc);
|
|
} else {
|
|
*bnp = -1;
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Create an array of logical block number/offset pairs which represent the
|
|
* path of indirect blocks required to access a data block. The first "pair"
|
|
* contains the logical block number of the appropriate single, double or
|
|
* triple indirect block and the offset into the inode indirect block array.
|
|
* Note, the logical block number of the inode single/double/triple indirect
|
|
* block appears twice in the array, once with the offset into the i_ffs1_ib and
|
|
* once with the offset into the page itself.
|
|
*/
|
|
int
|
|
ulfs_getlbns(struct vnode *vp, daddr_t bn, struct indir *ap, int *nump)
|
|
{
|
|
daddr_t metalbn, realbn;
|
|
struct ulfsmount *ump;
|
|
struct lfs *fs;
|
|
int64_t blockcnt;
|
|
int lbc;
|
|
int i, numlevels, off;
|
|
|
|
ump = VFSTOULFS(vp->v_mount);
|
|
fs = ump->um_lfs;
|
|
if (nump)
|
|
*nump = 0;
|
|
numlevels = 0;
|
|
realbn = bn;
|
|
if (bn < 0)
|
|
bn = -bn;
|
|
KASSERT(bn >= ULFS_NDADDR);
|
|
|
|
/*
|
|
* Determine the number of levels of indirection. After this loop
|
|
* is done, blockcnt indicates the number of data blocks possible
|
|
* at the given level of indirection, and ULFS_NIADDR - i is the number
|
|
* of levels of indirection needed to locate the requested block.
|
|
*/
|
|
|
|
bn -= ULFS_NDADDR;
|
|
for (lbc = 0, i = ULFS_NIADDR;; i--, bn -= blockcnt) {
|
|
if (i == 0)
|
|
return (EFBIG);
|
|
|
|
lbc += fs->um_lognindir;
|
|
blockcnt = (int64_t)1 << lbc;
|
|
|
|
if (bn < blockcnt)
|
|
break;
|
|
}
|
|
|
|
/* Calculate the address of the first meta-block. */
|
|
metalbn = -((realbn >= 0 ? realbn : -realbn) - bn + ULFS_NIADDR - i);
|
|
|
|
/*
|
|
* At each iteration, off is the offset into the bap array which is
|
|
* an array of disk addresses at the current level of indirection.
|
|
* The logical block number and the offset in that block are stored
|
|
* into the argument array.
|
|
*/
|
|
ap->in_lbn = metalbn;
|
|
ap->in_off = off = ULFS_NIADDR - i;
|
|
ap->in_exists = 0;
|
|
ap++;
|
|
for (++numlevels; i <= ULFS_NIADDR; i++) {
|
|
/* If searching for a meta-data block, quit when found. */
|
|
if (metalbn == realbn)
|
|
break;
|
|
|
|
lbc -= fs->um_lognindir;
|
|
off = (bn >> lbc) & (MNINDIR(fs) - 1);
|
|
|
|
++numlevels;
|
|
ap->in_lbn = metalbn;
|
|
ap->in_off = off;
|
|
ap->in_exists = 0;
|
|
++ap;
|
|
|
|
metalbn -= -1 + ((int64_t)off << lbc);
|
|
}
|
|
if (nump)
|
|
*nump = numlevels;
|
|
return (0);
|
|
}
|