NetBSD/sys/kern/kern_verifiedexec.c
2010-11-17 20:07:50 +00:00

1550 lines
38 KiB
C

/* $NetBSD: kern_verifiedexec.c,v 1.122 2010/11/17 20:07:50 dholland Exp $ */
/*-
* Copyright (c) 2005, 2006 Elad Efrat <elad@NetBSD.org>
* Copyright (c) 2005, 2006 Brett Lymn <blymn@NetBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the authors may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_verifiedexec.c,v 1.122 2010/11/17 20:07:50 dholland Exp $");
#include "opt_veriexec.h"
#include <sys/param.h>
#include <sys/mount.h>
#include <sys/kmem.h>
#include <sys/vnode.h>
#include <sys/namei.h>
#include <sys/exec.h>
#include <sys/once.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/syslog.h>
#include <sys/sysctl.h>
#include <sys/inttypes.h>
#include <sys/verified_exec.h>
#if defined(__FreeBSD__)
# include <sys/systm.h>
# include <sys/imgact.h>
# include <crypto/sha1.h>
# include <crypto/sha2/sha2.h>
# include <crypto/ripemd160/rmd160.h>
#else
# include <sys/sha1.h>
# include <sys/sha2.h>
# include <sys/rmd160.h>
#endif
#include <sys/md5.h>
#include <uvm/uvm_extern.h>
#include <sys/fileassoc.h>
#include <sys/kauth.h>
#include <sys/conf.h>
#include <miscfs/specfs/specdev.h>
#include <prop/proplib.h>
#include <sys/fcntl.h>
/* Readable values for veriexec_file_report(). */
#define REPORT_ALWAYS 0x01 /* Always print */
#define REPORT_VERBOSE 0x02 /* Print when verbose >= 1 */
#define REPORT_DEBUG 0x04 /* Print when verbose >= 2 (debug) */
#define REPORT_PANIC 0x08 /* Call panic() */
#define REPORT_ALARM 0x10 /* Alarm - also print pid/uid/.. */
#define REPORT_LOGMASK (REPORT_ALWAYS|REPORT_VERBOSE|REPORT_DEBUG)
/* state of locking for veriexec_file_verify */
#define VERIEXEC_UNLOCKED 0x00 /* Nothing locked, callee does it */
#define VERIEXEC_LOCKED 0x01 /* Global op lock held */
#define VERIEXEC_RW_UPGRADE(lock) while((rw_tryupgrade(lock)) == 0){};
struct veriexec_fpops {
const char *type;
size_t hash_len;
size_t context_size;
veriexec_fpop_init_t init;
veriexec_fpop_update_t update;
veriexec_fpop_final_t final;
LIST_ENTRY(veriexec_fpops) entries;
};
/* Veriexec per-file entry data. */
struct veriexec_file_entry {
krwlock_t lock; /* r/w lock */
u_char *filename; /* File name. */
u_char type; /* Entry type. */
u_char status; /* Evaluation status. */
u_char page_fp_status; /* Per-page FP status. */
u_char *fp; /* Fingerprint. */
void *page_fp; /* Per-page fingerprints */
size_t npages; /* Number of pages. */
size_t last_page_size; /* To support < PAGE_SIZE */
struct veriexec_fpops *ops; /* Fingerprint ops vector*/
size_t filename_len; /* Length of filename. */
};
/* Veriexec per-table data. */
struct veriexec_table_entry {
uint64_t vte_count; /* Number of Veriexec entries. */
const struct sysctlnode *vte_node;
};
static int veriexec_verbose;
int veriexec_strict;
static int veriexec_bypass = 1;
static char *veriexec_fp_names = NULL;
static size_t veriexec_name_max = 0;
static const struct sysctlnode *veriexec_count_node;
static fileassoc_t veriexec_hook;
static specificdata_key_t veriexec_mountspecific_key;
static LIST_HEAD(, veriexec_fpops) veriexec_fpops_list =
LIST_HEAD_INITIALIZER(veriexec_fpops_list);
static int veriexec_raw_cb(kauth_cred_t, kauth_action_t, void *,
void *, void *, void *, void *);
static struct veriexec_fpops *veriexec_fpops_lookup(const char *);
static void veriexec_file_free(struct veriexec_file_entry *);
static unsigned int veriexec_tablecount = 0;
/*
* Veriexec operations global lock - most ops hold this as a read
* lock, it is upgraded to a write lock when destroying veriexec file
* table entries.
*/
static krwlock_t veriexec_op_lock;
/*
* Sysctl helper routine for Veriexec.
*/
static int
sysctl_kern_veriexec(SYSCTLFN_ARGS)
{
int newval, error;
int *var = NULL, raise_only = 0;
struct sysctlnode node;
node = *rnode;
if (strcmp(rnode->sysctl_name, "strict") == 0) {
raise_only = 1;
var = &veriexec_strict;
} else if (strcmp(rnode->sysctl_name, "algorithms") == 0) {
node.sysctl_data = veriexec_fp_names;
node.sysctl_size = strlen(veriexec_fp_names) + 1;
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
} else {
return (EINVAL);
}
newval = *var;
node.sysctl_data = &newval;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL) {
return (error);
}
if (raise_only && (newval < *var))
return (EPERM);
*var = newval;
return (error);
}
SYSCTL_SETUP(sysctl_kern_veriexec_setup, "sysctl kern.veriexec setup")
{
const struct sysctlnode *rnode = NULL;
sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "kern", NULL,
NULL, 0, NULL, 0,
CTL_KERN, CTL_EOL);
sysctl_createv(clog, 0, &rnode, &rnode,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "veriexec",
SYSCTL_DESCR("Veriexec"),
NULL, 0, NULL, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &rnode, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "verbose",
SYSCTL_DESCR("Veriexec verbose level"),
NULL, 0, &veriexec_verbose, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &rnode, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "strict",
SYSCTL_DESCR("Veriexec strict level"),
sysctl_kern_veriexec, 0, NULL, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &rnode, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "algorithms",
SYSCTL_DESCR("Veriexec supported hashing "
"algorithms"),
sysctl_kern_veriexec, 0, NULL, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &rnode, &veriexec_count_node,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "count",
SYSCTL_DESCR("Number of fingerprints on mount(s)"),
NULL, 0, NULL, 0,
CTL_CREATE, CTL_EOL);
}
/*
* Add ops to the fignerprint ops vector list.
*/
int
veriexec_fpops_add(const char *fp_type, size_t hash_len, size_t ctx_size,
veriexec_fpop_init_t init, veriexec_fpop_update_t update,
veriexec_fpop_final_t final)
{
struct veriexec_fpops *ops;
/* Sanity check all parameters. */
if ((fp_type == NULL) || (hash_len == 0) || (ctx_size == 0) ||
(init == NULL) || (update == NULL) || (final == NULL))
return (EFAULT);
if (veriexec_fpops_lookup(fp_type) != NULL)
return (EEXIST);
ops = kmem_alloc(sizeof(*ops), KM_SLEEP);
ops->type = fp_type;
ops->hash_len = hash_len;
ops->context_size = ctx_size;
ops->init = init;
ops->update = update;
ops->final = final;
LIST_INSERT_HEAD(&veriexec_fpops_list, ops, entries);
/*
* If we don't have space for any names, allocate enough for six
* which should be sufficient. (it's also enough for all algorithms
* we can support at the moment)
*/
if (veriexec_fp_names == NULL) {
veriexec_name_max = 64;
veriexec_fp_names = kmem_zalloc(veriexec_name_max, KM_SLEEP);
}
/*
* If we're running out of space for storing supported algorithms,
* extend the buffer with space for four names.
*/
while (veriexec_name_max - (strlen(veriexec_fp_names) + 1) <
strlen(fp_type)) {
char *newp;
unsigned int new_max;
/* Add space for four algorithm names. */
new_max = veriexec_name_max + 64;
newp = kmem_zalloc(new_max, KM_SLEEP);
strlcpy(newp, veriexec_fp_names, new_max);
kmem_free(veriexec_fp_names, veriexec_name_max);
veriexec_fp_names = newp;
veriexec_name_max = new_max;
}
if (*veriexec_fp_names != '\0')
strlcat(veriexec_fp_names, " ", veriexec_name_max);
strlcat(veriexec_fp_names, fp_type, veriexec_name_max);
return (0);
}
static void
veriexec_mountspecific_dtor(void *v)
{
struct veriexec_table_entry *vte = v;
if (vte == NULL) {
return;
}
sysctl_free(__UNCONST(vte->vte_node));
veriexec_tablecount--;
kmem_free(vte, sizeof(*vte));
}
/*
* Initialise Veriexec.
*/
void
veriexec_init(void)
{
int error;
/* Register a fileassoc for Veriexec. */
error = fileassoc_register("veriexec",
(fileassoc_cleanup_cb_t)veriexec_file_free, &veriexec_hook);
if (error)
panic("Veriexec: Can't register fileassoc: error=%d", error);
/* Register listener to handle raw disk access. */
if (kauth_listen_scope(KAUTH_SCOPE_DEVICE, veriexec_raw_cb, NULL) ==
NULL)
panic("Veriexec: Can't listen on device scope");
error = mount_specific_key_create(&veriexec_mountspecific_key,
veriexec_mountspecific_dtor);
if (error)
panic("Veriexec: Can't create mountspecific key");
rw_init(&veriexec_op_lock);
#define FPOPS_ADD(a, b, c, d, e, f) \
veriexec_fpops_add(a, b, c, (veriexec_fpop_init_t)d, \
(veriexec_fpop_update_t)e, (veriexec_fpop_final_t)f)
#ifdef VERIFIED_EXEC_FP_RMD160
FPOPS_ADD("RMD160", RMD160_DIGEST_LENGTH, sizeof(RMD160_CTX),
RMD160Init, RMD160Update, RMD160Final);
#endif /* VERIFIED_EXEC_FP_RMD160 */
#ifdef VERIFIED_EXEC_FP_SHA256
FPOPS_ADD("SHA256", SHA256_DIGEST_LENGTH, sizeof(SHA256_CTX),
SHA256_Init, SHA256_Update, SHA256_Final);
#endif /* VERIFIED_EXEC_FP_SHA256 */
#ifdef VERIFIED_EXEC_FP_SHA384
FPOPS_ADD("SHA384", SHA384_DIGEST_LENGTH, sizeof(SHA384_CTX),
SHA384_Init, SHA384_Update, SHA384_Final);
#endif /* VERIFIED_EXEC_FP_SHA384 */
#ifdef VERIFIED_EXEC_FP_SHA512
FPOPS_ADD("SHA512", SHA512_DIGEST_LENGTH, sizeof(SHA512_CTX),
SHA512_Init, SHA512_Update, SHA512_Final);
#endif /* VERIFIED_EXEC_FP_SHA512 */
#ifdef VERIFIED_EXEC_FP_SHA1
FPOPS_ADD("SHA1", SHA1_DIGEST_LENGTH, sizeof(SHA1_CTX),
SHA1Init, SHA1Update, SHA1Final);
#endif /* VERIFIED_EXEC_FP_SHA1 */
#ifdef VERIFIED_EXEC_FP_MD5
FPOPS_ADD("MD5", MD5_DIGEST_LENGTH, sizeof(MD5_CTX),
MD5Init, MD5Update, MD5Final);
#endif /* VERIFIED_EXEC_FP_MD5 */
#undef FPOPS_ADD
}
static struct veriexec_fpops *
veriexec_fpops_lookup(const char *name)
{
struct veriexec_fpops *ops;
if (name == NULL)
return (NULL);
LIST_FOREACH(ops, &veriexec_fpops_list, entries) {
if (strcasecmp(name, ops->type) == 0)
return (ops);
}
return (NULL);
}
/*
* Calculate fingerprint. Information on hash length and routines used is
* extracted from veriexec_hash_list according to the hash type.
*
* NOTE: vfe is assumed to be locked for writing on entry.
*/
static int
veriexec_fp_calc(struct lwp *l, struct vnode *vp, int lock_state,
struct veriexec_file_entry *vfe, u_char *fp)
{
struct vattr va;
void *ctx, *page_ctx;
u_char *buf, *page_fp;
off_t offset, len;
size_t resid, npages;
int error, do_perpage, pagen;
error = VOP_GETATTR(vp, &va, l->l_cred);
if (error)
return (error);
#ifdef notyet /* XXX - for now */
if ((vfe->type & VERIEXEC_UNTRUSTED) &&
(vfe->page_fp_status == PAGE_FP_NONE))
do_perpage = 1;
else
#endif /* notyet */
do_perpage = 0;
ctx = kmem_alloc(vfe->ops->context_size, KM_SLEEP);
buf = kmem_alloc(PAGE_SIZE, KM_SLEEP);
page_ctx = NULL;
page_fp = NULL;
npages = 0;
if (do_perpage) {
npages = (va.va_size >> PAGE_SHIFT) + 1;
page_fp = kmem_alloc(vfe->ops->hash_len * npages, KM_SLEEP);
vfe->page_fp = page_fp;
page_ctx = kmem_alloc(vfe->ops->context_size, KM_SLEEP);
}
(vfe->ops->init)(ctx);
len = 0;
error = 0;
pagen = 0;
for (offset = 0; offset < va.va_size; offset += PAGE_SIZE) {
len = ((va.va_size - offset) < PAGE_SIZE) ?
(va.va_size - offset) : PAGE_SIZE;
error = vn_rdwr(UIO_READ, vp, buf, len, offset,
UIO_SYSSPACE,
((lock_state == VERIEXEC_LOCKED)?
IO_NODELOCKED : 0),
l->l_cred, &resid, NULL);
if (error) {
if (do_perpage) {
kmem_free(vfe->page_fp,
vfe->ops->hash_len * npages);
vfe->page_fp = NULL;
}
goto bad;
}
(vfe->ops->update)(ctx, buf, (unsigned int) len);
if (do_perpage) {
(vfe->ops->init)(page_ctx);
(vfe->ops->update)(page_ctx, buf, (unsigned int)len);
(vfe->ops->final)(page_fp, page_ctx);
if (veriexec_verbose >= 2) {
int i;
printf("hash for page %d: ", pagen);
for (i = 0; i < vfe->ops->hash_len; i++)
printf("%02x", page_fp[i]);
printf("\n");
}
page_fp += vfe->ops->hash_len;
pagen++;
}
if (len != PAGE_SIZE)
break;
}
(vfe->ops->final)(fp, ctx);
if (do_perpage) {
vfe->last_page_size = len;
vfe->page_fp_status = PAGE_FP_READY;
vfe->npages = npages;
}
bad:
if (do_perpage)
kmem_free(page_ctx, vfe->ops->context_size);
kmem_free(ctx, vfe->ops->context_size);
kmem_free(buf, PAGE_SIZE);
return (error);
}
/* Compare two fingerprints of the same type. */
static int
veriexec_fp_cmp(struct veriexec_fpops *ops, u_char *fp1, u_char *fp2)
{
if (veriexec_verbose >= 2) {
int i;
printf("comparing hashes...\n");
printf("fp1: ");
for (i = 0; i < ops->hash_len; i++) {
printf("%02x", fp1[i]);
}
printf("\nfp2: ");
for (i = 0; i < ops->hash_len; i++) {
printf("%02x", fp2[i]);
}
printf("\n");
}
return (memcmp(fp1, fp2, ops->hash_len));
}
static struct veriexec_table_entry *
veriexec_table_lookup(struct mount *mp)
{
/* XXX: From raidframe init */
if (mp == NULL)
return NULL;
return mount_getspecific(mp, veriexec_mountspecific_key);
}
static struct veriexec_file_entry *
veriexec_get(struct vnode *vp)
{
return (fileassoc_lookup(vp, veriexec_hook));
}
bool
veriexec_lookup(struct vnode *vp)
{
return (veriexec_get(vp) == NULL ? false : true);
}
/*
* Routine for maintaining mostly consistent message formats in Veriexec.
*/
static void
veriexec_file_report(struct veriexec_file_entry *vfe, const u_char *msg,
const u_char *filename, struct lwp *l, int f)
{
if (msg == NULL)
return;
if (vfe != NULL && vfe->filename != NULL)
filename = vfe->filename;
if (filename == NULL)
return;
if (((f & REPORT_LOGMASK) >> 1) <= veriexec_verbose) {
if (!(f & REPORT_ALARM) || (l == NULL))
log(LOG_NOTICE, "Veriexec: %s [%s]\n", msg,
filename);
else
log(LOG_ALERT, "Veriexec: %s [%s, prog=%s pid=%u, "
"uid=%u, gid=%u]\n", msg, filename,
l->l_proc->p_comm, l->l_proc->p_pid,
kauth_cred_getuid(l->l_cred),
kauth_cred_getgid(l->l_cred));
}
if (f & REPORT_PANIC)
panic("Veriexec: Unrecoverable error.");
}
/*
* Verify the fingerprint of the given file. If we're called directly from
* sys_execve(), 'flag' will be VERIEXEC_DIRECT. If we're called from
* exec_script(), 'flag' will be VERIEXEC_INDIRECT. If we are called from
* vn_open(), 'flag' will be VERIEXEC_FILE.
*
* NOTE: The veriexec file entry pointer (vfep) will be returned LOCKED
* on no error.
*/
static int
veriexec_file_verify(struct lwp *l, struct vnode *vp, const u_char *name,
int flag, int lockstate, struct veriexec_file_entry **vfep)
{
struct veriexec_file_entry *vfe;
int error;
#define VFE_NEEDS_EVAL(vfe) ((vfe->status == FINGERPRINT_NOTEVAL) || \
(vfe->type & VERIEXEC_UNTRUSTED))
if (vfep != NULL)
*vfep = NULL;
if (vp->v_type != VREG)
return (0);
if (lockstate == VERIEXEC_UNLOCKED)
rw_enter(&veriexec_op_lock, RW_READER);
/* Lookup veriexec table entry, save pointer if requested. */
vfe = veriexec_get(vp);
if (vfep != NULL)
*vfep = vfe;
if (vfe == NULL)
goto out;
error = 0;
/*
* Grab the lock for the entry, if we need to do an evaluation
* then the lock is a write lock, after we have the write
* lock, check if we really need it - some other thread may
* have already done the work for us.
*/
if (VFE_NEEDS_EVAL(vfe)) {
rw_enter(&vfe->lock, RW_WRITER);
if (!VFE_NEEDS_EVAL(vfe))
rw_downgrade(&vfe->lock);
} else
rw_enter(&vfe->lock, RW_READER);
/* Evaluate fingerprint if needed. */
if (VFE_NEEDS_EVAL(vfe)) {
u_char *digest;
/* Calculate fingerprint for on-disk file. */
digest = kmem_zalloc(vfe->ops->hash_len, KM_SLEEP);
error = veriexec_fp_calc(l, vp, lockstate, vfe, digest);
if (error) {
veriexec_file_report(vfe, "Fingerprint calculation error.",
name, NULL, REPORT_ALWAYS);
kmem_free(digest, vfe->ops->hash_len);
rw_exit(&vfe->lock);
if (lockstate == VERIEXEC_UNLOCKED)
rw_exit(&veriexec_op_lock);
return (error);
}
/* Compare fingerprint with loaded data. */
if (veriexec_fp_cmp(vfe->ops, vfe->fp, digest) == 0)
vfe->status = FINGERPRINT_VALID;
else
vfe->status = FINGERPRINT_NOMATCH;
kmem_free(digest, vfe->ops->hash_len);
rw_downgrade(&vfe->lock);
}
if (!(vfe->type & flag)) {
veriexec_file_report(vfe, "Incorrect access type.", name, l,
REPORT_ALWAYS|REPORT_ALARM);
/* IPS mode: Enforce access type. */
if (veriexec_strict >= VERIEXEC_IPS) {
rw_exit(&vfe->lock);
if (lockstate == VERIEXEC_UNLOCKED)
rw_exit(&veriexec_op_lock);
return (EPERM);
}
}
out:
/* No entry in the veriexec tables. */
if (vfe == NULL) {
veriexec_file_report(NULL, "No entry.", name,
l, REPORT_VERBOSE);
if (lockstate == VERIEXEC_UNLOCKED)
rw_exit(&veriexec_op_lock);
/*
* Lockdown mode: Deny access to non-monitored files.
* IPS mode: Deny execution of non-monitored files.
*/
if ((veriexec_strict >= VERIEXEC_LOCKDOWN) ||
((veriexec_strict >= VERIEXEC_IPS) &&
(flag != VERIEXEC_FILE)))
return (EPERM);
return (0);
}
switch (vfe->status) {
case FINGERPRINT_NOTEVAL:
/* Should not happen. */
rw_exit(&vfe->lock);
if (lockstate == VERIEXEC_UNLOCKED)
rw_exit(&veriexec_op_lock);
veriexec_file_report(vfe, "Not-evaluated status "
"post evaluation; inconsistency detected.", name,
NULL, REPORT_ALWAYS|REPORT_PANIC);
/*NOTREACHED*/
case FINGERPRINT_VALID:
/* Valid fingerprint. */
veriexec_file_report(vfe, "Match.", name, NULL,
REPORT_VERBOSE);
break;
case FINGERPRINT_NOMATCH:
/* Fingerprint mismatch. */
veriexec_file_report(vfe, "Mismatch.", name,
NULL, REPORT_ALWAYS|REPORT_ALARM);
/* IDS mode: Deny access on fingerprint mismatch. */
if (veriexec_strict >= VERIEXEC_IDS) {
rw_exit(&vfe->lock);
error = EPERM;
}
break;
default:
/* Should never happen. */
rw_exit(&vfe->lock);
if (lockstate == VERIEXEC_UNLOCKED)
rw_exit(&veriexec_op_lock);
veriexec_file_report(vfe, "Invalid status "
"post evaluation.", name, NULL, REPORT_ALWAYS|REPORT_PANIC);
}
if (lockstate == VERIEXEC_UNLOCKED)
rw_exit(&veriexec_op_lock);
return (error);
}
int
veriexec_verify(struct lwp *l, struct vnode *vp, const u_char *name, int flag,
bool *found)
{
struct veriexec_file_entry *vfe;
int r;
if (veriexec_bypass && (veriexec_strict == VERIEXEC_LEARNING))
return 0;
r = veriexec_file_verify(l, vp, name, flag, VERIEXEC_UNLOCKED, &vfe);
if ((r == 0) && (vfe != NULL))
rw_exit(&vfe->lock);
if (found != NULL)
*found = (vfe != NULL) ? true : false;
return (r);
}
#ifdef notyet
/*
* Evaluate per-page fingerprints.
*/
int
veriexec_page_verify(struct veriexec_file_entry *vfe, struct vm_page *pg,
size_t idx, struct lwp *l)
{
void *ctx;
u_char *fp;
u_char *page_fp;
int error;
vaddr_t kva;
if (vfe->page_fp_status == PAGE_FP_NONE)
return (0);
if (vfe->page_fp_status == PAGE_FP_FAIL)
return (EPERM);
if (idx >= vfe->npages)
return (0);
ctx = kmem_alloc(vfe->ops->context_size, KM_SLEEP);
fp = kmem_alloc(vfe->ops->hash_len, KM_SLEEP);
kva = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
pmap_kenter_pa(kva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
pmap_update(pmap_kernel());
page_fp = (u_char *) vfe->page_fp + (vfe->ops->hash_len * idx);
(vfe->ops->init)(ctx);
(vfe->ops->update)(ctx, (void *) kva,
((vfe->npages - 1) == idx) ? vfe->last_page_size
: PAGE_SIZE);
(vfe->ops->final)(fp, ctx);
pmap_kremove(kva, PAGE_SIZE);
pmap_update(pmap_kernel());
uvm_km_free(kernel_map, kva, PAGE_SIZE, UVM_KMF_VAONLY);
error = veriexec_fp_cmp(vfe->ops, page_fp, fp);
if (error) {
const char *msg;
if (veriexec_strict > VERIEXEC_LEARNING) {
msg = "Pages modified: Killing process.";
} else {
msg = "Pages modified.";
error = 0;
}
veriexec_file_report(msg, "[page_in]", l,
REPORT_ALWAYS|REPORT_ALARM);
if (error) {
ksiginfo_t ksi;
KSI_INIT(&ksi);
ksi.ksi_signo = SIGKILL;
ksi.ksi_code = SI_NOINFO;
ksi.ksi_pid = l->l_proc->p_pid;
ksi.ksi_uid = 0;
kpsignal(l->l_proc, &ksi, NULL);
}
}
kmem_free(ctx, vfe->ops->context_size);
kmem_free(fp, vfe->ops->hash_len);
return (error);
}
#endif /* notyet */
/*
* Veriexec remove policy code.
*/
int
veriexec_removechk(struct lwp *l, struct vnode *vp, const char *pathbuf)
{
struct veriexec_file_entry *vfe;
int error;
if (veriexec_bypass && (veriexec_strict == VERIEXEC_LEARNING))
return 0;
rw_enter(&veriexec_op_lock, RW_READER);
vfe = veriexec_get(vp);
rw_exit(&veriexec_op_lock);
if (vfe == NULL) {
/* Lockdown mode: Deny access to non-monitored files. */
if (veriexec_strict >= VERIEXEC_LOCKDOWN)
return (EPERM);
return (0);
}
veriexec_file_report(vfe, "Remove request.", pathbuf, l,
REPORT_ALWAYS|REPORT_ALARM);
/* IDS mode: Deny removal of monitored files. */
if (veriexec_strict >= VERIEXEC_IDS)
error = EPERM;
else
error = veriexec_file_delete(l, vp);
return error;
}
/*
* Veriexec rename policy.
*
* XXX: Once there's a way to hook after a successful rename, it would be
* XXX: nice to update vfe->filename to the new name if it's not NULL and
* XXX: the new name is absolute (ie., starts with a slash).
*/
int
veriexec_renamechk(struct lwp *l, struct vnode *fromvp, const char *fromname,
struct vnode *tovp, const char *toname)
{
struct veriexec_file_entry *vfe, *tvfe;
if (veriexec_bypass && (veriexec_strict == VERIEXEC_LEARNING))
return 0;
rw_enter(&veriexec_op_lock, RW_READER);
if (veriexec_strict >= VERIEXEC_LOCKDOWN) {
log(LOG_ALERT, "Veriexec: Preventing rename of `%s' to "
"`%s', uid=%u, pid=%u: Lockdown mode.\n", fromname, toname,
kauth_cred_geteuid(l->l_cred), l->l_proc->p_pid);
rw_exit(&veriexec_op_lock);
return (EPERM);
}
vfe = veriexec_get(fromvp);
tvfe = NULL;
if (tovp != NULL)
tvfe = veriexec_get(tovp);
if ((vfe != NULL) || (tvfe != NULL)) {
if (veriexec_strict >= VERIEXEC_IPS) {
log(LOG_ALERT, "Veriexec: Preventing rename of `%s' "
"to `%s', uid=%u, pid=%u: IPS mode, %s "
"monitored.\n", fromname, toname,
kauth_cred_geteuid(l->l_cred),
l->l_proc->p_pid, (vfe != NULL && tvfe != NULL) ?
"files" : "file");
rw_exit(&veriexec_op_lock);
return (EPERM);
}
/*
* Monitored file is renamed; filename no longer relevant.
*
* XXX: We could keep the buffer, and when (and if) updating the
* XXX: filename post-rename, re-allocate it only if it's not
* XXX: big enough for the new filename.
*/
if (vfe != NULL) {
/* XXXX get write lock on vfe here? */
VERIEXEC_RW_UPGRADE(&veriexec_op_lock);
/* once we have the op lock in write mode
* there should be no locks on any file
* entries so we can destroy the object.
*/
if (vfe->filename_len > 0)
kmem_free(vfe->filename, vfe->filename_len);
vfe->filename = NULL;
vfe->filename_len = 0;
rw_downgrade(&veriexec_op_lock);
}
log(LOG_NOTICE, "Veriexec: %s file `%s' renamed to "
"%s file `%s', uid=%u, pid=%u.\n", (vfe != NULL) ?
"Monitored" : "Non-monitored", fromname, (tvfe != NULL) ?
"monitored" : "non-monitored", toname,
kauth_cred_geteuid(l->l_cred), l->l_proc->p_pid);
rw_exit(&veriexec_op_lock);
/*
* Monitored file is overwritten. Remove the entry.
*/
if (tvfe != NULL)
(void)veriexec_file_delete(l, tovp);
} else
rw_exit(&veriexec_op_lock);
return (0);
}
static void
veriexec_file_free(struct veriexec_file_entry *vfe)
{
if (vfe != NULL) {
if (vfe->fp != NULL)
kmem_free(vfe->fp, vfe->ops->hash_len);
if (vfe->page_fp != NULL)
kmem_free(vfe->page_fp, vfe->ops->hash_len);
if (vfe->filename != NULL)
kmem_free(vfe->filename, vfe->filename_len);
rw_destroy(&vfe->lock);
kmem_free(vfe, sizeof(*vfe));
}
}
static void
veriexec_file_purge(struct veriexec_file_entry *vfe, int have_lock)
{
if (vfe == NULL)
return;
if (have_lock == VERIEXEC_UNLOCKED)
rw_enter(&vfe->lock, RW_WRITER);
else
VERIEXEC_RW_UPGRADE(&vfe->lock);
vfe->status = FINGERPRINT_NOTEVAL;
if (have_lock == VERIEXEC_UNLOCKED)
rw_exit(&vfe->lock);
else
rw_downgrade(&vfe->lock);
}
static void
veriexec_file_purge_cb(struct veriexec_file_entry *vfe, void *cookie)
{
veriexec_file_purge(vfe, VERIEXEC_UNLOCKED);
}
/*
* Invalidate a Veriexec file entry.
* XXX: This should be updated when per-page fingerprints are added.
*/
void
veriexec_purge(struct vnode *vp)
{
rw_enter(&veriexec_op_lock, RW_READER);
veriexec_file_purge(veriexec_get(vp), VERIEXEC_UNLOCKED);
rw_exit(&veriexec_op_lock);
}
/*
* Enforce raw disk access policy.
*
* IDS mode: Invalidate fingerprints on a mount if it's opened for writing.
* IPS mode: Don't allow raw writing to disks we monitor.
* Lockdown mode: Don't allow raw writing to all disks.
*
* XXX: This is bogus. There's an obvious race condition between the time
* XXX: the disk is open for writing, in which an attacker can access a
* XXX: monitored file to get its signature cached again, and when the raw
* XXX: file is overwritten on disk.
* XXX:
* XXX: To solve this, we need something like the following:
* XXX: open raw disk:
* XXX: - raise refcount,
* XXX: - invalidate fingerprints,
* XXX: - mark all entries for that disk with "no cache" flag
* XXX:
* XXX: veriexec_verify:
* XXX: - if "no cache", don't cache evaluation result
* XXX:
* XXX: close raw disk:
* XXX: - lower refcount,
* XXX: - if refcount == 0, remove "no cache" flag from all entries
*/
static int
veriexec_raw_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
void *arg0, void *arg1, void *arg2, void *arg3)
{
int result;
enum kauth_device_req req;
struct veriexec_table_entry *vte;
result = KAUTH_RESULT_DENY;
req = (enum kauth_device_req)arg0;
switch (action) {
case KAUTH_DEVICE_RAWIO_SPEC: {
struct vnode *vp, *bvp;
int error;
if (req == KAUTH_REQ_DEVICE_RAWIO_SPEC_READ) {
result = KAUTH_RESULT_DEFER;
break;
}
vp = arg1;
KASSERT(vp != NULL);
/* Handle /dev/mem and /dev/kmem. */
if (iskmemvp(vp)) {
if (veriexec_strict < VERIEXEC_IPS)
result = KAUTH_RESULT_DEFER;
break;
}
error = rawdev_mounted(vp, &bvp);
if (error == EINVAL) {
result = KAUTH_RESULT_DEFER;
break;
}
/*
* XXX: See vfs_mountedon() comment in rawdev_mounted().
*/
vte = veriexec_table_lookup(bvp->v_mount);
if (vte == NULL) {
result = KAUTH_RESULT_DEFER;
break;
}
switch (veriexec_strict) {
case VERIEXEC_LEARNING:
case VERIEXEC_IDS:
result = KAUTH_RESULT_DEFER;
rw_enter(&veriexec_op_lock, RW_WRITER);
fileassoc_table_run(bvp->v_mount, veriexec_hook,
(fileassoc_cb_t)veriexec_file_purge_cb, NULL);
rw_exit(&veriexec_op_lock);
break;
case VERIEXEC_IPS:
result = KAUTH_RESULT_DENY;
break;
case VERIEXEC_LOCKDOWN:
result = KAUTH_RESULT_DENY;
break;
}
break;
}
case KAUTH_DEVICE_RAWIO_PASSTHRU:
/* XXX What can we do here? */
if (veriexec_strict < VERIEXEC_IPS)
result = KAUTH_RESULT_DEFER;
break;
default:
result = KAUTH_RESULT_DEFER;
break;
}
return (result);
}
/*
* Create a new Veriexec table.
*/
static struct veriexec_table_entry *
veriexec_table_add(struct lwp *l, struct mount *mp)
{
struct veriexec_table_entry *vte;
u_char buf[16];
vte = kmem_zalloc(sizeof(*vte), KM_SLEEP);
mount_setspecific(mp, veriexec_mountspecific_key, vte);
snprintf(buf, sizeof(buf), "table%u", veriexec_tablecount++);
sysctl_createv(NULL, 0, &veriexec_count_node, &vte->vte_node,
0, CTLTYPE_NODE, buf, NULL, NULL, 0, NULL,
0, CTL_CREATE, CTL_EOL);
sysctl_createv(NULL, 0, &vte->vte_node, NULL,
CTLFLAG_READONLY, CTLTYPE_STRING, "mntpt",
NULL, NULL, 0, mp->mnt_stat.f_mntonname,
0, CTL_CREATE, CTL_EOL);
sysctl_createv(NULL, 0, &vte->vte_node, NULL,
CTLFLAG_READONLY, CTLTYPE_STRING, "fstype",
NULL, NULL, 0, mp->mnt_stat.f_fstypename,
0, CTL_CREATE, CTL_EOL);
sysctl_createv(NULL, 0, &vte->vte_node, NULL,
CTLFLAG_READONLY, CTLTYPE_QUAD, "nentries",
NULL, NULL, 0, &vte->vte_count, 0, CTL_CREATE, CTL_EOL);
return (vte);
}
/*
* Add a file to be monitored by Veriexec.
*
* Expected elements in dict: file, fp, fp-type, entry-type.
*/
int
veriexec_file_add(struct lwp *l, prop_dictionary_t dict)
{
struct veriexec_table_entry *vte;
struct veriexec_file_entry *vfe = NULL, *hh;
struct vnode *vp;
const char *file, *fp_type;
int error;
if (!prop_dictionary_get_cstring_nocopy(dict, "file", &file))
return (EINVAL);
error = namei_simple_kernel(file, NSM_FOLLOW_NOEMULROOT, &vp);
if (error)
return (error);
/* Add only regular files. */
if (vp->v_type != VREG) {
log(LOG_ERR, "Veriexec: Not adding `%s': Not a regular file.\n",
file);
error = EBADF;
goto out;
}
vfe = kmem_zalloc(sizeof(*vfe), KM_SLEEP);
rw_init(&vfe->lock);
/* Lookup fingerprint hashing algorithm. */
fp_type = prop_string_cstring_nocopy(prop_dictionary_get(dict,
"fp-type"));
if ((vfe->ops = veriexec_fpops_lookup(fp_type)) == NULL) {
log(LOG_ERR, "Veriexec: Invalid or unknown fingerprint type "
"`%s' for file `%s'.\n", fp_type, file);
error = EOPNOTSUPP;
goto out;
}
if (prop_data_size(prop_dictionary_get(dict, "fp")) !=
vfe->ops->hash_len) {
log(LOG_ERR, "Veriexec: Bad fingerprint length for `%s'.\n",
file);
error = EINVAL;
goto out;
}
vfe->fp = kmem_alloc(vfe->ops->hash_len, KM_SLEEP);
memcpy(vfe->fp, prop_data_data_nocopy(prop_dictionary_get(dict, "fp")),
vfe->ops->hash_len);
rw_enter(&veriexec_op_lock, RW_WRITER);
/*
* See if we already have an entry for this file. If we do, then
* let the user know and silently pretend to succeed.
*/
hh = veriexec_get(vp);
if (hh != NULL) {
bool fp_mismatch;
if (strcmp(vfe->ops->type, fp_type) ||
memcmp(hh->fp, vfe->fp, hh->ops->hash_len))
fp_mismatch = true;
else
fp_mismatch = false;
if ((veriexec_verbose >= 1) || fp_mismatch)
log(LOG_NOTICE, "Veriexec: Duplicate entry for `%s' "
"ignored. (%s fingerprint)\n", file,
fp_mismatch ? "different" : "same");
veriexec_file_free(vfe);
/* XXX Should this be EEXIST if fp_mismatch is true? */
error = 0;
goto unlock_out;
}
/* Continue entry initialization. */
if (prop_dictionary_get_uint8(dict, "entry-type", &vfe->type) == FALSE)
vfe->type = 0;
else {
uint8_t extra_flags;
extra_flags = vfe->type & ~(VERIEXEC_DIRECT |
VERIEXEC_INDIRECT | VERIEXEC_FILE | VERIEXEC_UNTRUSTED);
if (extra_flags) {
log(LOG_NOTICE, "Veriexec: Contaminated flags `0x%x' "
"for `%s', skipping.\n", extra_flags, file);
error = EINVAL;
goto unlock_out;
}
}
if (!(vfe->type & (VERIEXEC_DIRECT | VERIEXEC_INDIRECT |
VERIEXEC_FILE)))
vfe->type |= VERIEXEC_DIRECT;
vfe->status = FINGERPRINT_NOTEVAL;
if (prop_bool_true(prop_dictionary_get(dict, "keep-filename"))) {
vfe->filename_len = strlen(file) + 1;
vfe->filename = kmem_alloc(vfe->filename_len, KM_SLEEP);
strlcpy(vfe->filename, file, vfe->filename_len);
} else
vfe->filename = NULL;
vfe->page_fp = NULL;
vfe->page_fp_status = PAGE_FP_NONE;
vfe->npages = 0;
vfe->last_page_size = 0;
vte = veriexec_table_lookup(vp->v_mount);
if (vte == NULL)
vte = veriexec_table_add(l, vp->v_mount);
/* XXX if we bail below this, we might want to gc newly created vtes. */
error = fileassoc_add(vp, veriexec_hook, vfe);
if (error)
goto unlock_out;
vte->vte_count++;
if (prop_bool_true(prop_dictionary_get(dict, "eval-on-load")) ||
(vfe->type & VERIEXEC_UNTRUSTED)) {
u_char *digest;
digest = kmem_zalloc(vfe->ops->hash_len, KM_SLEEP);
error = veriexec_fp_calc(l, vp, VERIEXEC_UNLOCKED,
vfe, digest);
if (error) {
kmem_free(digest, vfe->ops->hash_len);
goto unlock_out;
}
if (veriexec_fp_cmp(vfe->ops, vfe->fp, digest) == 0)
vfe->status = FINGERPRINT_VALID;
else
vfe->status = FINGERPRINT_NOMATCH;
kmem_free(digest, vfe->ops->hash_len);
}
veriexec_file_report(NULL, "New entry.", file, NULL, REPORT_DEBUG);
veriexec_bypass = 0;
unlock_out:
rw_exit(&veriexec_op_lock);
out:
vrele(vp);
if (error)
veriexec_file_free(vfe);
return (error);
}
int
veriexec_table_delete(struct lwp *l, struct mount *mp) {
struct veriexec_table_entry *vte;
vte = veriexec_table_lookup(mp);
if (vte == NULL)
return (ENOENT);
veriexec_mountspecific_dtor(vte);
mount_setspecific(mp, veriexec_mountspecific_key, NULL);
return (fileassoc_table_clear(mp, veriexec_hook));
}
int
veriexec_file_delete(struct lwp *l, struct vnode *vp) {
struct veriexec_table_entry *vte;
int error;
vte = veriexec_table_lookup(vp->v_mount);
if (vte == NULL)
return (ENOENT);
rw_enter(&veriexec_op_lock, RW_WRITER);
error = fileassoc_clear(vp, veriexec_hook);
rw_exit(&veriexec_op_lock);
if (!error)
vte->vte_count--;
return (error);
}
/*
* Convert Veriexec entry data to a dictionary readable by userland tools.
*/
static void
veriexec_file_convert(struct veriexec_file_entry *vfe, prop_dictionary_t rdict)
{
if (vfe->filename)
prop_dictionary_set(rdict, "file",
prop_string_create_cstring(vfe->filename));
prop_dictionary_set_uint8(rdict, "entry-type", vfe->type);
prop_dictionary_set_uint8(rdict, "status", vfe->status);
prop_dictionary_set(rdict, "fp-type",
prop_string_create_cstring(vfe->ops->type));
prop_dictionary_set(rdict, "fp",
prop_data_create_data(vfe->fp, vfe->ops->hash_len));
}
int
veriexec_convert(struct vnode *vp, prop_dictionary_t rdict)
{
struct veriexec_file_entry *vfe;
rw_enter(&veriexec_op_lock, RW_READER);
vfe = veriexec_get(vp);
if (vfe == NULL) {
rw_exit(&veriexec_op_lock);
return (ENOENT);
}
rw_enter(&vfe->lock, RW_READER);
veriexec_file_convert(vfe, rdict);
rw_exit(&vfe->lock);
rw_exit(&veriexec_op_lock);
return (0);
}
int
veriexec_unmountchk(struct mount *mp)
{
int error;
if ((veriexec_bypass && (veriexec_strict == VERIEXEC_LEARNING))
|| doing_shutdown)
return (0);
rw_enter(&veriexec_op_lock, RW_READER);
switch (veriexec_strict) {
case VERIEXEC_LEARNING:
error = 0;
break;
case VERIEXEC_IDS:
if (veriexec_table_lookup(mp) != NULL) {
log(LOG_INFO, "Veriexec: IDS mode, allowing unmount "
"of \"%s\".\n", mp->mnt_stat.f_mntonname);
}
error = 0;
break;
case VERIEXEC_IPS: {
struct veriexec_table_entry *vte;
vte = veriexec_table_lookup(mp);
if ((vte != NULL) && (vte->vte_count > 0)) {
log(LOG_ALERT, "Veriexec: IPS mode, preventing"
" unmount of \"%s\" with monitored files.\n",
mp->mnt_stat.f_mntonname);
error = EPERM;
} else
error = 0;
break;
}
case VERIEXEC_LOCKDOWN:
default:
log(LOG_ALERT, "Veriexec: Lockdown mode, preventing unmount "
"of \"%s\".\n", mp->mnt_stat.f_mntonname);
error = EPERM;
break;
}
rw_exit(&veriexec_op_lock);
return (error);
}
int
veriexec_openchk(struct lwp *l, struct vnode *vp, const char *path, int fmode)
{
struct veriexec_file_entry *vfe = NULL;
int error = 0;
if (veriexec_bypass && (veriexec_strict == VERIEXEC_LEARNING))
return 0;
if (vp == NULL) {
/* If no creation requested, let this fail normally. */
if (!(fmode & O_CREAT))
goto out;
/* Lockdown mode: Prevent creation of new files. */
if (veriexec_strict >= VERIEXEC_LOCKDOWN) {
log(LOG_ALERT, "Veriexec: Preventing new file "
"creation in `%s'.\n", path);
error = EPERM;
}
goto out;
}
rw_enter(&veriexec_op_lock, RW_READER);
error = veriexec_file_verify(l, vp, path, VERIEXEC_FILE,
VERIEXEC_LOCKED, &vfe);
if (error) {
rw_exit(&veriexec_op_lock);
goto out;
}
if ((vfe != NULL) && ((fmode & FWRITE) || (fmode & O_TRUNC))) {
veriexec_file_report(vfe, "Write access request.", path, l,
REPORT_ALWAYS | REPORT_ALARM);
/* IPS mode: Deny write access to monitored files. */
if (veriexec_strict >= VERIEXEC_IPS)
error = EPERM;
else
veriexec_file_purge(vfe, VERIEXEC_LOCKED);
}
if (vfe != NULL)
rw_exit(&vfe->lock);
rw_exit(&veriexec_op_lock);
out:
return (error);
}
static void
veriexec_file_dump(struct veriexec_file_entry *vfe, prop_array_t entries)
{
prop_dictionary_t entry;
/* If we don't have a filename, this is meaningless. */
if (vfe->filename == NULL)
return;
entry = prop_dictionary_create();
veriexec_file_convert(vfe, entry);
prop_array_add(entries, entry);
}
int
veriexec_dump(struct lwp *l, prop_array_t rarray)
{
struct mount *mp, *nmp;
mutex_enter(&mountlist_lock);
for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
mp = nmp) {
/* If it fails, the file-system is [being] unmounted. */
if (vfs_busy(mp, &nmp) != 0)
continue;
fileassoc_table_run(mp, veriexec_hook,
(fileassoc_cb_t)veriexec_file_dump, rarray);
vfs_unbusy(mp, false, &nmp);
}
mutex_exit(&mountlist_lock);
return (0);
}
int
veriexec_flush(struct lwp *l)
{
struct mount *mp, *nmp;
int error = 0;
mutex_enter(&mountlist_lock);
for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
mp = nmp) {
int lerror;
/* If it fails, the file-system is [being] unmounted. */
if (vfs_busy(mp, &nmp) != 0)
continue;
lerror = veriexec_table_delete(l, mp);
if (lerror && lerror != ENOENT)
error = lerror;
vfs_unbusy(mp, false, &nmp);
}
mutex_exit(&mountlist_lock);
return (error);
}