618 lines
19 KiB
C
618 lines
19 KiB
C
/* Definitions to make GDB run on a Sequent Symmetry under dynix 3.0,
|
||
with Weitek 1167 and i387 support.
|
||
Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
GDB is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 1, or (at your option)
|
||
any later version.
|
||
|
||
GDB is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GDB; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
||
|
||
$Id: m-symmetry.h,v 1.2 1993/08/02 17:40:08 mycroft Exp $
|
||
*/
|
||
|
||
/* Symmetry version by Jay Vosburgh (uunet!sequent!fubar) */
|
||
|
||
#include <machine/reg.h>
|
||
|
||
#define SYMMETRY
|
||
|
||
/* This machine doesn't have the siginterrupt call. */
|
||
#define NO_SIGINTERRUPT
|
||
|
||
#define HAVE_WAIT_STRUCT
|
||
|
||
/* Define the bit, byte, and word ordering of the machine. */
|
||
/* #define BITS_BIG_ENDIAN */
|
||
/* #define BYTES_BIG_ENDIAN */
|
||
/* #define WORDS_BIG_ENDIAN */
|
||
|
||
/* Define SFILE_FN_FLAGGED if the source file is flagged with an N_FN
|
||
symbol instead of an N_TEXT symbol. */
|
||
|
||
#define OFILE_FN_FLAGGED
|
||
|
||
/* Get rid of any system-imposed stack limit if possible. */
|
||
|
||
#define SET_STACK_LIMIT_HUGE
|
||
|
||
/* Define this if the C compiler puts an underscore at the front
|
||
of external names before giving them to the linker. */
|
||
|
||
#define NAMES_HAVE_UNDERSCORE
|
||
|
||
/* Debugger information will be in DBX format. */
|
||
|
||
#define READ_DBX_FORMAT
|
||
|
||
/* Offset from address of function to start of its code.
|
||
Zero on most machines. */
|
||
|
||
#define FUNCTION_START_OFFSET 0
|
||
|
||
/* Advance PC across any function entry prologue instructions
|
||
to reach some "real" code. From m-i386.h */
|
||
|
||
#define SKIP_PROLOGUE(frompc) {(frompc) = i386_skip_prologue((frompc));}
|
||
|
||
/* Immediately after a function call, return the saved pc.
|
||
Can't always go through the frames for this because on some machines
|
||
the new frame is not set up until the new function executes
|
||
some instructions. */
|
||
|
||
#define SAVED_PC_AFTER_CALL(frame) \
|
||
read_memory_integer(read_register(SP_REGNUM), 4)
|
||
|
||
/* This is the amount to subtract from u.u_ar0
|
||
to get the offset in the core file of the register values. */
|
||
|
||
#define KERNEL_U_ADDR (0x80000000 - (UPAGES * NBPG))
|
||
|
||
/* Address of end of stack space. */
|
||
|
||
#define STACK_END_ADDR (0x40000000 - (UPAGES * NBPG))
|
||
|
||
/* Stack grows downward. */
|
||
|
||
#define INNER_THAN <
|
||
|
||
/* Sequence of bytes for breakpoint instruction. */
|
||
|
||
#define BREAKPOINT {0xcc}
|
||
|
||
/* Amount PC must be decremented by after a breakpoint.
|
||
This is often the number of bytes in BREAKPOINT
|
||
but not always. */
|
||
|
||
#define DECR_PC_AFTER_BREAK 0
|
||
|
||
/* Nonzero if instruction at PC is a return instruction. */
|
||
/* For Symmetry, this is really the 'leave' instruction, which */
|
||
/* is right before the ret */
|
||
|
||
#define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 1) == 0xc9)
|
||
|
||
/* Return 1 if P points to an invalid floating point value.
|
||
*/
|
||
|
||
#define INVALID_FLOAT(p, len) (0)
|
||
|
||
/* code for 80387 fpu. Functions are from i386-dep.c, copied into
|
||
* symm-dep.c.
|
||
*/
|
||
#define FLOAT_INFO { i386_float_info(); }
|
||
|
||
/* largest int type */
|
||
#define LONGEST long
|
||
|
||
#define BUILTIN_TYPE_LONGEST builtin_type_long
|
||
|
||
|
||
/* Say how long (ordinary) registers are. */
|
||
|
||
#define REGISTER_TYPE long
|
||
|
||
/* Number of machine registers */
|
||
#define NUM_REGS 49
|
||
|
||
/* Initializer for an array of names of registers.
|
||
There should be NUM_REGS strings in this initializer. */
|
||
|
||
/* Symmetry registers are in this weird order to match the register
|
||
numbers in the symbol table entries. If you change the order,
|
||
things will probably break mysteriously for no apparent reason.
|
||
Also note that the st(0)...st(7) 387 registers are represented as
|
||
st0...st7. */
|
||
|
||
#define REGISTER_NAMES { "eax", "edx", "ecx", "st0", "st1", \
|
||
"ebx", "esi", "edi", "st2", "st3", \
|
||
"st4", "st5", "st6", "st7", "esp", \
|
||
"ebp", "eip", "eflags", "fp1", "fp2", \
|
||
"fp3", "fp4", "fp5", "fp6", "fp7", \
|
||
"fp8", "fp9", "fp10", "fp11", "fp12", \
|
||
"fp13", "fp14", "fp15", "fp16", "fp17", \
|
||
"fp18", "fp19", "fp20", "fp21", "fp22", \
|
||
"fp23", "fp24", "fp25", "fp26", "fp27", \
|
||
"fp28", "fp29", "fp30", "fp31" }
|
||
|
||
/* Register numbers of various important registers.
|
||
Note that some of these values are "real" register numbers,
|
||
and correspond to the general registers of the machine,
|
||
and some are "phony" register numbers which are too large
|
||
to be actual register numbers as far as the user is concerned
|
||
but do serve to get the desired values when passed to read_register. */
|
||
|
||
#define FP1_REGNUM 18 /* first 1167 register */
|
||
#define SP_REGNUM 14 /* Contains address of top of stack */
|
||
#define FP_REGNUM 15 /* Contains address of executing stack frame */
|
||
#define PC_REGNUM 16 /* Contains program counter */
|
||
#define PS_REGNUM 17 /* Contains processor status */
|
||
|
||
/* The magic numbers below are offsets into u_ar0 in the user struct.
|
||
* They live in <machine/reg.h>. Gdb calls this macro with blockend
|
||
* holding u.u_ar0 - KERNEL_U_ADDR. Only the registers listed are
|
||
* saved in the u area (along with a few others that aren't useful
|
||
* here. See <machine/reg.h>).
|
||
*/
|
||
|
||
#define REGISTER_U_ADDR(addr, blockend, regno) \
|
||
{ struct user foo; /* needed for finding fpu regs */ \
|
||
switch (regno) { \
|
||
case 0: \
|
||
addr = blockend + EAX * sizeof(int); break; \
|
||
case 1: \
|
||
addr = blockend + EDX * sizeof(int); break; \
|
||
case 2: \
|
||
addr = blockend + ECX * sizeof(int); break; \
|
||
case 3: /* st(0) */ \
|
||
addr = blockend - \
|
||
((int)&foo.u_fpusave.fpu_stack[0][0] - (int)&foo); \
|
||
break; \
|
||
case 4: /* st(1) */ \
|
||
addr = blockend - \
|
||
((int) &foo.u_fpusave.fpu_stack[1][0] - (int)&foo); \
|
||
break; \
|
||
case 5: \
|
||
addr = blockend + EBX * sizeof(int); break; \
|
||
case 6: \
|
||
addr = blockend + ESI * sizeof(int); break; \
|
||
case 7: \
|
||
addr = blockend + EDI * sizeof(int); break; \
|
||
case 8: /* st(2) */ \
|
||
addr = blockend - \
|
||
((int) &foo.u_fpusave.fpu_stack[2][0] - (int)&foo); \
|
||
break; \
|
||
case 9: /* st(3) */ \
|
||
addr = blockend - \
|
||
((int) &foo.u_fpusave.fpu_stack[3][0] - (int)&foo); \
|
||
break; \
|
||
case 10: /* st(4) */ \
|
||
addr = blockend - \
|
||
((int) &foo.u_fpusave.fpu_stack[4][0] - (int)&foo); \
|
||
break; \
|
||
case 11: /* st(5) */ \
|
||
addr = blockend - \
|
||
((int) &foo.u_fpusave.fpu_stack[5][0] - (int)&foo); \
|
||
break; \
|
||
case 12: /* st(6) */ \
|
||
addr = blockend - \
|
||
((int) &foo.u_fpusave.fpu_stack[6][0] - (int)&foo); \
|
||
break; \
|
||
case 13: /* st(7) */ \
|
||
addr = blockend - \
|
||
((int) &foo.u_fpusave.fpu_stack[7][0] - (int)&foo); \
|
||
break; \
|
||
case 14: \
|
||
addr = blockend + ESP * sizeof(int); break; \
|
||
case 15: \
|
||
addr = blockend + EBP * sizeof(int); break; \
|
||
case 16: \
|
||
addr = blockend + EIP * sizeof(int); break; \
|
||
case 17: \
|
||
addr = blockend + FLAGS * sizeof(int); break; \
|
||
case 18: /* fp1 */ \
|
||
case 19: /* fp2 */ \
|
||
case 20: /* fp3 */ \
|
||
case 21: /* fp4 */ \
|
||
case 22: /* fp5 */ \
|
||
case 23: /* fp6 */ \
|
||
case 24: /* fp7 */ \
|
||
case 25: /* fp8 */ \
|
||
case 26: /* fp9 */ \
|
||
case 27: /* fp10 */ \
|
||
case 28: /* fp11 */ \
|
||
case 29: /* fp12 */ \
|
||
case 30: /* fp13 */ \
|
||
case 31: /* fp14 */ \
|
||
case 32: /* fp15 */ \
|
||
case 33: /* fp16 */ \
|
||
case 34: /* fp17 */ \
|
||
case 35: /* fp18 */ \
|
||
case 36: /* fp19 */ \
|
||
case 37: /* fp20 */ \
|
||
case 38: /* fp21 */ \
|
||
case 39: /* fp22 */ \
|
||
case 40: /* fp23 */ \
|
||
case 41: /* fp24 */ \
|
||
case 42: /* fp25 */ \
|
||
case 43: /* fp26 */ \
|
||
case 44: /* fp27 */ \
|
||
case 45: /* fp28 */ \
|
||
case 46: /* fp29 */ \
|
||
case 47: /* fp30 */ \
|
||
case 48: /* fp31 */ \
|
||
addr = blockend - \
|
||
((int) &foo.u_fpasave.fpa_regs[(regno)-18] - (int)&foo); \
|
||
} \
|
||
}
|
||
|
||
/* Total amount of space needed to store our copies of the machine's
|
||
register state, the array `registers'. */
|
||
/* 10 i386 registers, 8 i387 registers, and 31 Weitek 1167 registers */
|
||
#define REGISTER_BYTES ((10 * 4) + (8 * 10) + (31 * 4))
|
||
|
||
/* Index within `registers' of the first byte of the space for
|
||
register N. */
|
||
|
||
#define REGISTER_BYTE(N) \
|
||
((N < 3) ? (N * 4) : \
|
||
(N < 5) ? (((N - 2) * 10) + 2) : \
|
||
(N < 8) ? (((N - 5) * 4) + 32) : \
|
||
(N < 14) ? (((N - 8) * 10) + 44) : \
|
||
(((N - 14) * 4) + 104))
|
||
|
||
/* Number of bytes of storage in the actual machine representation
|
||
* for register N. All registers are 4 bytes, except 387 st(0) - st(7),
|
||
* which are 80 bits each.
|
||
*/
|
||
|
||
#define REGISTER_RAW_SIZE(N) \
|
||
((N < 3) ? 4 : \
|
||
(N < 5) ? 10 : \
|
||
(N < 8) ? 4 : \
|
||
(N < 14) ? 10 : \
|
||
4)
|
||
|
||
/* Number of bytes of storage in the program's representation
|
||
for register N. On the vax, all regs are 4 bytes. */
|
||
|
||
#define REGISTER_VIRTUAL_SIZE(N) 4
|
||
|
||
/* Largest value REGISTER_RAW_SIZE can have. */
|
||
|
||
#define MAX_REGISTER_RAW_SIZE 10
|
||
|
||
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
|
||
|
||
#define MAX_REGISTER_VIRTUAL_SIZE 4
|
||
|
||
/* Nonzero if register N requires conversion
|
||
from raw format to virtual format. */
|
||
|
||
#define REGISTER_CONVERTIBLE(N) \
|
||
((N < 3) ? 0 : \
|
||
(N < 5) ? 1 : \
|
||
(N < 8) ? 0 : \
|
||
(N < 14) ? 1 : \
|
||
0)
|
||
|
||
/* Convert data from raw format for register REGNUM
|
||
to virtual format for register REGNUM. */
|
||
|
||
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
|
||
((REGNUM < 3) ? bcopy ((FROM), (TO), 4) : \
|
||
(REGNUM < 5) ? i387_to_double((FROM), (TO)) : \
|
||
(REGNUM < 8) ? bcopy ((FROM), (TO), 4) : \
|
||
(REGNUM < 14) ? i387_to_double((FROM), (TO)) : \
|
||
bcopy ((FROM), (TO), 4))
|
||
|
||
/* Convert data from virtual format for register REGNUM
|
||
to raw format for register REGNUM. */
|
||
|
||
#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
|
||
((REGNUM < 3) ? bcopy ((FROM), (TO), 4) : \
|
||
(REGNUM < 5) ? double_to_i387((FROM), (TO)) : \
|
||
(REGNUM < 8) ? bcopy ((FROM), (TO), 4) : \
|
||
(REGNUM < 14) ? double_to_i387((FROM), (TO)) : \
|
||
bcopy ((FROM), (TO), 4))
|
||
|
||
/* Return the GDB type object for the "standard" data type
|
||
of data in register N. */
|
||
|
||
#define REGISTER_VIRTUAL_TYPE(N) \
|
||
((N < 3) ? builtin_type_int : \
|
||
(N < 5) ? builtin_type_double : \
|
||
(N < 8) ? builtin_type_int : \
|
||
(N < 14) ? builtin_type_double : \
|
||
builtin_type_int)
|
||
|
||
/* from m-i386.h */
|
||
/* Store the address of the place in which to copy the structure the
|
||
subroutine will return. This is called from call_function. */
|
||
|
||
#define STORE_STRUCT_RETURN(ADDR, SP) \
|
||
{ (SP) -= sizeof (ADDR); \
|
||
write_memory ((SP), &(ADDR), sizeof (ADDR)); \
|
||
write_register(0, (ADDR)); }
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
a function return value of type TYPE, and copy that, in virtual format,
|
||
into VALBUF. */
|
||
|
||
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
|
||
symmetry_extract_return_value(TYPE, REGBUF, VALBUF)
|
||
|
||
/* Write into appropriate registers a function return value
|
||
of type TYPE, given in virtual format. */
|
||
|
||
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
|
||
write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
the address in which a function should return its structure value,
|
||
as a CORE_ADDR (or an expression that can be used as one). */
|
||
|
||
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
|
||
|
||
/* Compensate for lack of `vprintf' function. */
|
||
#ifndef HAVE_VPRINTF
|
||
#define vprintf(format, ap) _doprnt (format, ap, stdout)
|
||
#endif /* not HAVE_VPRINTF */
|
||
|
||
/* Describe the pointer in each stack frame to the previous stack frame
|
||
(its caller). */
|
||
|
||
/* FRAME_CHAIN takes a frame's nominal address
|
||
and produces the frame's chain-pointer.
|
||
|
||
FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
|
||
and produces the nominal address of the caller frame.
|
||
|
||
However, if FRAME_CHAIN_VALID returns zero,
|
||
it means the given frame is the outermost one and has no caller.
|
||
In that case, FRAME_CHAIN_COMBINE is not used. */
|
||
|
||
/* On Symmetry, %ebp points to caller's %ebp, and the return address
|
||
is right on top of that.
|
||
*/
|
||
|
||
#define FRAME_CHAIN(thisframe) \
|
||
(outside_startup_file ((thisframe)->pc) ? \
|
||
read_memory_integer((thisframe)->frame, 4) :\
|
||
0)
|
||
|
||
#define FRAME_CHAIN_VALID(chain, thisframe) \
|
||
(chain != 0)
|
||
|
||
#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
|
||
|
||
/* Define other aspects of the stack frame. */
|
||
|
||
/* A macro that tells us whether the function invocation represented
|
||
by FI does not have a frame on the stack associated with it. If it
|
||
does not, FRAMELESS is set to 1, else 0. */
|
||
#define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
|
||
FRAMELESS_LOOK_FOR_PROLOGUE(FI, FRAMELESS)
|
||
|
||
#define FRAME_SAVED_PC(fi) (read_memory_integer((fi)->frame + 4, 4))
|
||
|
||
#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
|
||
|
||
#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
|
||
|
||
/* Return number of args passed to a frame.
|
||
Can return -1, meaning no way to tell.
|
||
|
||
The weirdness in the "addl $imm8" case is due to gcc sometimes
|
||
issuing "addl $-int" after function call returns; this would
|
||
produce ridiculously huge arg counts. */
|
||
|
||
#define FRAME_NUM_ARGS(numargs, fi) \
|
||
{ \
|
||
int op = read_memory_integer(FRAME_SAVED_PC((fi)), 4); \
|
||
int narg; \
|
||
if ((op & 0xff) == 0x59) /* 0x59 'popl %ecx' */ \
|
||
{ \
|
||
numargs = 1; \
|
||
} \
|
||
else if ((op & 0xffff) == 0xc483) /* 0xc483 'addl $imm8' */ \
|
||
{ \
|
||
narg = ((op >> 16) & 0xff); \
|
||
numargs = (narg >= 128) ? -1 : narg / 4; \
|
||
} \
|
||
else if ((op & 0xffff) == 0xc481) /* 0xc481 'addl $imm32' */ \
|
||
{ \
|
||
narg = read_memory_integer(FRAME_SAVED_PC((fi))+2,4); \
|
||
numargs = (narg < 0) ? -1 : narg / 4; \
|
||
} \
|
||
else \
|
||
{ \
|
||
numargs = -1; \
|
||
} \
|
||
}
|
||
|
||
/* Return number of bytes at start of arglist that are not really args. */
|
||
|
||
#define FRAME_ARGS_SKIP 8
|
||
|
||
/* Put here the code to store, into a struct frame_saved_regs,
|
||
the addresses of the saved registers of frame described by FRAME_INFO.
|
||
This includes special registers such as pc and fp saved in special
|
||
ways in the stack frame. sp is even more special:
|
||
the address we return for it IS the sp for the next frame. */
|
||
|
||
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
|
||
{ i386_frame_find_saved_regs ((frame_info), &(frame_saved_regs)); }
|
||
|
||
|
||
/* Things needed for making the inferior call functions. */
|
||
|
||
#define PUSH_DUMMY_FRAME \
|
||
{ CORE_ADDR sp = read_register (SP_REGNUM); \
|
||
int regnum; \
|
||
sp = push_word (sp, read_register (PC_REGNUM)); \
|
||
sp = push_word (sp, read_register (FP_REGNUM)); \
|
||
write_register (FP_REGNUM, sp); \
|
||
for (regnum = 0; regnum < NUM_REGS; regnum++) \
|
||
sp = push_word (sp, read_register (regnum)); \
|
||
write_register (SP_REGNUM, sp); \
|
||
}
|
||
|
||
#define POP_FRAME \
|
||
{ \
|
||
FRAME frame = get_current_frame (); \
|
||
CORE_ADDR fp; \
|
||
int regnum; \
|
||
struct frame_saved_regs fsr; \
|
||
struct frame_info *fi; \
|
||
fi = get_frame_info (frame); \
|
||
fp = fi->frame; \
|
||
get_frame_saved_regs (fi, &fsr); \
|
||
for (regnum = 0; regnum < NUM_REGS; regnum++) { \
|
||
CORE_ADDR adr; \
|
||
adr = fsr.regs[regnum]; \
|
||
if (adr) \
|
||
write_register (regnum, read_memory_integer (adr, 4)); \
|
||
} \
|
||
write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
|
||
write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \
|
||
write_register (SP_REGNUM, fp + 8); \
|
||
flush_cached_frames (); \
|
||
set_current_frame ( create_new_frame (read_register (FP_REGNUM), \
|
||
read_pc ())); \
|
||
}
|
||
|
||
/* from i386-dep.c, worked better than my original... */
|
||
/* This sequence of words is the instructions
|
||
* call (32-bit offset)
|
||
* int 3
|
||
* This is 6 bytes.
|
||
*/
|
||
|
||
#define CALL_DUMMY { 0x223344e8, 0xcc11 }
|
||
|
||
#define CALL_DUMMY_LENGTH 8
|
||
|
||
#define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */
|
||
|
||
/* Insert the specified number of args and function address
|
||
into a call sequence of the above form stored at DUMMYNAME. */
|
||
|
||
#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, type) \
|
||
{ \
|
||
int from, to, delta, loc; \
|
||
loc = (int)(read_register (SP_REGNUM) - CALL_DUMMY_LENGTH); \
|
||
from = loc + 5; \
|
||
to = (int)(fun); \
|
||
delta = to - from; \
|
||
*(int *)((char *)(dummyname) + 1) = delta; \
|
||
}
|
||
|
||
/* Interface definitions for kernel debugger KDB. */
|
||
/* This doesn't work... */
|
||
/* Map machine fault codes into signal numbers.
|
||
First subtract 0, divide by 4, then index in a table.
|
||
Faults for which the entry in this table is 0
|
||
are not handled by KDB; the program's own trap handler
|
||
gets to handle then. */
|
||
|
||
#define FAULT_CODE_ORIGIN 0
|
||
#define FAULT_CODE_UNITS 4
|
||
#define FAULT_TABLE \
|
||
{ 0, SIGKILL, SIGSEGV, 0, 0, 0, 0, 0, \
|
||
0, 0, SIGTRAP, SIGTRAP, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0}
|
||
|
||
/* Start running with a stack stretching from BEG to END.
|
||
BEG and END should be symbols meaningful to the assembler.
|
||
This is used only for kdb. */
|
||
|
||
#define INIT_STACK(beg, end) \
|
||
{ asm (".globl end"); \
|
||
asm ("movl $ end, %esp"); \
|
||
asm ("movl %ebp, $0"); }
|
||
|
||
/* Push the frame pointer register on the stack. */
|
||
#define PUSH_FRAME_PTR \
|
||
asm ("pushl %ebp");
|
||
|
||
/* Copy the top-of-stack to the frame pointer register. */
|
||
#define POP_FRAME_PTR \
|
||
asm ("movl (%esp), %ebp");
|
||
|
||
/* After KDB is entered by a fault, push all registers
|
||
that GDB thinks about (all NUM_REGS of them),
|
||
so that they appear in order of ascending GDB register number.
|
||
The fault code will be on the stack beyond the last register. */
|
||
|
||
#define PUSH_REGISTERS \
|
||
{ asm("pushad"); }
|
||
/*
|
||
{ asm("pushl %eax"); \
|
||
asm("pushl %edx"); \
|
||
asm("pushl %ecx"); \
|
||
asm("pushl %st(0)"); \
|
||
asm("pushl %st(1)"); \
|
||
asm("pushl %ebx"); \
|
||
asm("pushl %esi"); \
|
||
asm("pushl %edi"); \
|
||
asm("pushl %st(2)"); \
|
||
asm("pushl %st(3)"); \
|
||
asm("pushl %st(4)"); \
|
||
asm("pushl %st(5)"); \
|
||
asm("pushl %st(6)"); \
|
||
asm("pushl %st(7)"); \
|
||
asm("pushl %esp"); \
|
||
asm("pushl %ebp"); \
|
||
asm("pushl %eip"); \
|
||
asm("pushl %eflags"); \
|
||
asm("pushl %fp1"); \
|
||
asm("pushl %fp2"); \
|
||
asm("pushl %fp3"); \
|
||
asm("pushl %fp4"); \
|
||
asm("pushl %fp5"); \
|
||
asm("pushl %fp6"); \
|
||
asm("pushl %fp7"); \
|
||
asm("pushl %fp8"); \
|
||
asm("pushl %fp9"); \
|
||
asm("pushl %fp10"); \
|
||
asm("pushl %fp11"); \
|
||
asm("pushl %fp12"); \
|
||
asm("pushl %fp13"); \
|
||
asm("pushl %fp14"); \
|
||
asm("pushl %fp15"); \
|
||
asm("pushl %fp16"); \
|
||
asm("pushl %fp17"); \
|
||
asm("pushl %fp18"); \
|
||
asm("pushl %fp19"); \
|
||
asm("pushl %fp20"); \
|
||
asm("pushl %fp21"); \
|
||
asm("pushl %fp22"); \
|
||
asm("pushl %fp23"); \
|
||
asm("pushl %fp24"); \
|
||
asm("pushl %fp25"); \
|
||
asm("pushl %fp26"); \
|
||
asm("pushl %fp27"); \
|
||
asm("pushl %fp28"); \
|
||
asm("pushl %fp29"); \
|
||
asm("pushl %fp30"); \
|
||
asm("pushl %fp31"); \
|
||
}
|
||
*/
|
||
/* Assuming the registers (including processor status) have been
|
||
pushed on the stack in order of ascending GDB register number,
|
||
restore them and return to the address in the saved PC register. */
|
||
|
||
#define POP_REGISTERS \
|
||
{ asm ("popad"); }
|