NetBSD/sys/ufs/lfs/lfs_accessors.h
2016-06-20 03:25:46 +00:00

1532 lines
46 KiB
C

/* $NetBSD: lfs_accessors.h,v 1.46 2016/06/20 03:25:46 dholland Exp $ */
/* from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp */
/* from NetBSD: dinode.h,v 1.25 2016/01/22 23:06:10 dholland Exp */
/* from NetBSD: dir.h,v 1.25 2015/09/01 06:16:03 dholland Exp */
/*-
* Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Konrad E. Schroder <perseant@hhhh.org>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)lfs.h 8.9 (Berkeley) 5/8/95
*/
/*
* Copyright (c) 2002 Networks Associates Technology, Inc.
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Marshall
* Kirk McKusick and Network Associates Laboratories, the Security
* Research Division of Network Associates, Inc. under DARPA/SPAWAR
* contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
* research program
*
* Copyright (c) 1982, 1989, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)dinode.h 8.9 (Berkeley) 3/29/95
*/
/*
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)dir.h 8.5 (Berkeley) 4/27/95
*/
#ifndef _UFS_LFS_LFS_ACCESSORS_H_
#define _UFS_LFS_LFS_ACCESSORS_H_
#if defined(_KERNEL_OPT)
#include "opt_lfs.h"
#endif
#include <sys/bswap.h>
#include <ufs/lfs/lfs.h>
#if !defined(_KERNEL) && !defined(_STANDALONE)
#include <assert.h>
#include <string.h>
#define KASSERT assert
#else
#include <sys/systm.h>
#endif
/*
* STRUCT_LFS is used by the libsa code to get accessors that work
* with struct salfs instead of struct lfs, and by the cleaner to
* get accessors that work with struct clfs.
*/
#ifndef STRUCT_LFS
#define STRUCT_LFS struct lfs
#endif
/*
* byte order
*/
/*
* For now at least, the bootblocks shall not be endian-independent.
* We can see later if it fits in the size budget. Also disable the
* byteswapping if LFS_EI is off.
*
* Caution: these functions "know" that bswap16/32/64 are unsigned,
* and if that changes will likely break silently.
*/
#if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI))
#define LFS_SWAP_int16_t(fs, val) (val)
#define LFS_SWAP_int32_t(fs, val) (val)
#define LFS_SWAP_int64_t(fs, val) (val)
#define LFS_SWAP_uint16_t(fs, val) (val)
#define LFS_SWAP_uint32_t(fs, val) (val)
#define LFS_SWAP_uint64_t(fs, val) (val)
#else
#define LFS_SWAP_int16_t(fs, val) \
((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val))
#define LFS_SWAP_int32_t(fs, val) \
((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val))
#define LFS_SWAP_int64_t(fs, val) \
((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val))
#define LFS_SWAP_uint16_t(fs, val) \
((fs)->lfs_dobyteswap ? bswap16(val) : (val))
#define LFS_SWAP_uint32_t(fs, val) \
((fs)->lfs_dobyteswap ? bswap32(val) : (val))
#define LFS_SWAP_uint64_t(fs, val) \
((fs)->lfs_dobyteswap ? bswap64(val) : (val))
#endif
/*
* For handling directories we will need to know if the volume is
* little-endian.
*/
#if BYTE_ORDER == LITTLE_ENDIAN
#define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap)
#else
#define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap)
#endif
/*
* directories
*/
#define LFS_DIRHEADERSIZE(fs) \
((fs)->lfs_is64 ? sizeof(struct lfs_dirheader64) : sizeof(struct lfs_dirheader32))
/*
* The LFS_DIRSIZ macro gives the minimum record length which will hold
* the directory entry. This requires the amount of space in struct lfs_direct
* without the d_name field, plus enough space for the name with a terminating
* null byte (dp->d_namlen+1), rounded up to a 4 byte boundary.
*/
#define LFS_DIRECTSIZ(fs, namlen) \
(LFS_DIRHEADERSIZE(fs) + (((namlen)+1 + 3) &~ 3))
/*
* The size of the largest possible directory entry. This is
* used by ulfs_dirhash to figure the size of an array, so we
* need a single constant value true for both lfs32 and lfs64.
*/
#define LFS_MAXDIRENTRYSIZE \
(sizeof(struct lfs_dirheader64) + (((LFS_MAXNAMLEN+1)+1 + 3) & ~3))
#if (BYTE_ORDER == LITTLE_ENDIAN)
#define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \
(((oldfmt) && !(needswap)) ? \
LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
#else
#define LFS_OLDDIRSIZ(oldfmt, dp, needswap) \
(((oldfmt) && (needswap)) ? \
LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
#endif
#define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(fs, lfs_dir_getnamlen(fs, dp))
/* Constants for the first argument of LFS_OLDDIRSIZ */
#define LFS_OLDDIRFMT 1
#define LFS_NEWDIRFMT 0
#define LFS_NEXTDIR(fs, dp) \
((LFS_DIRHEADER *)((char *)(dp) + lfs_dir_getreclen(fs, dp)))
static __inline char *
lfs_dir_nameptr(const STRUCT_LFS *fs, LFS_DIRHEADER *dh)
{
if (fs->lfs_is64) {
return (char *)(&dh->u_64 + 1);
} else {
return (char *)(&dh->u_32 + 1);
}
}
static __inline uint64_t
lfs_dir_getino(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
{
if (fs->lfs_is64) {
uint64_t ino;
/*
* XXX we can probably write this in a way that's both
* still legal and generates better code.
*/
memcpy(&ino, &dh->u_64.dh_inoA, sizeof(dh->u_64.dh_inoA));
memcpy((char *)&ino + sizeof(dh->u_64.dh_inoA),
&dh->u_64.dh_inoB,
sizeof(dh->u_64.dh_inoB));
return LFS_SWAP_uint64_t(fs, ino);
} else {
return LFS_SWAP_uint32_t(fs, dh->u_32.dh_ino);
}
}
static __inline uint16_t
lfs_dir_getreclen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
{
if (fs->lfs_is64) {
return LFS_SWAP_uint16_t(fs, dh->u_64.dh_reclen);
} else {
return LFS_SWAP_uint16_t(fs, dh->u_32.dh_reclen);
}
}
static __inline uint8_t
lfs_dir_gettype(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
{
if (fs->lfs_is64) {
KASSERT(fs->lfs_hasolddirfmt == 0);
return dh->u_64.dh_type;
} else if (fs->lfs_hasolddirfmt) {
return LFS_DT_UNKNOWN;
} else {
return dh->u_32.dh_type;
}
}
static __inline uint8_t
lfs_dir_getnamlen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
{
if (fs->lfs_is64) {
KASSERT(fs->lfs_hasolddirfmt == 0);
return dh->u_64.dh_namlen;
} else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
/* low-order byte of old 16-bit namlen field */
return dh->u_32.dh_type;
} else {
return dh->u_32.dh_namlen;
}
}
static __inline void
lfs_dir_setino(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint64_t ino)
{
if (fs->lfs_is64) {
ino = LFS_SWAP_uint64_t(fs, ino);
/*
* XXX we can probably write this in a way that's both
* still legal and generates better code.
*/
memcpy(&dh->u_64.dh_inoA, &ino, sizeof(dh->u_64.dh_inoA));
memcpy(&dh->u_64.dh_inoB,
(char *)&ino + sizeof(dh->u_64.dh_inoA),
sizeof(dh->u_64.dh_inoB));
} else {
dh->u_32.dh_ino = LFS_SWAP_uint32_t(fs, ino);
}
}
static __inline void
lfs_dir_setreclen(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint16_t reclen)
{
if (fs->lfs_is64) {
dh->u_64.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
} else {
dh->u_32.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
}
}
static __inline void
lfs_dir_settype(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t type)
{
if (fs->lfs_is64) {
KASSERT(fs->lfs_hasolddirfmt == 0);
dh->u_64.dh_type = type;
} else if (fs->lfs_hasolddirfmt) {
/* do nothing */
return;
} else {
dh->u_32.dh_type = type;
}
}
static __inline void
lfs_dir_setnamlen(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t namlen)
{
if (fs->lfs_is64) {
KASSERT(fs->lfs_hasolddirfmt == 0);
dh->u_64.dh_namlen = namlen;
} else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
/* low-order byte of old 16-bit namlen field */
dh->u_32.dh_type = namlen;
} else {
dh->u_32.dh_namlen = namlen;
}
}
static __inline void
lfs_copydirname(STRUCT_LFS *fs, char *dest, const char *src,
unsigned namlen, unsigned reclen)
{
unsigned spacelen;
KASSERT(reclen > LFS_DIRHEADERSIZE(fs));
spacelen = reclen - LFS_DIRHEADERSIZE(fs);
/* must always be at least 1 byte as a null terminator */
KASSERT(spacelen > namlen);
memcpy(dest, src, namlen);
memset(dest + namlen, '\0', spacelen - namlen);
}
static __inline LFS_DIRHEADER *
lfs_dirtemplate_dotdot(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
{
/* XXX blah, be nice to have a way to do this w/o casts */
if (fs->lfs_is64) {
return (LFS_DIRHEADER *)&dt->u_64.dotdot_header;
} else {
return (LFS_DIRHEADER *)&dt->u_32.dotdot_header;
}
}
static __inline char *
lfs_dirtemplate_dotdotname(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
{
if (fs->lfs_is64) {
return dt->u_64.dotdot_name;
} else {
return dt->u_32.dotdot_name;
}
}
/*
* dinodes
*/
/*
* Maximum length of a symlink that can be stored within the inode.
*/
#define LFS32_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
#define LFS64_MAXSYMLINKLEN ((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
#define LFS_MAXSYMLINKLEN(fs) \
((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN)
#define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
#define DINO_IN_BLOCK(fs, base, ix) \
((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
static __inline void
lfs_copy_dinode(STRUCT_LFS *fs,
union lfs_dinode *dst, const union lfs_dinode *src)
{
/*
* We can do structure assignment of the structs, but not of
* the whole union, as the union is the size of the (larger)
* 64-bit struct and on a 32-bit fs the upper half of it might
* be off the end of a buffer or otherwise invalid.
*/
if (fs->lfs_is64) {
dst->u_64 = src->u_64;
} else {
dst->u_32 = src->u_32;
}
}
#define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
static __inline type \
lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
{ \
if (fs->lfs_is64) { \
return LFS_SWAP_##type(fs, dip->u_64.di_##field); \
} else { \
return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \
} \
} \
static __inline void \
lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
{ \
if (fs->lfs_is64) { \
type *p = &dip->u_64.di_##field; \
(void)p; \
dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \
} else { \
type32 *p = &dip->u_32.di_##field; \
(void)p; \
dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \
} \
} \
LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode);
LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink);
LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber);
LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size);
LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime);
LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec);
LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime);
LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec);
LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime);
LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec);
LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags);
LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks);
LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen);
LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid);
LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid);
/* XXX this should be done differently (it's a fake field) */
LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, rdev);
static __inline daddr_t
lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
{
KASSERT(ix < ULFS_NDADDR);
if (fs->lfs_is64) {
return LFS_SWAP_uint64_t(fs, dip->u_64.di_db[ix]);
} else {
/* note: this must sign-extend or UNWRITTEN gets trashed */
return (int32_t)LFS_SWAP_uint32_t(fs, dip->u_32.di_db[ix]);
}
}
static __inline daddr_t
lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
{
KASSERT(ix < ULFS_NIADDR);
if (fs->lfs_is64) {
return LFS_SWAP_uint64_t(fs, dip->u_64.di_ib[ix]);
} else {
/* note: this must sign-extend or UNWRITTEN gets trashed */
return (int32_t)LFS_SWAP_uint32_t(fs, dip->u_32.di_ib[ix]);
}
}
static __inline void
lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
{
KASSERT(ix < ULFS_NDADDR);
if (fs->lfs_is64) {
dip->u_64.di_db[ix] = LFS_SWAP_uint64_t(fs, val);
} else {
dip->u_32.di_db[ix] = LFS_SWAP_uint32_t(fs, val);
}
}
static __inline void
lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
{
KASSERT(ix < ULFS_NIADDR);
if (fs->lfs_is64) {
dip->u_64.di_ib[ix] = LFS_SWAP_uint64_t(fs, val);
} else {
dip->u_32.di_ib[ix] = LFS_SWAP_uint32_t(fs, val);
}
}
/* birthtime is present only in the 64-bit inode */
static __inline void
lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
const struct timespec *ts)
{
if (fs->lfs_is64) {
dip->u_64.di_birthtime = ts->tv_sec;
dip->u_64.di_birthnsec = ts->tv_nsec;
} else {
/* drop it on the floor */
}
}
/*
* indirect blocks
*/
static __inline daddr_t
lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
{
if (fs->lfs_is64) {
// XXX re-enable these asserts after reorging this file
//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
return (daddr_t)(((int64_t *)block)[ix]);
} else {
//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
/* must sign-extend or UNWRITTEN gets trashed */
return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
}
}
static __inline void
lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
{
if (fs->lfs_is64) {
//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
((int64_t *)block)[ix] = val;
} else {
//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
((int32_t *)block)[ix] = val;
}
}
/*
* "struct buf" associated definitions
*/
# define LFS_LOCK_BUF(bp) do { \
if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) { \
mutex_enter(&lfs_lock); \
++locked_queue_count; \
locked_queue_bytes += bp->b_bufsize; \
mutex_exit(&lfs_lock); \
} \
(bp)->b_flags |= B_LOCKED; \
} while (0)
# define LFS_UNLOCK_BUF(bp) do { \
if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) { \
mutex_enter(&lfs_lock); \
--locked_queue_count; \
locked_queue_bytes -= bp->b_bufsize; \
if (locked_queue_count < LFS_WAIT_BUFS && \
locked_queue_bytes < LFS_WAIT_BYTES) \
cv_broadcast(&locked_queue_cv); \
mutex_exit(&lfs_lock); \
} \
(bp)->b_flags &= ~B_LOCKED; \
} while (0)
/*
* "struct inode" associated definitions
*/
#define LFS_SET_UINO(ip, flags) do { \
if (((flags) & IN_ACCESSED) && !((ip)->i_flag & IN_ACCESSED)) \
lfs_sb_adduinodes((ip)->i_lfs, 1); \
if (((flags) & IN_CLEANING) && !((ip)->i_flag & IN_CLEANING)) \
lfs_sb_adduinodes((ip)->i_lfs, 1); \
if (((flags) & IN_MODIFIED) && !((ip)->i_flag & IN_MODIFIED)) \
lfs_sb_adduinodes((ip)->i_lfs, 1); \
(ip)->i_flag |= (flags); \
} while (0)
#define LFS_CLR_UINO(ip, flags) do { \
if (((flags) & IN_ACCESSED) && ((ip)->i_flag & IN_ACCESSED)) \
lfs_sb_subuinodes((ip)->i_lfs, 1); \
if (((flags) & IN_CLEANING) && ((ip)->i_flag & IN_CLEANING)) \
lfs_sb_subuinodes((ip)->i_lfs, 1); \
if (((flags) & IN_MODIFIED) && ((ip)->i_flag & IN_MODIFIED)) \
lfs_sb_subuinodes((ip)->i_lfs, 1); \
(ip)->i_flag &= ~(flags); \
if (lfs_sb_getuinodes((ip)->i_lfs) < 0) { \
panic("lfs_uinodes < 0"); \
} \
} while (0)
#define LFS_ITIMES(ip, acc, mod, cre) \
while ((ip)->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
lfs_itimes(ip, acc, mod, cre)
/*
* On-disk and in-memory checkpoint segment usage structure.
*/
#define SEGUPB(fs) (lfs_sb_getsepb(fs))
#define SEGTABSIZE_SU(fs) \
((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
#ifdef _KERNEL
# define SHARE_IFLOCK(F) \
do { \
rw_enter(&(F)->lfs_iflock, RW_READER); \
} while(0)
# define UNSHARE_IFLOCK(F) \
do { \
rw_exit(&(F)->lfs_iflock); \
} while(0)
#else /* ! _KERNEL */
# define SHARE_IFLOCK(F)
# define UNSHARE_IFLOCK(F)
#endif /* ! _KERNEL */
/* Read in the block with a specific segment usage entry from the ifile. */
#define LFS_SEGENTRY(SP, F, IN, BP) do { \
int _e; \
SHARE_IFLOCK(F); \
VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
if ((_e = bread((F)->lfs_ivnode, \
((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F), \
lfs_sb_getbsize(F), 0, &(BP))) != 0) \
panic("lfs: ifile read: segentry %llu: error %d\n", \
(unsigned long long)(IN), _e); \
if (lfs_sb_getversion(F) == 1) \
(SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data + \
((IN) & (lfs_sb_getsepb(F) - 1))); \
else \
(SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
UNSHARE_IFLOCK(F); \
} while (0)
#define LFS_WRITESEGENTRY(SP, F, IN, BP) do { \
if ((SP)->su_nbytes == 0) \
(SP)->su_flags |= SEGUSE_EMPTY; \
else \
(SP)->su_flags &= ~SEGUSE_EMPTY; \
(F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags; \
LFS_BWRITE_LOG(BP); \
} while (0)
/*
* FINFO (file info) entries.
*/
/* Size of an on-disk block pointer, e.g. in an indirect block. */
/* XXX: move to a more suitable location in this file */
#define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
/* Size of an on-disk inode number. */
/* XXX: move to a more suitable location in this file */
#define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
/* size of a FINFO, without the block pointers */
#define FINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
/* Full size of the provided FINFO record, including its block pointers. */
#define FINFO_FULLSIZE(fs, fip) \
(FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
#define NEXT_FINFO(fs, fip) \
((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
#define LFS_DEF_FI_ACCESSOR(type, type32, field) \
static __inline type \
lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip) \
{ \
if (fs->lfs_is64) { \
return fip->u_64.fi_##field; \
} else { \
return fip->u_32.fi_##field; \
} \
} \
static __inline void \
lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
{ \
if (fs->lfs_is64) { \
type *p = &fip->u_64.fi_##field; \
(void)p; \
fip->u_64.fi_##field = val; \
} else { \
type32 *p = &fip->u_32.fi_##field; \
(void)p; \
fip->u_32.fi_##field = val; \
} \
} \
LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks);
LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version);
LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino);
LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength);
static __inline daddr_t
lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned idx)
{
void *firstblock;
firstblock = (char *)fip + FINFOSIZE(fs);
KASSERT(idx < lfs_fi_getnblocks(fs, fip));
if (fs->lfs_is64) {
return ((int64_t *)firstblock)[idx];
} else {
return ((int32_t *)firstblock)[idx];
}
}
static __inline void
lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned idx, daddr_t blk)
{
void *firstblock;
firstblock = (char *)fip + FINFOSIZE(fs);
KASSERT(idx < lfs_fi_getnblocks(fs, fip));
if (fs->lfs_is64) {
((int64_t *)firstblock)[idx] = blk;
} else {
((int32_t *)firstblock)[idx] = blk;
}
}
/*
* inode info entries (in the segment summary)
*/
#define IINFOSIZE(fs) ((fs)->lfs_is64 ? sizeof(IINFO64) : sizeof(IINFO32))
/* iinfos scroll backward from the end of the segment summary block */
#define SEGSUM_IINFOSTART(fs, buf) \
((IINFO *)((char *)buf + lfs_sb_getsumsize(fs) - IINFOSIZE(fs)))
#define NEXTLOWER_IINFO(fs, iip) \
((IINFO *)((char *)(iip) - IINFOSIZE(fs)))
#define NTH_IINFO(fs, buf, n) \
((IINFO *)((char *)SEGSUM_IINFOSTART(fs, buf) - (n)*IINFOSIZE(fs)))
static __inline uint64_t
lfs_ii_getblock(STRUCT_LFS *fs, IINFO *iip)
{
if (fs->lfs_is64) {
return iip->u_64.ii_block;
} else {
return iip->u_32.ii_block;
}
}
static __inline void
lfs_ii_setblock(STRUCT_LFS *fs, IINFO *iip, uint64_t block)
{
if (fs->lfs_is64) {
iip->u_64.ii_block = block;
} else {
iip->u_32.ii_block = block;
}
}
/*
* Index file inode entries.
*/
#define IFILE_ENTRYSIZE(fs) \
((fs)->lfs_is64 ? sizeof(IFILE64) : sizeof(IFILE32))
/*
* LFSv1 compatibility code is not allowed to touch if_atime, since it
* may not be mapped!
*/
/* Read in the block with a specific inode from the ifile. */
#define LFS_IENTRY(IP, F, IN, BP) do { \
int _e; \
SHARE_IFLOCK(F); \
VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
if ((_e = bread((F)->lfs_ivnode, \
(IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
lfs_sb_getbsize(F), 0, &(BP))) != 0) \
panic("lfs: ifile ino %d read %d", (int)(IN), _e); \
if ((F)->lfs_is64) { \
(IP) = (IFILE *)((IFILE64 *)(BP)->b_data + \
(IN) % lfs_sb_getifpb(F)); \
} else if (lfs_sb_getversion(F) > 1) { \
(IP) = (IFILE *)((IFILE32 *)(BP)->b_data + \
(IN) % lfs_sb_getifpb(F)); \
} else { \
(IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data + \
(IN) % lfs_sb_getifpb(F)); \
} \
UNSHARE_IFLOCK(F); \
} while (0)
#define LFS_IENTRY_NEXT(IP, F) do { \
if ((F)->lfs_is64) { \
(IP) = (IFILE *)((IFILE64 *)(IP) + 1); \
} else if (lfs_sb_getversion(F) > 1) { \
(IP) = (IFILE *)((IFILE32 *)(IP) + 1); \
} else { \
(IP) = (IFILE *)((IFILE_V1 *)(IP) + 1); \
} \
} while (0)
#define LFS_DEF_IF_ACCESSOR(type, type32, field) \
static __inline type \
lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp) \
{ \
if (fs->lfs_is64) { \
return ifp->u_64.if_##field; \
} else { \
return ifp->u_32.if_##field; \
} \
} \
static __inline void \
lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
{ \
if (fs->lfs_is64) { \
type *p = &ifp->u_64.if_##field; \
(void)p; \
ifp->u_64.if_##field = val; \
} else { \
type32 *p = &ifp->u_32.if_##field; \
(void)p; \
ifp->u_32.if_##field = val; \
} \
} \
LFS_DEF_IF_ACCESSOR(uint32_t, uint32_t, version);
LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr);
LFS_DEF_IF_ACCESSOR(uint64_t, uint32_t, nextfree);
LFS_DEF_IF_ACCESSOR(uint64_t, uint32_t, atime_sec);
LFS_DEF_IF_ACCESSOR(uint32_t, uint32_t, atime_nsec);
/*
* Cleaner information structure. This resides in the ifile and is used
* to pass information from the kernel to the cleaner.
*/
#define CLEANSIZE_SU(fs) \
((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
#define LFS_DEF_CI_ACCESSOR(type, type32, field) \
static __inline type \
lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip) \
{ \
if (fs->lfs_is64) { \
return cip->u_64.field; \
} else { \
return cip->u_32.field; \
} \
} \
static __inline void \
lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
{ \
if (fs->lfs_is64) { \
type *p = &cip->u_64.field; \
(void)p; \
cip->u_64.field = val; \
} else { \
type32 *p = &cip->u_32.field; \
(void)p; \
cip->u_32.field = val; \
} \
} \
LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, clean);
LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, dirty);
LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree);
LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail);
LFS_DEF_CI_ACCESSOR(uint64_t, uint32_t, free_head);
LFS_DEF_CI_ACCESSOR(uint64_t, uint32_t, free_tail);
LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, flags);
static __inline void
lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
{
lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
}
static __inline void
lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
{
lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
}
/* Read in the block with the cleaner info from the ifile. */
#define LFS_CLEANERINFO(CP, F, BP) do { \
int _e; \
SHARE_IFLOCK(F); \
VTOI((F)->lfs_ivnode)->i_flag |= IN_ACCESS; \
_e = bread((F)->lfs_ivnode, \
(daddr_t)0, lfs_sb_getbsize(F), 0, &(BP)); \
if (_e) \
panic("lfs: ifile read: cleanerinfo: error %d\n", _e); \
(CP) = (CLEANERINFO *)(BP)->b_data; \
UNSHARE_IFLOCK(F); \
} while (0)
/*
* Synchronize the Ifile cleaner info with current avail and bfree.
*/
#define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do { \
mutex_enter(&lfs_lock); \
if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) || \
lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
fs->lfs_favail) { \
lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs)); \
lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail - \
fs->lfs_favail); \
if (((bp)->b_flags & B_GATHERED) == 0) { \
fs->lfs_flags |= LFS_IFDIRTY; \
} \
mutex_exit(&lfs_lock); \
(void) LFS_BWRITE_LOG(bp); /* Ifile */ \
} else { \
mutex_exit(&lfs_lock); \
brelse(bp, 0); \
} \
} while (0)
/*
* Get the head of the inode free list.
* Always called with the segment lock held.
*/
#define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do { \
if (lfs_sb_getversion(FS) > 1) { \
LFS_CLEANERINFO((CIP), (FS), (BP)); \
lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP)); \
brelse(BP, 0); \
} \
*(FREEP) = lfs_sb_getfreehd(FS); \
} while (0)
#define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do { \
lfs_sb_setfreehd(FS, VAL); \
if (lfs_sb_getversion(FS) > 1) { \
LFS_CLEANERINFO((CIP), (FS), (BP)); \
lfs_ci_setfree_head(FS, CIP, VAL); \
LFS_BWRITE_LOG(BP); \
mutex_enter(&lfs_lock); \
(FS)->lfs_flags |= LFS_IFDIRTY; \
mutex_exit(&lfs_lock); \
} \
} while (0)
#define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do { \
LFS_CLEANERINFO((CIP), (FS), (BP)); \
*(FREEP) = lfs_ci_getfree_tail(FS, CIP); \
brelse(BP, 0); \
} while (0)
#define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do { \
LFS_CLEANERINFO((CIP), (FS), (BP)); \
lfs_ci_setfree_tail(FS, CIP, VAL); \
LFS_BWRITE_LOG(BP); \
mutex_enter(&lfs_lock); \
(FS)->lfs_flags |= LFS_IFDIRTY; \
mutex_exit(&lfs_lock); \
} while (0)
/*
* On-disk segment summary information
*/
#define SEGSUM_SIZE(fs) \
(fs->lfs_is64 ? sizeof(SEGSUM64) : \
lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
/*
* The SEGSUM structure is followed by FINFO structures. Get the pointer
* to the first FINFO.
*
* XXX this can't be a macro yet; this file needs to be resorted.
*/
#if 0
static __inline FINFO *
segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
{
return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
}
#else
#define SEGSUM_FINFOBASE(fs, ssp) \
((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
#endif
#define LFS_DEF_SS_ACCESSOR(type, type32, field) \
static __inline type \
lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp) \
{ \
if (fs->lfs_is64) { \
return ssp->u_64.ss_##field; \
} else { \
return ssp->u_32.ss_##field; \
} \
} \
static __inline void \
lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
{ \
if (fs->lfs_is64) { \
type *p = &ssp->u_64.ss_##field; \
(void)p; \
ssp->u_64.ss_##field = val; \
} else { \
type32 *p = &ssp->u_32.ss_##field; \
(void)p; \
ssp->u_32.ss_##field = val; \
} \
} \
LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum);
LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum);
LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic);
LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident);
LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next);
LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo);
LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos);
LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags);
LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino);
LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial);
LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create);
static __inline size_t
lfs_ss_getsumstart(STRUCT_LFS *fs)
{
/* These are actually all the same. */
if (fs->lfs_is64) {
return offsetof(SEGSUM64, ss_datasum);
} else /* if (lfs_sb_getversion(fs) > 1) */ {
return offsetof(SEGSUM32, ss_datasum);
} /* else {
return offsetof(SEGSUM_V1, ss_datasum);
} */
/*
* XXX ^^^ until this file is resorted lfs_sb_getversion isn't
* defined yet.
*/
}
static __inline uint32_t
lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
{
KASSERT(fs->lfs_is64 == 0);
/* XXX need to resort this file before we can do this */
//KASSERT(lfs_sb_getversion(fs) == 1);
return ssp->u_v1.ss_create;
}
static __inline void
lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
{
KASSERT(fs->lfs_is64 == 0);
/* XXX need to resort this file before we can do this */
//KASSERT(lfs_sb_getversion(fs) == 1);
ssp->u_v1.ss_create = val;
}
/*
* Super block.
*/
/*
* Generate accessors for the on-disk superblock fields with cpp.
*/
#define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
static __inline type \
lfs_sb_get##field(STRUCT_LFS *fs) \
{ \
if (fs->lfs_is64) { \
return fs->lfs_dlfs_u.u_64.dlfs_##field; \
} else { \
return fs->lfs_dlfs_u.u_32.dlfs_##field; \
} \
} \
static __inline void \
lfs_sb_set##field(STRUCT_LFS *fs, type val) \
{ \
if (fs->lfs_is64) { \
fs->lfs_dlfs_u.u_64.dlfs_##field = val; \
} else { \
fs->lfs_dlfs_u.u_32.dlfs_##field = val; \
} \
} \
static __inline void \
lfs_sb_add##field(STRUCT_LFS *fs, type val) \
{ \
if (fs->lfs_is64) { \
type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
*p64 += val; \
} else { \
type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
*p32 += val; \
} \
} \
static __inline void \
lfs_sb_sub##field(STRUCT_LFS *fs, type val) \
{ \
if (fs->lfs_is64) { \
type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
*p64 -= val; \
} else { \
type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
*p32 -= val; \
} \
}
#define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
#define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
static __inline type \
lfs_sb_get##field(STRUCT_LFS *fs) \
{ \
if (fs->lfs_is64) { \
return val64; \
} else { \
return fs->lfs_dlfs_u.u_32.dlfs_##field; \
} \
}
LFS_DEF_SB_ACCESSOR(uint32_t, version);
LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, size);
LFS_DEF_SB_ACCESSOR(uint32_t, ssize);
LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, dsize);
LFS_DEF_SB_ACCESSOR(uint32_t, bsize);
LFS_DEF_SB_ACCESSOR(uint32_t, fsize);
LFS_DEF_SB_ACCESSOR(uint32_t, frag);
LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd);
LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree);
LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles);
LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail);
LFS_DEF_SB_ACCESSOR(int32_t, uinodes);
LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr);
LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, ifile, LFS_IFILE_INUM);
LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg);
LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg);
LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg);
LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset);
LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg);
LFS_DEF_SB_ACCESSOR(uint32_t, inopf);
LFS_DEF_SB_ACCESSOR(uint32_t, minfree);
LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize);
LFS_DEF_SB_ACCESSOR(uint32_t, fsbpseg);
LFS_DEF_SB_ACCESSOR(uint32_t, inopb);
LFS_DEF_SB_ACCESSOR(uint32_t, ifpb);
LFS_DEF_SB_ACCESSOR(uint32_t, sepb);
LFS_DEF_SB_ACCESSOR(uint32_t, nindir);
LFS_DEF_SB_ACCESSOR(uint32_t, nseg);
LFS_DEF_SB_ACCESSOR(uint32_t, nspf);
LFS_DEF_SB_ACCESSOR(uint32_t, cleansz);
LFS_DEF_SB_ACCESSOR(uint32_t, segtabsz);
LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, segmask, 0);
LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, segshift, 0);
LFS_DEF_SB_ACCESSOR(uint64_t, bmask);
LFS_DEF_SB_ACCESSOR(uint32_t, bshift);
LFS_DEF_SB_ACCESSOR(uint64_t, ffmask);
LFS_DEF_SB_ACCESSOR(uint32_t, ffshift);
LFS_DEF_SB_ACCESSOR(uint64_t, fbmask);
LFS_DEF_SB_ACCESSOR(uint32_t, fbshift);
LFS_DEF_SB_ACCESSOR(uint32_t, blktodb);
LFS_DEF_SB_ACCESSOR(uint32_t, fsbtodb);
LFS_DEF_SB_ACCESSOR(uint32_t, sushift);
LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen);
LFS_DEF_SB_ACCESSOR(uint32_t, cksum);
LFS_DEF_SB_ACCESSOR(uint16_t, pflags);
LFS_DEF_SB_ACCESSOR(uint32_t, nclean);
LFS_DEF_SB_ACCESSOR(int32_t, dmeta);
LFS_DEF_SB_ACCESSOR(uint32_t, minfreeseg);
LFS_DEF_SB_ACCESSOR(uint32_t, sumsize);
LFS_DEF_SB_ACCESSOR(uint64_t, serial);
LFS_DEF_SB_ACCESSOR(uint32_t, ibsize);
LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr);
LFS_DEF_SB_ACCESSOR(uint64_t, tstamp);
LFS_DEF_SB_ACCESSOR(uint32_t, inodefmt);
LFS_DEF_SB_ACCESSOR(uint32_t, interleave);
LFS_DEF_SB_ACCESSOR(uint32_t, ident);
LFS_DEF_SB_ACCESSOR(uint32_t, resvseg);
/* special-case accessors */
/*
* the v1 otstamp field lives in what's now dlfs_inopf
*/
#define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
#define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
/*
* lfs_sboffs is an array
*/
static __inline int32_t
lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
{
#ifdef KASSERT /* ugh */
KASSERT(n < LFS_MAXNUMSB);
#endif
if (fs->lfs_is64) {
return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
} else {
return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
}
}
static __inline void
lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
{
#ifdef KASSERT /* ugh */
KASSERT(n < LFS_MAXNUMSB);
#endif
if (fs->lfs_is64) {
fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
} else {
fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
}
}
/*
* lfs_fsmnt is a string
*/
static __inline const char *
lfs_sb_getfsmnt(STRUCT_LFS *fs)
{
if (fs->lfs_is64) {
return (const char *)fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
} else {
return (const char *)fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
}
}
static __inline void
lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
{
if (fs->lfs_is64) {
(void)strncpy((char *)fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
} else {
(void)strncpy((char *)fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
}
}
/* Highest addressable fsb */
#define LFS_MAX_DADDR(fs) \
((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
/* LFS_NINDIR is the number of indirects in a file system block. */
#define LFS_NINDIR(fs) (lfs_sb_getnindir(fs))
/* LFS_INOPB is the number of inodes in a secondary storage block. */
#define LFS_INOPB(fs) (lfs_sb_getinopb(fs))
/* LFS_INOPF is the number of inodes in a fragment. */
#define LFS_INOPF(fs) (lfs_sb_getinopf(fs))
#define lfs_blkoff(fs, loc) ((int)((loc) & lfs_sb_getbmask(fs)))
#define lfs_fragoff(fs, loc) /* calculates (loc % fs->lfs_fsize) */ \
((int)((loc) & lfs_sb_getffmask(fs)))
/* XXX: lowercase these as they're no longer macros */
/* Frags to diskblocks */
static __inline uint64_t
LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
{
#if defined(_KERNEL)
return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
#else
return b << lfs_sb_getfsbtodb(fs);
#endif
}
/* Diskblocks to frags */
static __inline uint64_t
LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
{
#if defined(_KERNEL)
return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
#else
return b >> lfs_sb_getfsbtodb(fs);
#endif
}
#define lfs_lblkno(fs, loc) ((loc) >> lfs_sb_getbshift(fs))
#define lfs_lblktosize(fs, blk) ((blk) << lfs_sb_getbshift(fs))
/* Frags to bytes */
static __inline uint64_t
lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
{
return b << lfs_sb_getffshift(fs);
}
/* Bytes to frags */
static __inline uint64_t
lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
{
return b >> lfs_sb_getffshift(fs);
}
#define lfs_numfrags(fs, loc) /* calculates (loc / fs->lfs_fsize) */ \
((loc) >> lfs_sb_getffshift(fs))
#define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
#define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
#define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
((frags) >> lfs_sb_getfbshift(fs))
#define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
((blks) << lfs_sb_getfbshift(fs))
#define lfs_fragnum(fs, fsb) /* calculates (fsb % fs->lfs_frag) */ \
((fsb) & ((fs)->lfs_frag - 1))
#define lfs_blknum(fs, fsb) /* calculates rounddown(fsb, fs->lfs_frag) */ \
((fsb) &~ ((fs)->lfs_frag - 1))
#define lfs_dblksize(fs, dp, lbn) \
(((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
? lfs_sb_getbsize(fs) \
: (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
#define lfs_segsize(fs) (lfs_sb_getversion(fs) == 1 ? \
lfs_lblktosize((fs), lfs_sb_getssize(fs)) : \
lfs_sb_getssize(fs))
/* XXX segtod produces a result in frags despite the 'd' */
#define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
#define lfs_dtosn(fs, daddr) /* block address to segment number */ \
((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
#define lfs_sntod(fs, sn) /* segment number to disk address */ \
((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
/* XXX, blah. make this appear only if struct inode is defined */
#ifdef _UFS_LFS_LFS_INODE_H_
static __inline uint32_t
lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
{
if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
return lfs_sb_getbsize(fs);
} else {
return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
}
}
#endif
/*
* union lfs_blocks
*/
static __inline void
lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
{
if (fs->lfs_is64) {
bp->b64 = p;
} else {
bp->b32 = p;
}
}
static __inline void
lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
{
void *firstblock;
firstblock = (char *)fip + FINFOSIZE(fs);
if (fs->lfs_is64) {
bp->b64 = (int64_t *)firstblock;
} else {
bp->b32 = (int32_t *)firstblock;
}
}
static __inline daddr_t
lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned idx)
{
if (fs->lfs_is64) {
return bp->b64[idx];
} else {
return bp->b32[idx];
}
}
static __inline void
lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned idx, daddr_t val)
{
if (fs->lfs_is64) {
bp->b64[idx] = val;
} else {
bp->b32[idx] = val;
}
}
static __inline void
lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
{
if (fs->lfs_is64) {
bp->b64++;
} else {
bp->b32++;
}
}
static __inline int
lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
{
if (fs->lfs_is64) {
return bp1->b64 == bp2->b64;
} else {
return bp1->b32 == bp2->b32;
}
}
static __inline int
lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
{
/* (remember that the pointers are typed) */
if (fs->lfs_is64) {
return bp1->b64 - bp2->b64;
} else {
return bp1->b32 - bp2->b32;
}
}
/*
* struct segment
*/
/*
* Macros for determining free space on the disk, with the variable metadata
* of segment summaries and inode blocks taken into account.
*/
/*
* Estimate number of clean blocks not available for writing because
* they will contain metadata or overhead. This is calculated as
*
* E = ((C * M / D) * D + (0) * (T - D)) / T
* or more simply
* E = (C * M) / T
*
* where
* C is the clean space,
* D is the dirty space,
* M is the dirty metadata, and
* T = C + D is the total space on disk.
*
* This approximates the old formula of E = C * M / D when D is close to T,
* but avoids falsely reporting "disk full" when the sample size (D) is small.
*/
#define LFS_EST_CMETA(F) (( \
(lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / \
(lfs_sb_getnseg(F))))
/* Estimate total size of the disk not including metadata */
#define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
/* Estimate number of blocks actually available for writing */
#define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ? \
lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
/* Amount of non-meta space not available to mortal man */
#define LFS_EST_RSVD(F) ((LFS_EST_NONMETA(F) * \
(uint64_t)lfs_sb_getminfree(F)) / \
100)
/* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
#define ISSPACE(F, BB, C) \
((((C) == NOCRED || kauth_cred_geteuid(C) == 0) && \
LFS_EST_BFREE(F) >= (BB)) || \
(kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
/* Can an ordinary user write BB blocks */
#define IS_FREESPACE(F, BB) \
(LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
/*
* The minimum number of blocks to create a new inode. This is:
* directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
* ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
*/
#define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
#endif /* _UFS_LFS_LFS_ACCESSORS_H_ */