1161 lines
27 KiB
C
1161 lines
27 KiB
C
/*-
|
|
* This code is derived from software copyrighted by the Free Software
|
|
* Foundation.
|
|
*
|
|
* Modified 1991 by Donn Seeley at UUNET Technologies, Inc.
|
|
* Modified 1990 by Van Jacobson at Lawrence Berkeley Laboratory.
|
|
*/
|
|
|
|
#ifndef lint
|
|
/*static char sccsid[] = "from: @(#)hp300bsd-dep.c 6.10 (Berkeley) 5/12/91";*/
|
|
static char rcsid[] = "$Id: hp300bsd-dep.c,v 1.3 1993/08/10 00:12:42 mycroft Exp $";
|
|
#endif /* not lint */
|
|
|
|
/*
|
|
* Machine-dependent code for a Hewlett-Packard 9000/300, running bsd.
|
|
* Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc.
|
|
*
|
|
* This file is part of GDB.
|
|
*
|
|
* GDB is free software; you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation; either version 1, or (at your option) any later version.
|
|
*
|
|
* GDB is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* GDB; see the file COPYING. If not, write to the Free Software Foundation,
|
|
* 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include "defs.h"
|
|
#include "param.h"
|
|
#include "frame.h"
|
|
#include "inferior.h"
|
|
#include "value.h"
|
|
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/dir.h>
|
|
#include <signal.h>
|
|
#include <sys/ioctl.h>
|
|
/* #include <fcntl.h> Can we live without this? */
|
|
|
|
#include <a.out.h>
|
|
#ifndef N_SET_MAGIC
|
|
#define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
|
|
#endif
|
|
|
|
#ifdef NEWVM
|
|
#include <machine/pte.h>
|
|
#endif
|
|
|
|
#include <sys/time.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/user.h> /* After a.out.h */
|
|
#include <sys/file.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/ptrace.h>
|
|
|
|
CORE_ADDR kernel_u_addr;
|
|
|
|
#ifdef KERNELDEBUG
|
|
#ifndef NEWVM
|
|
#include <sys/vmmac.h>
|
|
#include <machine/pte.h>
|
|
#endif
|
|
#include <machine/vmparam.h>
|
|
#include <machine/cpu.h>
|
|
#include <ctype.h>
|
|
#include "symtab.h" /* XXX */
|
|
|
|
extern int kernel_debugging;
|
|
|
|
#define KERNOFF ((unsigned)KERNBASE)
|
|
#define LOWRAM ((unsigned)0xfffffdce)
|
|
/* actually you can't really distinguish user and kernel by address */
|
|
#define INKERNEL(x) ((x) >= KERNOFF && (x) < KERNOFF + ctob(slr))
|
|
#define INUDOT(x) \
|
|
((x) >= KERNEL_U_ADDR && (x) < KERNEL_U_ADDR + ctob(UPAGES))
|
|
|
|
#define PT_ADDR_ANY ((caddr_t) 1)
|
|
|
|
/*
|
|
* Convert from sysmap pte index to system virtual address & vice-versa.
|
|
* (why aren't these in one of the system vm macro files???)
|
|
*/
|
|
#define smxtob(a) (sbr + (a) * sizeof(pte))
|
|
#define btosmx(b) (((b) - sbr) / sizeof(pte))
|
|
|
|
static int ok_to_cache();
|
|
#ifdef NEWVM
|
|
static int found_pcb;
|
|
static CORE_ADDR curpcb;
|
|
static CORE_ADDR kstack;
|
|
#endif
|
|
#endif
|
|
|
|
extern int errno;
|
|
|
|
/*
|
|
* This function simply calls ptrace with the given arguments. It exists so
|
|
* that all calls to ptrace are isolated in this machine-dependent file.
|
|
*/
|
|
int
|
|
call_ptrace(request, pid, arg3, arg4)
|
|
int request;
|
|
pid_t pid;
|
|
caddr_t arg3;
|
|
int arg4;
|
|
{
|
|
return(ptrace(request, pid, arg3, arg4));
|
|
}
|
|
|
|
kill_inferior()
|
|
{
|
|
if (remote_debugging) {
|
|
#ifdef KERNELDEBUG
|
|
if (kernel_debugging)
|
|
/*
|
|
* It's a very, very bad idea to go away leaving
|
|
* breakpoints in a remote kernel or to leave it
|
|
* stopped at a breakpoint.
|
|
*/
|
|
clear_breakpoints();
|
|
#endif
|
|
remote_close(0);
|
|
inferior_died();
|
|
} else if (inferior_pid != 0) {
|
|
ptrace(PT_KILL, inferior_pid, 0, 0);
|
|
wait(0);
|
|
inferior_died();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is used when GDB is exiting. It gives less chance of error.
|
|
*/
|
|
kill_inferior_fast()
|
|
{
|
|
if (remote_debugging) {
|
|
#ifdef KERNELDEBUG
|
|
if (kernel_debugging)
|
|
clear_breakpoints();
|
|
#endif
|
|
remote_close(0);
|
|
return;
|
|
}
|
|
if (inferior_pid == 0)
|
|
return;
|
|
|
|
ptrace(PT_KILL, inferior_pid, 0, 0);
|
|
wait(0);
|
|
}
|
|
|
|
/*
|
|
* Resume execution of the inferior process. If STEP is nonzero, single-step
|
|
* it. If SIGNAL is nonzero, give it that signal.
|
|
*/
|
|
void
|
|
resume(step, signal)
|
|
int step;
|
|
int signal;
|
|
{
|
|
errno = 0;
|
|
if (remote_debugging)
|
|
remote_resume(step, signal);
|
|
else {
|
|
ptrace(step ? PT_STEP : PT_CONTINUE, inferior_pid,
|
|
PT_ADDR_ANY, signal);
|
|
if (errno)
|
|
perror_with_name("ptrace");
|
|
}
|
|
}
|
|
|
|
#ifdef ATTACH_DETACH
|
|
extern int attach_flag;
|
|
|
|
/*
|
|
* Start debugging the process whose number is PID.
|
|
*/
|
|
attach(pid)
|
|
int pid;
|
|
{
|
|
errno = 0;
|
|
ptrace(PT_ATTACH, pid, 0, 0);
|
|
if (errno)
|
|
perror_with_name("ptrace");
|
|
attach_flag = 1;
|
|
return pid;
|
|
}
|
|
|
|
/*
|
|
* Stop debugging the process whose number is PID and continue it
|
|
* with signal number SIGNAL. SIGNAL = 0 means just continue it.
|
|
*/
|
|
void
|
|
detach(signal)
|
|
int signal;
|
|
{
|
|
errno = 0;
|
|
ptrace(PT_DETACH, inferior_pid, PT_ADDR_ANY, signal);
|
|
if (errno)
|
|
perror_with_name("ptrace");
|
|
attach_flag = 0;
|
|
}
|
|
#endif /* ATTACH_DETACH */
|
|
|
|
static unsigned int
|
|
get_register_offset()
|
|
{
|
|
unsigned int offset;
|
|
struct user u; /* XXX */
|
|
|
|
#ifdef NEWVM
|
|
offset = (char *) &u.u_kproc.kp_proc.p_regs - (char *) &u;
|
|
offset = ptrace(PT_READ_U, inferior_pid, (caddr_t)offset, 0) -
|
|
USRSTACK;
|
|
#else
|
|
offset = (char *) &u.u_ar0 - (char *) &u;
|
|
offset = ptrace(PT_READ_U, inferior_pid, (caddr_t)offset, 0) -
|
|
KERNEL_U_ADDR;
|
|
#endif
|
|
return offset;
|
|
}
|
|
|
|
void
|
|
fetch_inferior_registers()
|
|
{
|
|
register int regno;
|
|
register unsigned int regaddr;
|
|
char buf[MAX_REGISTER_RAW_SIZE];
|
|
register int i;
|
|
unsigned int offset;
|
|
|
|
if (remote_debugging) {
|
|
extern char registers[];
|
|
|
|
remote_fetch_registers(registers);
|
|
return;
|
|
}
|
|
|
|
offset = get_register_offset();
|
|
|
|
for (regno = 0; regno < NUM_REGS; regno++) {
|
|
regaddr = register_addr(regno, offset);
|
|
for (i = 0; i < REGISTER_RAW_SIZE(regno); i += sizeof(int)) {
|
|
*(int *)&buf[i] = ptrace(PT_READ_U, inferior_pid,
|
|
(caddr_t)regaddr, 0);
|
|
regaddr += sizeof(int);
|
|
}
|
|
supply_register(regno, buf);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Store our register values back into the inferior. If REGNO is -1, do this
|
|
* for all registers. Otherwise, REGNO specifies which register (so we can
|
|
* save time).
|
|
*/
|
|
store_inferior_registers(regno)
|
|
int regno;
|
|
{
|
|
register unsigned int regaddr;
|
|
char buf[80];
|
|
extern char registers[];
|
|
register int i;
|
|
unsigned int offset;
|
|
|
|
if (remote_debugging) {
|
|
extern char registers[];
|
|
|
|
remote_store_registers(registers);
|
|
return;
|
|
}
|
|
|
|
offset = get_register_offset();
|
|
|
|
if (regno >= 0) {
|
|
regaddr = register_addr(regno, offset);
|
|
for (i = 0; i < REGISTER_RAW_SIZE(regno); i += sizeof(int)) {
|
|
errno = 0;
|
|
ptrace(PT_WRITE_U, inferior_pid, (caddr_t)regaddr,
|
|
*(int *) ®isters[REGISTER_BYTE(regno) + i]);
|
|
if (errno != 0) {
|
|
sprintf(buf, "writing register number %d(%d)",
|
|
regno, i);
|
|
perror_with_name(buf);
|
|
}
|
|
regaddr += sizeof(int);
|
|
}
|
|
} else
|
|
for (regno = 0; regno < NUM_REGS; regno++) {
|
|
regaddr = register_addr(regno, offset);
|
|
for (i = 0; i < REGISTER_RAW_SIZE(regno);
|
|
i += sizeof(int)) {
|
|
errno = 0;
|
|
ptrace(PT_WRITE_U, inferior_pid,
|
|
(caddr_t)regaddr,
|
|
*(int *) ®isters[REGISTER_BYTE(regno) + i]);
|
|
if (errno != 0) {
|
|
sprintf(buf,
|
|
"writing register number %d(%d)",
|
|
regno, i);
|
|
perror_with_name(buf);
|
|
}
|
|
regaddr += sizeof(int);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Copy LEN bytes from inferior's memory starting at MEMADDR to debugger
|
|
* memory starting at MYADDR. On failure (cannot read from inferior, usually
|
|
* because address is out of bounds) returns the value of errno.
|
|
*/
|
|
int
|
|
read_inferior_memory(memaddr, myaddr, len)
|
|
CORE_ADDR memaddr;
|
|
char *myaddr;
|
|
int len;
|
|
{
|
|
register int i;
|
|
/* Round starting address down to longword boundary. */
|
|
register CORE_ADDR addr = memaddr & -sizeof(int);
|
|
/* Round ending address up; get number of longwords that makes. */
|
|
register int count = (((memaddr + len) - addr) + sizeof(int) - 1) /
|
|
sizeof(int);
|
|
/* Allocate buffer of that many longwords. */
|
|
register int *buffer = (int *) alloca(count * sizeof(int));
|
|
extern int errno;
|
|
|
|
if (remote_debugging)
|
|
return (remote_read_inferior_memory(memaddr, myaddr, len));
|
|
|
|
/* Read all the longwords */
|
|
errno = 0;
|
|
for (i = 0; i < count && errno == 0; i++, addr += sizeof(int))
|
|
buffer[i] = ptrace(PT_READ_I, inferior_pid, (caddr_t)addr, 0);
|
|
|
|
/* Copy appropriate bytes out of the buffer. */
|
|
bcopy((char *) buffer + (memaddr & (sizeof(int) - 1)), myaddr, len);
|
|
return(errno);
|
|
}
|
|
|
|
/*
|
|
* Copy LEN bytes of data from debugger memory at MYADDR to inferior's memory
|
|
* at MEMADDR. On failure (cannot write the inferior) returns the value of
|
|
* errno.
|
|
*/
|
|
|
|
int
|
|
write_inferior_memory(memaddr, myaddr, len)
|
|
CORE_ADDR memaddr;
|
|
char *myaddr;
|
|
int len;
|
|
{
|
|
register int i;
|
|
/* Round starting address down to longword boundary. */
|
|
register CORE_ADDR addr = memaddr & -sizeof(int);
|
|
/* Round ending address up; get number of longwords that makes. */
|
|
register int count = (((memaddr + len) - addr) + sizeof(int) - 1) /
|
|
sizeof(int);
|
|
/* Allocate buffer of that many longwords. */
|
|
register int *buffer = (int *) alloca(count * sizeof(int));
|
|
extern int errno;
|
|
|
|
/*
|
|
* Fill start and end extra bytes of buffer with existing memory
|
|
* data.
|
|
*/
|
|
if (remote_debugging)
|
|
return (remote_write_inferior_memory(memaddr, myaddr, len));
|
|
|
|
/*
|
|
* Fill start and end extra bytes of buffer with existing memory
|
|
* data.
|
|
*/
|
|
buffer[0] = ptrace(PT_READ_I, inferior_pid, (caddr_t)addr, 0);
|
|
|
|
if (count > 1)
|
|
buffer[count - 1] = ptrace(PT_READ_I, inferior_pid,
|
|
(caddr_t)addr + (count - 1) * sizeof(int), 0);
|
|
|
|
/* Copy data to be written over corresponding part of buffer */
|
|
|
|
bcopy(myaddr, (char *) buffer + (memaddr & (sizeof(int) - 1)), len);
|
|
|
|
/* Write the entire buffer. */
|
|
|
|
errno = 0;
|
|
for (i = 0; i < count && errno == 0; i++, addr += sizeof(int))
|
|
ptrace(PT_WRITE_I, inferior_pid, (caddr_t)addr, buffer[i]);
|
|
|
|
return(errno);
|
|
}
|
|
|
|
|
|
/*
|
|
* Work with core dump and executable files, for GDB.
|
|
* This code would be in core.c if it weren't machine-dependent.
|
|
*/
|
|
|
|
#ifndef N_TXTADDR
|
|
#define N_TXTADDR(hdr) 0
|
|
#endif /* no N_TXTADDR */
|
|
|
|
#ifndef N_DATADDR
|
|
#define N_DATADDR(hdr) hdr.a_text
|
|
#endif /* no N_DATADDR */
|
|
|
|
/*
|
|
* Make COFF and non-COFF names for things a little more compatible to reduce
|
|
* conditionals later.
|
|
*/
|
|
|
|
|
|
#ifndef AOUTHDR
|
|
#define AOUTHDR struct exec
|
|
#endif
|
|
|
|
extern char *sys_siglist[];
|
|
|
|
|
|
/* Hook for `exec_file_command' command to call. */
|
|
|
|
extern void (*exec_file_display_hook) ();
|
|
|
|
/* File names of core file and executable file. */
|
|
|
|
extern char *corefile;
|
|
extern char *execfile;
|
|
|
|
/* Descriptors on which core file and executable file are open.
|
|
Note that the execchan is closed when an inferior is created
|
|
and reopened if the inferior dies or is killed. */
|
|
|
|
extern int corechan;
|
|
extern int execchan;
|
|
|
|
/* Last modification time of executable file.
|
|
Also used in source.c to compare against mtime of a source file. */
|
|
|
|
extern int exec_mtime;
|
|
|
|
/* Virtual addresses of bounds of the two areas of memory in the core file. */
|
|
|
|
extern CORE_ADDR data_start;
|
|
extern CORE_ADDR data_end;
|
|
extern CORE_ADDR stack_start;
|
|
extern CORE_ADDR stack_end;
|
|
|
|
/* Virtual addresses of bounds of two areas of memory in the exec file.
|
|
Note that the data area in the exec file is used only when there is no core file. */
|
|
|
|
extern CORE_ADDR text_start;
|
|
extern CORE_ADDR text_end;
|
|
|
|
extern CORE_ADDR exec_data_start;
|
|
extern CORE_ADDR exec_data_end;
|
|
|
|
/* Address in executable file of start of text area data. */
|
|
|
|
extern int text_offset;
|
|
|
|
/* Address in executable file of start of data area data. */
|
|
|
|
extern int exec_data_offset;
|
|
|
|
/* Address in core file of start of data area data. */
|
|
|
|
extern int data_offset;
|
|
|
|
/* Address in core file of start of stack area data. */
|
|
|
|
extern int stack_offset;
|
|
|
|
|
|
/* a.out header saved in core file. */
|
|
|
|
extern AOUTHDR core_aouthdr;
|
|
|
|
/* a.out header of exec file. */
|
|
|
|
extern AOUTHDR exec_aouthdr;
|
|
|
|
extern void validate_files();
|
|
|
|
|
|
extern int (*core_file_hook)();
|
|
|
|
#ifdef KERNELDEBUG
|
|
/*
|
|
* Kernel debugging routines.
|
|
*/
|
|
|
|
static CORE_ADDR file_offset;
|
|
static CORE_ADDR lowram;
|
|
static CORE_ADDR sbr;
|
|
static CORE_ADDR slr;
|
|
static struct pcb pcb;
|
|
static CORE_ADDR kernel_udot_va;
|
|
|
|
#ifndef CFSIZE
|
|
#include <machine/frame.h>
|
|
#endif
|
|
|
|
static CORE_ADDR
|
|
ksym_lookup(name)
|
|
char *name;
|
|
{
|
|
struct symbol *sym;
|
|
int i;
|
|
|
|
if ((i = lookup_misc_func(name)) < 0)
|
|
error("kernel symbol `%s' not found.", name);
|
|
|
|
return (misc_function_vector[i].address);
|
|
}
|
|
|
|
/*
|
|
* return true if 'len' bytes starting at 'addr' can be read out as
|
|
* longwords and/or locally cached (this is mostly for memory mapped
|
|
* i/o register access when debugging remote kernels).
|
|
*/
|
|
static int
|
|
ok_to_cache(addr, len)
|
|
{
|
|
#ifdef NEWVM
|
|
static CORE_ADDR intiobase, extiobase;
|
|
|
|
if (! intiobase) {
|
|
intiobase = ksym_lookup("intiobase");
|
|
(void)remote_read_inferior_memory(intiobase, &intiobase,
|
|
sizeof(intiobase));
|
|
extiobase = ksym_lookup("extiobase");
|
|
(void)remote_read_inferior_memory(extiobase, &extiobase,
|
|
sizeof(extiobase));
|
|
}
|
|
|
|
if (addr >= intiobase && addr < intiobase + ctob(IIOMAPSIZE))
|
|
return (0);
|
|
if (addr >= extiobase && addr < extiobase + ctob(EIOMAPSIZE))
|
|
return (0);
|
|
#else
|
|
static CORE_ADDR IObase;
|
|
|
|
if (! IObase)
|
|
IObase = ksym_lookup("IObase");
|
|
|
|
if (addr >= IObase && addr < IObase + (IOTOP - IOBASE))
|
|
return (0);
|
|
#endif
|
|
|
|
return (1);
|
|
}
|
|
|
|
static
|
|
physrd(addr, dat, len)
|
|
u_int addr;
|
|
char *dat;
|
|
{
|
|
if (lseek(corechan, addr - file_offset, L_SET) == -1)
|
|
return (-1);
|
|
if (read(corechan, dat, len) != len)
|
|
return (-1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* When looking at kernel data space through /dev/mem or with a core file, do
|
|
* virtual memory mapping.
|
|
*/
|
|
#ifdef NEWVM
|
|
static CORE_ADDR
|
|
vtophys(addr)
|
|
CORE_ADDR addr;
|
|
{
|
|
CORE_ADDR v;
|
|
struct pte pte;
|
|
CORE_ADDR stp;
|
|
CORE_ADDR oldaddr = addr;
|
|
static CORE_ADDR curstp = -1;
|
|
|
|
/*
|
|
* If we're looking at the kernel stack,
|
|
* munge the address to refer to the user space mapping instead;
|
|
* that way we get the requested process's kstack, not the running one.
|
|
*/
|
|
if (addr >= kstack && addr < kstack + ctob(UPAGES))
|
|
addr = (addr - kstack) + curpcb;
|
|
|
|
/*
|
|
* Identify the current segment table.
|
|
* Since the given VA could come from either kernel
|
|
* or user space, the following heuristics don't always work.
|
|
*/
|
|
if (INKERNEL(addr))
|
|
stp = sbr;
|
|
else if (found_pcb == 0) {
|
|
/* We have a pcb address, but haven't read it yet. Cheat. */
|
|
if (curstp == -1) {
|
|
v = vtophys((CORE_ADDR)&((struct pcb *)curpcb)->pcb_ustp);
|
|
physrd(v, &curstp, sizeof curstp);
|
|
}
|
|
stp = curstp;
|
|
} else
|
|
stp = pcb.pcb_ustp;
|
|
|
|
/*
|
|
* Read the current segment table.
|
|
*/
|
|
v = stp + ((addr >> SG_ISHIFT) * sizeof pte);
|
|
if (physrd(v, (char *)&pte, sizeof(pte)))
|
|
return (~0);
|
|
if (*(int *)&pte == SG_NV)
|
|
return (~0);
|
|
v = hp300_btop(addr & SG_PMASK);
|
|
addr = (CORE_ADDR)(hp300_ptob(pte.pg_pfnum) + v*sizeof pte);
|
|
|
|
/*
|
|
* Addr is now address of the pte of the page we are interested in;
|
|
* get the pte and paste up the physical address.
|
|
*/
|
|
if (physrd(addr, (char *) &pte, sizeof(pte)))
|
|
return (~0);
|
|
if (pte.pg_v == 0 && pte.pg_pfnum == 0)
|
|
return (~0);
|
|
addr = (CORE_ADDR)hp300_ptob(pte.pg_pfnum) + (oldaddr & PGOFSET);
|
|
#if 0
|
|
printf("vtophys(%x) -> %x\n", oldaddr, addr);
|
|
#endif
|
|
return (addr);
|
|
}
|
|
#else
|
|
static CORE_ADDR
|
|
vtophys(addr)
|
|
CORE_ADDR addr;
|
|
{
|
|
CORE_ADDR v;
|
|
struct pte pte;
|
|
CORE_ADDR oldaddr = addr;
|
|
|
|
/* permit direct reference to physical memory */
|
|
if (addr >= lowram)
|
|
return (addr);
|
|
|
|
if (kernel_udot_va && INUDOT(addr)) {
|
|
addr -= KERNEL_U_ADDR;
|
|
addr = kernel_udot_va + btop(addr) * sizeof (struct pte);
|
|
addr = vtophys(addr);
|
|
} else if (INKERNEL(addr)) {
|
|
/*
|
|
* In system space get system pte. If valid or reclaimable
|
|
* then physical address is combination of its page number
|
|
* and the page offset of the original address.
|
|
*/
|
|
v = smxtob(btop(addr - KERNOFF));
|
|
addr = v + lowram;
|
|
} else {
|
|
/* In p0 space must not be off end of region. */
|
|
v = btop(addr);
|
|
if (v >= pcb.pcb_p0lr)
|
|
/* address out of segment */
|
|
return (~0);
|
|
|
|
addr = (CORE_ADDR)(pcb.pcb_p0br + v);
|
|
/*
|
|
* For p0/p1 address, user-level page table should be in
|
|
* kernel vm. Do second-level indirect by recursing.
|
|
*/
|
|
if (!INKERNEL(addr))
|
|
return (~0);
|
|
|
|
addr = vtophys(addr);
|
|
}
|
|
/*
|
|
* Addr is now address of the pte of the page we are interested in;
|
|
* get the pte and paste up the physical address.
|
|
*/
|
|
if (physrd(addr, (char *) &pte, sizeof(pte)))
|
|
return (~0);
|
|
|
|
if (pte.pg_v == 0 && (pte.pg_fod || pte.pg_pfnum == 0))
|
|
return (~0);
|
|
|
|
addr = (CORE_ADDR)ptob(pte.pg_pfnum) + (oldaddr & PGOFSET);
|
|
#if 0
|
|
printf("vtophys(%x) -> %x\n", oldaddr, addr);
|
|
#endif
|
|
return (addr);
|
|
}
|
|
#endif
|
|
|
|
static
|
|
kvread(addr)
|
|
CORE_ADDR addr;
|
|
{
|
|
CORE_ADDR paddr = vtophys(addr);
|
|
|
|
if (paddr != ~0)
|
|
if (physrd(paddr, (char *)&addr, sizeof(addr)) == 0);
|
|
return (addr);
|
|
|
|
return (~0);
|
|
}
|
|
|
|
static void
|
|
read_pcb(uaddr)
|
|
u_int uaddr;
|
|
{
|
|
int i;
|
|
|
|
#ifdef NEWVM
|
|
if (physrd(uaddr, (char *)&pcb, sizeof pcb))
|
|
error("cannot read pcb at %x\n", uaddr);
|
|
printf("current pcb at %x\n", uaddr);
|
|
#else
|
|
if (physrd (uaddr, (char *)&pcb, sizeof pcb))
|
|
error ("cannot read pcb at %x.\n", uaddr);
|
|
printf("p0br %x p0lr %x p1br %x p1lr %x\n",
|
|
pcb.pcb_p0br, pcb.pcb_p0lr, pcb.pcb_p1br, pcb.pcb_p1lr);
|
|
|
|
kernel_udot_va = (CORE_ADDR) (pcb.pcb_p1br + BTOPUSRSTACK);
|
|
#endif
|
|
|
|
/*
|
|
* get the register values out of the sys pcb and
|
|
* store them where `read_register' will find them.
|
|
*/
|
|
for (i = 2; i < 8; ++i)
|
|
supply_register(i, &pcb.pcb_regs[i-2]);
|
|
for (i = 10; i < 16; ++i)
|
|
supply_register(i, &pcb.pcb_regs[i-4]);
|
|
|
|
/* fake 'scratch' regs d0, d1, a0, a1 */
|
|
i = 0;
|
|
supply_register(0, &i); supply_register(1, &i);
|
|
supply_register(8, &i); supply_register(9, &i);
|
|
|
|
i = kvread(pcb.pcb_regs[10] + 4);
|
|
if (i != -1)
|
|
supply_register(PC_REGNUM, &i);
|
|
|
|
supply_register(PS_REGNUM, &pcb.pcb_ps);
|
|
|
|
for (i = FP0_REGNUM; i < NUM_REGS; ++i) {
|
|
int fpreg;
|
|
|
|
REGISTER_U_ADDR(fpreg, 0, i);
|
|
supply_register(i, ((char *)&pcb) + fpreg);
|
|
}
|
|
}
|
|
|
|
static void
|
|
setup_kernel_debugging()
|
|
{
|
|
struct stat stb;
|
|
int devmem = 0;
|
|
CORE_ADDR addr;
|
|
|
|
fstat(corechan, &stb);
|
|
if ((stb.st_mode & S_IFMT) == S_IFCHR && stb.st_rdev == makedev(2, 0))
|
|
devmem = 1;
|
|
|
|
/*
|
|
* Must get value of lowram before we can read PCB.
|
|
*/
|
|
if (devmem)
|
|
/* /dev/mem == physical memory */
|
|
(void)physrd(LOWRAM, (char *)&lowram, sizeof(lowram));
|
|
else
|
|
/* normal file -- use standard offset */
|
|
(void)physrd(ksym_lookup("lowram"), (char *)&lowram,
|
|
sizeof(lowram));
|
|
lowram = roundup(lowram, NBPG);
|
|
if (! devmem)
|
|
file_offset = lowram;
|
|
|
|
/*
|
|
* Get system mapping information.
|
|
*/
|
|
#ifdef NEWVM
|
|
sbr = ksym_lookup("Sysseg") + lowram;
|
|
(void)physrd(sbr, (char *)&sbr, sizeof(sbr));
|
|
sbr += lowram; /* sbr is a physical address for NEWVM */
|
|
slr = NPTEPG * (NPTEPG-1);
|
|
curpcb = ksym_lookup("curpcb") + lowram;
|
|
physrd(curpcb, &curpcb, sizeof curpcb);
|
|
kstack = ksym_lookup("kstack");
|
|
#else
|
|
sbr = ksym_lookup("Sysmap");
|
|
slr = ksym_lookup("Syssize");
|
|
#endif
|
|
printf("sbr %x slr %x\n", sbr, slr);
|
|
|
|
/*
|
|
* pcb where "panic" saved registers in first thing in current
|
|
* u area.
|
|
*/
|
|
#ifdef NEWVM
|
|
read_pcb(vtophys(kstack));
|
|
found_pcb = 1;
|
|
#else
|
|
read_pcb(vtophys(ksym_lookup("u")));
|
|
#endif
|
|
if (!devmem) {
|
|
/* find stack frame */
|
|
CORE_ADDR panicstr;
|
|
char buf[256];
|
|
register char *cp;
|
|
|
|
panicstr = kvread(ksym_lookup("panicstr"));
|
|
if (panicstr == ~0)
|
|
return;
|
|
(void) kernel_core_file_hook(panicstr, buf, sizeof(buf));
|
|
for (cp = buf; cp < &buf[sizeof(buf)] && *cp; cp++)
|
|
if (!isascii(*cp) || (!isprint(*cp) && !isspace(*cp)))
|
|
*cp = '?';
|
|
if (*cp)
|
|
*cp = '\0';
|
|
printf("panic: %s\n", buf);
|
|
}
|
|
|
|
stack_start = USRSTACK;
|
|
stack_end = USRSTACK + ctob(UPAGES);
|
|
}
|
|
|
|
set_paddr_command(arg)
|
|
char *arg;
|
|
{
|
|
u_int uaddr;
|
|
|
|
if (!arg)
|
|
error_no_arg("ps-style address for new current process");
|
|
if (!kernel_debugging)
|
|
error("not debugging kernel");
|
|
if (lowram == 0)
|
|
error("need kernel core file");
|
|
uaddr = (u_int) parse_and_eval_address(arg);
|
|
#ifndef NEWVM
|
|
read_pcb(ctob(uaddr));
|
|
#else
|
|
/* p_addr is now a pcb virtual address */
|
|
read_pcb(vtophys(uaddr));
|
|
curpcb = uaddr;
|
|
#endif
|
|
|
|
flush_cached_frames();
|
|
set_current_frame(create_new_frame(read_register(FP_REGNUM), read_pc()));
|
|
select_frame(get_current_frame(), 0);
|
|
}
|
|
|
|
/*
|
|
* read len bytes from kernel virtual address 'addr' into local
|
|
* buffer 'buf'. Return 0 if read ok, 1 otherwise. On read
|
|
* errors, portion of buffer not read is zeroed.
|
|
*/
|
|
kernel_core_file_hook(addr, buf, len)
|
|
CORE_ADDR addr;
|
|
char *buf;
|
|
int len;
|
|
{
|
|
int i;
|
|
CORE_ADDR paddr;
|
|
|
|
while (len > 0) {
|
|
paddr = vtophys(addr);
|
|
if (paddr == ~0) {
|
|
bzero(buf, len);
|
|
return (1);
|
|
}
|
|
/* we can't read across a page boundary */
|
|
i = min(len, NBPG - (addr & PGOFSET));
|
|
if (physrd(paddr, buf, i)) {
|
|
bzero(buf, len);
|
|
return (1);
|
|
}
|
|
buf += i;
|
|
addr += i;
|
|
len -= i;
|
|
}
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
core_file_command(filename, from_tty)
|
|
char *filename;
|
|
int from_tty;
|
|
{
|
|
int val;
|
|
extern char registers[];
|
|
unsigned int reg_offset;
|
|
#ifdef KERNELDEBUG
|
|
struct stat stb;
|
|
#endif
|
|
struct user u;
|
|
|
|
/*
|
|
* Discard all vestiges of any previous core file and mark data and
|
|
* stack spaces as empty.
|
|
*/
|
|
if (corefile)
|
|
free(corefile);
|
|
corefile = 0;
|
|
core_file_hook = 0;
|
|
|
|
if (corechan >= 0)
|
|
close(corechan);
|
|
corechan = -1;
|
|
|
|
/* Now, if a new core file was specified, open it and digest it. */
|
|
|
|
if (filename == 0) {
|
|
if (from_tty)
|
|
printf("No core file now.\n");
|
|
return;
|
|
}
|
|
filename = tilde_expand(filename);
|
|
make_cleanup(free, filename);
|
|
if (have_inferior_p())
|
|
error("To look at a core file, you must kill the inferior with \"kill\".");
|
|
corechan = open(filename, O_RDONLY, 0);
|
|
if (corechan < 0)
|
|
perror_with_name(filename);
|
|
|
|
#ifdef KERNELDEBUG
|
|
fstat(corechan, &stb);
|
|
|
|
if (kernel_debugging) {
|
|
setup_kernel_debugging();
|
|
core_file_hook = kernel_core_file_hook;
|
|
} else if ((stb.st_mode & S_IFMT) == S_IFCHR &&
|
|
stb.st_rdev == makedev(2, 1)) {
|
|
/* looking at /dev/kmem */
|
|
data_offset = data_start = KERNOFF;
|
|
data_end = ~0; /* XXX */
|
|
stack_end = stack_start = data_end;
|
|
} else
|
|
#endif
|
|
{
|
|
val = myread(corechan, &u, sizeof u);
|
|
if (val < 0)
|
|
perror_with_name("Not a core file: reading upage");
|
|
if (val != sizeof u)
|
|
error("Not a core file: could only read %d bytes", val);
|
|
|
|
/*
|
|
* We are depending on exec_file_command having been
|
|
* called previously to set exec_data_start. Since
|
|
* the executable and the core file share the same
|
|
* text segment, the address of the data segment will
|
|
* be the same in both.
|
|
*/
|
|
data_start = exec_data_start;
|
|
|
|
#ifndef NEWVM
|
|
data_end = data_start + NBPG * u.u_dsize;
|
|
stack_start = stack_end - NBPG * u.u_ssize;
|
|
data_offset = NBPG * UPAGES;
|
|
stack_offset = NBPG * (UPAGES + u.u_dsize);
|
|
|
|
/*
|
|
* Some machines put an absolute address in here and
|
|
* some put the offset in the upage of the regs.
|
|
*/
|
|
reg_offset = (int) u.u_ar0 - KERNEL_U_ADDR;
|
|
#else
|
|
data_end = data_start +
|
|
NBPG * u.u_kproc.kp_eproc.e_vm.vm_dsize;
|
|
stack_start = stack_end -
|
|
NBPG * u.u_kproc.kp_eproc.e_vm.vm_ssize;
|
|
data_offset = NBPG * UPAGES;
|
|
stack_offset = NBPG *
|
|
(UPAGES + u.u_kproc.kp_eproc.e_vm.vm_dsize);
|
|
|
|
reg_offset = (int) u.u_kproc.kp_proc.p_regs - USRSTACK;
|
|
#endif
|
|
|
|
/*
|
|
* I don't know where to find this info. So, for now,
|
|
* mark it as not available.
|
|
*/
|
|
/* N_SET_MAGIC(core_aouthdr, 0); */
|
|
bzero ((char *) &core_aouthdr, sizeof core_aouthdr);
|
|
|
|
/*
|
|
* Read the register values out of the core file and
|
|
* store them where `read_register' will find them.
|
|
*/
|
|
{
|
|
register int regno;
|
|
|
|
for (regno = 0; regno < NUM_REGS; regno++) {
|
|
char buf[MAX_REGISTER_RAW_SIZE];
|
|
|
|
val = lseek(corechan, register_addr(regno, reg_offset), 0);
|
|
if (val < 0
|
|
|| (val = myread(corechan, buf, sizeof buf)) < 0) {
|
|
char *buffer = (char *) alloca(strlen(reg_names[regno]) + 30);
|
|
strcpy(buffer, "Reading register ");
|
|
strcat(buffer, reg_names[regno]);
|
|
perror_with_name(buffer);
|
|
}
|
|
supply_register(regno, buf);
|
|
}
|
|
}
|
|
}
|
|
if (filename[0] == '/')
|
|
corefile = savestring(filename, strlen(filename));
|
|
else
|
|
corefile = concat(current_directory, "/", filename);
|
|
|
|
set_current_frame(create_new_frame(read_register(FP_REGNUM),
|
|
read_pc()));
|
|
select_frame(get_current_frame(), 0);
|
|
validate_files();
|
|
}
|
|
|
|
|
|
exec_file_command(filename, from_tty)
|
|
char *filename;
|
|
int from_tty;
|
|
{
|
|
int val;
|
|
|
|
/*
|
|
* Eliminate all traces of old exec file. Mark text segment as empty.
|
|
*/
|
|
|
|
if (execfile)
|
|
free(execfile);
|
|
execfile = 0;
|
|
data_start = 0;
|
|
data_end -= exec_data_start;
|
|
text_start = 0;
|
|
text_end = 0;
|
|
exec_data_start = 0;
|
|
exec_data_end = 0;
|
|
if (execchan >= 0)
|
|
close(execchan);
|
|
execchan = -1;
|
|
|
|
/* Now open and digest the file the user requested, if any. */
|
|
|
|
if (filename) {
|
|
filename = tilde_expand(filename);
|
|
make_cleanup(free, filename);
|
|
|
|
execchan = openp(getenv("PATH"), 1, filename, O_RDONLY, 0,
|
|
&execfile);
|
|
if (execchan < 0)
|
|
perror_with_name(filename);
|
|
|
|
{
|
|
struct stat st_exec;
|
|
|
|
#ifdef HEADER_SEEK_FD
|
|
HEADER_SEEK_FD(execchan);
|
|
#endif
|
|
|
|
val = myread(execchan, &exec_aouthdr, sizeof(AOUTHDR));
|
|
|
|
if (val < 0)
|
|
perror_with_name(filename);
|
|
|
|
text_start = N_TXTADDR(exec_aouthdr);
|
|
exec_data_start = N_DATADDR(exec_aouthdr);
|
|
|
|
text_offset = N_TXTOFF(exec_aouthdr);
|
|
exec_data_offset = N_TXTOFF(exec_aouthdr) + exec_aouthdr.a_text;
|
|
|
|
text_end = text_start + exec_aouthdr.a_text;
|
|
exec_data_end = exec_data_start + exec_aouthdr.a_data;
|
|
data_start = exec_data_start;
|
|
data_end += exec_data_start;
|
|
|
|
fstat(execchan, &st_exec);
|
|
exec_mtime = st_exec.st_mtime;
|
|
}
|
|
|
|
validate_files();
|
|
} else if (from_tty)
|
|
printf("No exec file now.\n");
|
|
|
|
/* Tell display code (if any) about the changed file name. */
|
|
if (exec_file_display_hook)
|
|
(*exec_file_display_hook) (filename);
|
|
}
|
|
|
|
int dummy_code[] = {
|
|
0x4e714eb9, /* nop, jsr @#32323232 */
|
|
0x32323232,
|
|
#define DUMMY_CALL_INDEX 1
|
|
0x4e424e71, /* trap 2, nop */
|
|
};
|
|
|
|
/*
|
|
* Build `dummy' call instructions on inferior's stack to cause
|
|
* it to call a subroutine.
|
|
*
|
|
* N.B. - code in wait_for_inferior requires that sp < pc < fp when
|
|
* we take the trap 2 above so it will recognize that we stopped
|
|
* at a `dummy' call. So, after the call sp is *not* decremented
|
|
* to clean the arguments, code & other stuff we lay on the stack.
|
|
* Since the regs are restored to saved values at the breakpoint,
|
|
* sp will get reset correctly. Also, this restore means we don't
|
|
* have to construct frame linkage info to save pc & fp. The lack
|
|
* of frame linkage means we can't do a backtrace, etc., if the
|
|
* called function gets a fault or hits a breakpoint but code in
|
|
* run_stack_dummy makes this impossible anyway.
|
|
*/
|
|
CORE_ADDR
|
|
setup_dummy(sp, funaddr, nargs, args, struct_return_bytes, pushfn)
|
|
CORE_ADDR sp;
|
|
CORE_ADDR funaddr;
|
|
int nargs;
|
|
value *args;
|
|
int struct_return_bytes;
|
|
CORE_ADDR (*pushfn)();
|
|
{
|
|
int padding, i;
|
|
CORE_ADDR top = sp, struct_addr, pc;
|
|
|
|
i = arg_stacklen(nargs, args) + struct_return_bytes
|
|
+ sizeof(dummy_code);
|
|
if (i & 3)
|
|
padding = 4 - (i & 3);
|
|
else
|
|
padding = 0;
|
|
pc = sp - sizeof(dummy_code);
|
|
sp = pc - padding - struct_return_bytes;
|
|
struct_addr = sp;
|
|
while (--nargs >= 0)
|
|
sp = (*pushfn)(sp, *args++);
|
|
if (struct_return_bytes)
|
|
STORE_STRUCT_RETURN(struct_addr, sp);
|
|
write_register(SP_REGNUM, sp);
|
|
|
|
dummy_code[DUMMY_CALL_INDEX] = (int)funaddr;
|
|
write_memory(pc, (char *)dummy_code, sizeof(dummy_code));
|
|
|
|
return pc;
|
|
}
|
|
|
|
void
|
|
_initialize_hp300bsd_dep()
|
|
{
|
|
#ifdef KERNELDEBUG
|
|
add_com ("process-address", class_obscure, set_paddr_command,
|
|
"The process identified by (ps-style) ADDR becomes the\n\
|
|
\"current\" process context for kernel debugging.");
|
|
add_com_alias ("paddr", "process-address", class_obscure, 0);
|
|
#endif
|
|
}
|