NetBSD/sys/kern/kern_sleepq.c
rmind 40cf6f3659 Remove uarea swap-out functionality:
- Addresses the issue described in PR/38828.
- Some simplification in threading and sleepq subsystems.
- Eliminates pmap_collect() and, as a side note, allows pmap optimisations.
- Eliminates XS_CTL_DATA_ONSTACK in scsipi code.
- Avoids few scans on LWP list and thus potentially long holds of proc_lock.
- Cuts ~1.5k lines of code.  Reduces amd64 kernel size by ~4k.
- Removes __SWAP_BROKEN cases.

Tested on x86, mips, acorn32 (thanks <mpumford>) and partly tested on
acorn26 (thanks to <bjh21>).

Discussed on <tech-kern>, reviewed by <ad>.
2009-10-21 21:11:57 +00:00

491 lines
11 KiB
C

/* $NetBSD: kern_sleepq.c,v 1.37 2009/10/21 21:12:06 rmind Exp $ */
/*-
* Copyright (c) 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Sleep queue implementation, used by turnstiles and general sleep/wakeup
* interfaces.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.37 2009/10/21 21:12:06 rmind Exp $");
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/cpu.h>
#include <sys/pool.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/sa.h>
#include <sys/savar.h>
#include <sys/sched.h>
#include <sys/systm.h>
#include <sys/sleepq.h>
#include <sys/ktrace.h>
#include <uvm/uvm_extern.h>
#include "opt_sa.h"
int sleepq_sigtoerror(lwp_t *, int);
/* General purpose sleep table, used by ltsleep() and condition variables. */
sleeptab_t sleeptab;
/*
* sleeptab_init:
*
* Initialize a sleep table.
*/
void
sleeptab_init(sleeptab_t *st)
{
sleepq_t *sq;
int i;
for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
sq = &st->st_queues[i].st_queue;
st->st_queues[i].st_mutex =
mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
sleepq_init(sq);
}
}
/*
* sleepq_init:
*
* Prepare a sleep queue for use.
*/
void
sleepq_init(sleepq_t *sq)
{
TAILQ_INIT(sq);
}
/*
* sleepq_remove:
*
* Remove an LWP from a sleep queue and wake it up.
*/
void
sleepq_remove(sleepq_t *sq, lwp_t *l)
{
struct schedstate_percpu *spc;
struct cpu_info *ci;
KASSERT(lwp_locked(l, NULL));
TAILQ_REMOVE(sq, l, l_sleepchain);
l->l_syncobj = &sched_syncobj;
l->l_wchan = NULL;
l->l_sleepq = NULL;
l->l_flag &= ~LW_SINTR;
ci = l->l_cpu;
spc = &ci->ci_schedstate;
/*
* If not sleeping, the LWP must have been suspended. Let whoever
* holds it stopped set it running again.
*/
if (l->l_stat != LSSLEEP) {
KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
lwp_setlock(l, spc->spc_lwplock);
return;
}
/*
* If the LWP is still on the CPU, mark it as LSONPROC. It may be
* about to call mi_switch(), in which case it will yield.
*/
if ((l->l_pflag & LP_RUNNING) != 0) {
l->l_stat = LSONPROC;
l->l_slptime = 0;
lwp_setlock(l, spc->spc_lwplock);
return;
}
/* Update sleep time delta, call the wake-up handler of scheduler */
l->l_slpticksum += (hardclock_ticks - l->l_slpticks);
sched_wakeup(l);
/* Look for a CPU to wake up */
l->l_cpu = sched_takecpu(l);
ci = l->l_cpu;
spc = &ci->ci_schedstate;
/*
* Set it running.
*/
spc_lock(ci);
lwp_setlock(l, spc->spc_mutex);
#ifdef KERN_SA
if (l->l_proc->p_sa != NULL)
sa_awaken(l);
#endif /* KERN_SA */
sched_setrunnable(l);
l->l_stat = LSRUN;
l->l_slptime = 0;
sched_enqueue(l, false);
spc_unlock(ci);
}
/*
* sleepq_insert:
*
* Insert an LWP into the sleep queue, optionally sorting by priority.
*/
inline void
sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
{
lwp_t *l2;
const int pri = lwp_eprio(l);
if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
TAILQ_FOREACH(l2, sq, l_sleepchain) {
if (lwp_eprio(l2) < pri) {
TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
return;
}
}
}
if ((sobj->sobj_flag & SOBJ_SLEEPQ_LIFO) != 0)
TAILQ_INSERT_HEAD(sq, l, l_sleepchain);
else
TAILQ_INSERT_TAIL(sq, l, l_sleepchain);
}
/*
* sleepq_enqueue:
*
* Enter an LWP into the sleep queue and prepare for sleep. The sleep
* queue must already be locked, and any interlock (such as the kernel
* lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
*/
void
sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj)
{
lwp_t *l = curlwp;
KASSERT(lwp_locked(l, NULL));
KASSERT(l->l_stat == LSONPROC);
KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
l->l_syncobj = sobj;
l->l_wchan = wchan;
l->l_sleepq = sq;
l->l_wmesg = wmesg;
l->l_slptime = 0;
l->l_stat = LSSLEEP;
l->l_sleeperr = 0;
sleepq_insert(sq, l, sobj);
/* Save the time when thread has slept */
l->l_slpticks = hardclock_ticks;
sched_slept(l);
}
/*
* sleepq_block:
*
* After any intermediate step such as releasing an interlock, switch.
* sleepq_block() may return early under exceptional conditions, for
* example if the LWP's containing process is exiting.
*/
int
sleepq_block(int timo, bool catch)
{
int error = 0, sig;
struct proc *p;
lwp_t *l = curlwp;
bool early = false;
int biglocks = l->l_biglocks;
ktrcsw(1, 0);
/*
* If sleeping interruptably, check for pending signals, exits or
* core dump events.
*/
if (catch) {
l->l_flag |= LW_SINTR;
if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
l->l_flag &= ~LW_CANCELLED;
error = EINTR;
early = true;
} else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
early = true;
}
if (early) {
/* lwp_unsleep() will release the lock */
lwp_unsleep(l, true);
} else {
if (timo)
callout_schedule(&l->l_timeout_ch, timo);
#ifdef KERN_SA
if (((l->l_flag & LW_SA) != 0) && (~l->l_pflag & LP_SA_NOBLOCK))
sa_switch(l);
else
#endif
mi_switch(l);
/* The LWP and sleep queue are now unlocked. */
if (timo) {
/*
* Even if the callout appears to have fired, we need to
* stop it in order to synchronise with other CPUs.
*/
if (callout_halt(&l->l_timeout_ch, NULL))
error = EWOULDBLOCK;
}
}
if (catch && error == 0) {
p = l->l_proc;
if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
error = EINTR;
else if ((l->l_flag & LW_PENDSIG) != 0) {
/*
* Acquiring p_lock may cause us to recurse
* through the sleep path and back into this
* routine, but is safe because LWPs sleeping
* on locks are non-interruptable. We will
* not recurse again.
*/
mutex_enter(p->p_lock);
if ((sig = issignal(l)) != 0)
error = sleepq_sigtoerror(l, sig);
mutex_exit(p->p_lock);
}
}
ktrcsw(0, 0);
if (__predict_false(biglocks != 0)) {
KERNEL_LOCK(biglocks, NULL);
}
return error;
}
/*
* sleepq_wake:
*
* Wake zero or more LWPs blocked on a single wait channel.
*/
lwp_t *
sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
{
lwp_t *l, *next;
KASSERT(mutex_owned(mp));
for (l = TAILQ_FIRST(sq); l != NULL; l = next) {
KASSERT(l->l_sleepq == sq);
KASSERT(l->l_mutex == mp);
next = TAILQ_NEXT(l, l_sleepchain);
if (l->l_wchan != wchan)
continue;
sleepq_remove(sq, l);
if (--expected == 0)
break;
}
mutex_spin_exit(mp);
return l;
}
/*
* sleepq_unsleep:
*
* Remove an LWP from its sleep queue and set it runnable again.
* sleepq_unsleep() is called with the LWP's mutex held, and will
* always release it.
*/
void
sleepq_unsleep(lwp_t *l, bool cleanup)
{
sleepq_t *sq = l->l_sleepq;
kmutex_t *mp = l->l_mutex;
KASSERT(lwp_locked(l, mp));
KASSERT(l->l_wchan != NULL);
sleepq_remove(sq, l);
if (cleanup) {
mutex_spin_exit(mp);
}
}
/*
* sleepq_timeout:
*
* Entered via the callout(9) subsystem to time out an LWP that is on a
* sleep queue.
*/
void
sleepq_timeout(void *arg)
{
lwp_t *l = arg;
/*
* Lock the LWP. Assuming it's still on the sleep queue, its
* current mutex will also be the sleep queue mutex.
*/
lwp_lock(l);
if (l->l_wchan == NULL) {
/* Somebody beat us to it. */
lwp_unlock(l);
return;
}
lwp_unsleep(l, true);
}
/*
* sleepq_sigtoerror:
*
* Given a signal number, interpret and return an error code.
*/
int
sleepq_sigtoerror(lwp_t *l, int sig)
{
struct proc *p = l->l_proc;
int error;
KASSERT(mutex_owned(p->p_lock));
/*
* If this sleep was canceled, don't let the syscall restart.
*/
if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
error = EINTR;
else
error = ERESTART;
return error;
}
/*
* sleepq_abort:
*
* After a panic or during autoconfiguration, lower the interrupt
* priority level to give pending interrupts a chance to run, and
* then return. Called if sleepq_dontsleep() returns non-zero, and
* always returns zero.
*/
int
sleepq_abort(kmutex_t *mtx, int unlock)
{
extern int safepri;
int s;
s = splhigh();
splx(safepri);
splx(s);
if (mtx != NULL && unlock != 0)
mutex_exit(mtx);
return 0;
}
/*
* sleepq_changepri:
*
* Adjust the priority of an LWP residing on a sleepq. This method
* will only alter the user priority; the effective priority is
* assumed to have been fixed at the time of insertion into the queue.
*/
void
sleepq_changepri(lwp_t *l, pri_t pri)
{
sleepq_t *sq = l->l_sleepq;
pri_t opri;
KASSERT(lwp_locked(l, NULL));
opri = lwp_eprio(l);
l->l_priority = pri;
if (lwp_eprio(l) == opri) {
return;
}
if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
return;
}
/*
* Don't let the sleep queue become empty, even briefly.
* cv_signal() and cv_broadcast() inspect it without the
* sleep queue lock held and need to see a non-empty queue
* head if there are waiters.
*/
if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
return;
}
TAILQ_REMOVE(sq, l, l_sleepchain);
sleepq_insert(sq, l, l->l_syncobj);
}
void
sleepq_lendpri(lwp_t *l, pri_t pri)
{
sleepq_t *sq = l->l_sleepq;
pri_t opri;
KASSERT(lwp_locked(l, NULL));
opri = lwp_eprio(l);
l->l_inheritedprio = pri;
if (lwp_eprio(l) == opri) {
return;
}
if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) {
return;
}
/*
* Don't let the sleep queue become empty, even briefly.
* cv_signal() and cv_broadcast() inspect it without the
* sleep queue lock held and need to see a non-empty queue
* head if there are waiters.
*/
if (TAILQ_FIRST(sq) == l && TAILQ_NEXT(l, l_sleepchain) == NULL) {
return;
}
TAILQ_REMOVE(sq, l, l_sleepchain);
sleepq_insert(sq, l, l->l_syncobj);
}