NetBSD/lib/libpthread/pthread_sig.c

1098 lines
31 KiB
C

/* $NetBSD: pthread_sig.c,v 1.45 2006/04/24 19:00:30 snj Exp $ */
/*-
* Copyright (c) 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Nathan J. Williams.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__RCSID("$NetBSD: pthread_sig.c,v 1.45 2006/04/24 19:00:30 snj Exp $");
/* We're interposing a specific version of the signal interface. */
#define __LIBC12_SOURCE__
#define __PTHREAD_SIGNAL_PRIVATE
#define __EXPOSE_STACK 1
#include <sys/param.h>
#include <errno.h>
#include <lwp.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h> /* for memcpy() */
#include <ucontext.h>
#include <unistd.h>
#include <compat/include/signal.h>
#include <sys/syscall.h>
#include <sched.h>
#include "pthread.h"
#include "pthread_int.h"
#ifdef PTHREAD_SIG_DEBUG
#define SDPRINTF(x) DPRINTF(x)
#else
#define SDPRINTF(x)
#endif
extern int pthread__started;
extern pthread_spin_t pthread__runqueue_lock;
extern struct pthread_queue_t pthread__runqueue;
extern pthread_spin_t pthread__allqueue_lock;
extern struct pthread_queue_t pthread__allqueue;
extern pthread_spin_t pthread__suspqueue_lock;
extern struct pthread_queue_t pthread__suspqueue;
static pthread_spin_t pt_sigacts_lock = __SIMPLELOCK_UNLOCKED;
static struct sigaction pt_sigacts[_NSIG];
static pthread_spin_t pt_process_siglock = __SIMPLELOCK_UNLOCKED;
static sigset_t pt_process_sigmask;
static sigset_t pt_process_siglist;
/* Queue of threads that are waiting in sigsuspend(). */
static struct pthread_queue_t pt_sigsuspended;
static pthread_spin_t pt_sigsuspended_lock = __SIMPLELOCK_UNLOCKED;
/*
* Nothing actually signals or waits on this lock, but the sleepobj
* needs to point to something.
*/
static pthread_cond_t pt_sigsuspended_cond = PTHREAD_COND_INITIALIZER;
/* Queue of threads that are waiting in sigtimedwait(). */
static struct pthread_queue_t pt_sigwaiting;
static pthread_spin_t pt_sigwaiting_lock = __SIMPLELOCK_UNLOCKED;
static pthread_t pt_sigwmaster;
static pthread_cond_t pt_sigwaiting_cond = PTHREAD_COND_INITIALIZER;
static void pthread__make_siginfo(siginfo_t *, int);
static void pthread__kill(pthread_t, pthread_t, siginfo_t *);
static void pthread__kill_self(pthread_t, siginfo_t *);
static void
pthread__signal_tramp(void (*)(int, siginfo_t *, void *),
siginfo_t *, ucontext_t *);
static int firstsig(const sigset_t *);
int _sys_execve(const char *, char *const [], char *const []);
int _sys___sigprocmask14(int, const sigset_t *, sigset_t *);
__strong_alias(__libc_thr_sigsetmask,pthread_sigmask)
__strong_alias(__sigprocmask14,pthread_sigmask)
__strong_alias(__exeve,execve)
void
pthread__signal_init(void)
{
SDPRINTF(("(signal_init) setting process sigmask\n"));
_sys___sigprocmask14(0, NULL, &pt_process_sigmask);
PTQ_INIT(&pt_sigsuspended);
PTQ_INIT(&pt_sigwaiting);
}
void
pthread__signal_start(void)
{
int i;
struct sigaction act;
/* Clear all additional signal masks; we'll handle them ourselves */
for (i = 1 ; i < NSIG ; i++) {
__libc_sigaction14(i, NULL, &act);
__sigemptyset14(&act.sa_mask);
__libc_sigaction14(i, &act, NULL);
}
}
static void
pthread__make_siginfo(siginfo_t *si, int sig)
{
(void)memset(si, 0, sizeof(*si));
si->si_signo = sig;
si->si_code = SI_USER;
/*
* XXX: these could be cached, but beware of setuid().
*/
si->si_uid = getuid();
si->si_pid = getpid();
}
int
pthread_kill(pthread_t thread, int sig)
{
pthread_t self;
void (*handler)(int);
self = pthread__self();
SDPRINTF(("(pthread_kill %p) kill %p sig %d\n", self, thread, sig));
if ((sig < 0) || (sig >= _NSIG))
return EINVAL;
if (pthread__find(self, thread) != 0)
return ESRCH;
/*
* We only let the thread handle this signal if the action for
* the signal is an explicit handler. Otherwise we feed it to
* the kernel so that it can affect the whole process.
*/
pthread_spinlock(self, &pt_sigacts_lock);
handler = pt_sigacts[sig].sa_handler;
pthread_spinunlock(self, &pt_sigacts_lock);
if (handler == SIG_IGN) {
SDPRINTF(("(pthread_kill %p) do nothing\n", self, thread, sig));
/* Do nothing */
} else if ((sig == SIGKILL) || (sig == SIGSTOP) ||
(handler == SIG_DFL)) {
/* Let the kernel do the work */
SDPRINTF(("(pthread_kill %p) kernel kill\n", self, thread, sig));
kill(getpid(), sig);
} else {
siginfo_t si;
pthread__make_siginfo(&si, sig);
pthread_spinlock(self, &thread->pt_siglock);
pthread__kill(self, thread, &si);
pthread_spinunlock(self, &thread->pt_siglock);
}
return 0;
}
/*
* Interpositioning is our friend. We need to intercept sigaction(),
* sigsuspend() and sigtimedwait().
*/
int
__sigaction14(int sig, const struct sigaction *act, struct sigaction *oact)
{
struct sigaction realact;
sigset_t oldmask;
pthread_t self;
int retval;
if ((sig <= 0) || (sig >= _NSIG))
return EINVAL;
self = pthread__self();
pthread_spinlock(self, &pt_sigacts_lock);
oldmask = pt_sigacts[sig].sa_mask;
if (act != NULL) {
/* Save the information for our internal dispatch. */
pt_sigacts[sig] = *act;
pthread_spinunlock(self, &pt_sigacts_lock);
/*
* We want to handle all signals ourself, and not have
* the kernel mask them. Therefore, we clear the
* sa_mask field before passing this to the kernel. We
* do not set SA_NODEFER, which seems like it might be
* appropriate, because that would permit a continuous
* stream of signals to exhaust the supply of upcalls.
*/
if (pthread__started) {
realact = *act;
__sigemptyset14(&realact.sa_mask);
act = &realact;
}
} else
pthread_spinunlock(self, &pt_sigacts_lock);
retval = __libc_sigaction14(sig, act, oact);
if (oact && (retval == 0))
oact->sa_mask = oldmask;
return retval;
}
int _sys___sigsuspend14(const sigset_t *);
int
__sigsuspend14(const sigset_t *sigmask)
{
pthread_t self;
sigset_t oldmask;
/* if threading not started yet, just do the syscall */
if (__predict_false(pthread__started == 0))
return (_sys___sigsuspend14(sigmask));
self = pthread__self();
pthread_spinlock(self, &pt_sigsuspended_lock);
pthread_spinlock(self, &self->pt_statelock);
if (self->pt_cancel) {
pthread_spinunlock(self, &self->pt_statelock);
pthread_spinunlock(self, &pt_sigsuspended_lock);
pthread_exit(PTHREAD_CANCELED);
}
pthread_sigmask(SIG_SETMASK, sigmask, &oldmask);
self->pt_state = PT_STATE_BLOCKED_QUEUE;
self->pt_sleepobj = &pt_sigsuspended_cond;
self->pt_sleepq = &pt_sigsuspended;
self->pt_sleeplock = &pt_sigsuspended_lock;
pthread_spinunlock(self, &self->pt_statelock);
PTQ_INSERT_TAIL(&pt_sigsuspended, self, pt_sleep);
pthread__block(self, &pt_sigsuspended_lock);
pthread__testcancel(self);
pthread_sigmask(SIG_SETMASK, &oldmask, NULL);
errno = EINTR;
return -1;
}
/*
* Interpositioned sigtimedwait(2), need to multiplex all
* eventual callers to a single kernel lwp.
*/
int _sigtimedwait(const sigset_t * __restrict, siginfo_t * __restrict,
const struct timespec * __restrict);
static void
pthread_sigtimedwait__callback(void *arg)
{
pthread__sched(pthread__self(), (pthread_t) arg);
}
int
sigtimedwait(const sigset_t * __restrict set, siginfo_t * __restrict info,
const struct timespec * __restrict timeout)
{
pthread_t self, target;
sigset_t wset;
struct timespec timo;
int sig, error = 0;
/* if threading not started yet, just do the syscall */
if (__predict_false(pthread__started == 0))
return (_sigtimedwait(set, info, timeout));
self = pthread__self();
pthread__testcancel(self);
pthread_spinlock(self, &self->pt_siglock);
/*
* Check if one of the signals that we will be waiting for
* is already pending. If so, return it immediately.
* XXX the MP locking of this isn't right.
*/
wset = *set;
__sigandset(&self->pt_siglist, &wset);
sig = firstsig(&wset);
if (sig) {
info->si_signo = sig;
pthread_spinunlock(self, &self->pt_siglock);
pthread__testcancel(self);
return 0;
}
/* also call syscall if timeout is zero (i.e. polling) */
if (timeout && timeout->tv_sec == 0 && timeout->tv_nsec == 0) {
pthread_spinunlock(self, &self->pt_siglock);
error = _sigtimedwait(set, info, timeout);
pthread__testcancel(self);
return (error);
}
if (timeout) {
if ((u_int) timeout->tv_nsec >= 1000000000) {
pthread_spinunlock(self, &self->pt_siglock);
errno = EINVAL;
return (-1);
}
timo = *timeout;
}
pthread_spinunlock(self, &self->pt_siglock);
pthread_spinlock(self, &pt_sigwaiting_lock);
/*
* If there is already a master thread running, arrange things
* to accomodate for eventual extra signals to wait for
* and join the sigwaiting list.
*/
if (pt_sigwmaster) {
struct pt_alarm_t timoalarm;
struct timespec etimo;
SDPRINTF(("(stw %p) not master\n", self));
/*
* Get current time. We need it if we would become master.
*/
if (timeout) {
clock_gettime(CLOCK_MONOTONIC, &etimo);
timespecadd(&etimo, timeout, &etimo);
}
/*
* Check if this thread's wait set is different to master set.
*/
wset = *set;
__sigminusset(pt_sigwmaster->pt_sigwait, &wset);
if (firstsig(&wset)) {
/*
* Some new signal in set, wakeup master. It will
* rebuild its wait set.
*/
_lwp_wakeup(pt_sigwmaster->pt_blockedlwp);
}
/* Save our wait set and info pointer */
wset = *set;
self->pt_sigwait = &wset;
self->pt_wsig = info;
/* zero to recognize when we get passed the signal from master */
info->si_signo = 0;
if (timeout) {
pthread__alarm_add(self, &timoalarm, &etimo,
pthread_sigtimedwait__callback, self);
}
block:
pthread_spinlock(self, &self->pt_statelock);
self->pt_state = PT_STATE_BLOCKED_QUEUE;
self->pt_sleepobj = &pt_sigwaiting_cond;
self->pt_sleepq = &pt_sigwaiting;
self->pt_sleeplock = &pt_sigwaiting_lock;
pthread_spinunlock(self, &self->pt_statelock);
PTQ_INSERT_TAIL(&pt_sigwaiting, self, pt_sleep);
SDPRINTF(("(stw %p) not master blocking\n", self));
pthread__block(self, &pt_sigwaiting_lock);
SDPRINTF(("(stw %p) not master unblocked\n", self));
/* check if we got a signal we waited for */
if (info->si_signo) {
/* got the signal from master */
pthread__testcancel(self);
return (0);
}
/* need the lock from now on */
pthread_spinlock(self, &pt_sigwaiting_lock);
/*
* If alarm fired, remove us from queue, adjust master
* wait set and return with EAGAIN.
*/
if (timeout) {
if (pthread__alarm_fired(&timoalarm)) {
PTQ_REMOVE(&pt_sigwaiting, self, pt_sleep);
/*
* Signal master. It will rebuild its wait set.
*/
_lwp_wakeup(pt_sigwmaster->pt_blockedlwp);
pthread_spinunlock(self, &pt_sigwaiting_lock);
errno = EAGAIN;
return (-1);
}
pthread__alarm_del(self, &timoalarm);
}
/*
* May have been woken up to deliver signal - check if we are
* the master and reblock if appropriate.
*/
if (pt_sigwmaster != self)
goto block;
/* not signal nor alarm, must have been upgraded to master */
pthread__assert(pt_sigwmaster == self);
/* update timeout before upgrading to master */
if (timeout) {
struct timespec tnow;
clock_gettime(CLOCK_MONOTONIC, &tnow);
/* compute difference to end time */
timespecsub(&tnow, &etimo, &tnow);
/* substract the difference from timeout */
timespecsub(&timo, &tnow, &timo);
}
}
/* MASTER */
self->pt_sigwait = &wset;
self->pt_wsig = NULL;
/* Master thread loop */
pt_sigwmaster = self;
SDPRINTF(("(stw %p) i am the master\n", self));
for(;;) {
/* Build our wait set */
wset = *set;
if (!PTQ_EMPTY(&pt_sigwaiting)) {
PTQ_FOREACH(target, &pt_sigwaiting, pt_sleep)
__sigplusset(target->pt_sigwait, &wset);
}
pthread_spinunlock(self, &pt_sigwaiting_lock);
/*
* We are either the only one, or wait set was setup already.
* Just do the syscall now.
*/
SDPRINTF(("(stw %p) master blocking\n", self));
error = __sigtimedwait(&wset, info, (timeout) ? &timo : NULL);
SDPRINTF(("(stw %p) master unblocking\n", self));
pthread_spinlock(self, &pt_sigwaiting_lock);
if ((error && (errno != ECANCELED || self->pt_cancel))
|| (!error && __sigismember14(set, info->si_signo)) ) {
/*
* Normal function return. Clear pt_sigwmaster,
* and if wait queue is nonempty, make first waiter
* new master.
*/
SDPRINTF(("(stw %p) master normal self %d\n",
self, info->si_signo));
pt_sigwmaster = NULL;
if (!PTQ_EMPTY(&pt_sigwaiting)) {
pt_sigwmaster = PTQ_FIRST(&pt_sigwaiting);
SDPRINTF(("(stw %p) new master %p\n", self,
pt_sigwmaster));
PTQ_REMOVE(&pt_sigwaiting, pt_sigwmaster,
pt_sleep);
pthread__sched(self, pt_sigwmaster);
}
pthread_spinunlock(self, &pt_sigwaiting_lock);
pthread__testcancel(self);
return (error);
}
if (!error) {
/*
* Got a signal, but not from _our_ wait set.
* Scan the queue of sigwaiters and wakeup
* the first thread waiting for this signal.
*/
PTQ_FOREACH(target, &pt_sigwaiting, pt_sleep) {
if (__sigismember14(target->pt_sigwait,
info->si_signo)) {
pthread__assert(target->pt_state ==
PT_STATE_BLOCKED_QUEUE);
SDPRINTF(("(stw %p) master target %p\n",
self, target));
/* copy to waiter siginfo */
memcpy(target->pt_wsig, info, sizeof(*info));
PTQ_REMOVE(&pt_sigwaiting, target, pt_sleep);
pthread__sched(self, target);
break;
}
}
if (!target) {
/*
* Didn't find anyone waiting on this signal.
* Deliver signal normally. This might
* happen if a thread times out, but
* 'their' signal arrives before the master
* thread would be scheduled after _lwp_wakeup().
*/
SDPRINTF(("(stw %p) master orphaned\n", self));
pthread__signal(self, NULL, info);
} else {
/*
* Signal waiter removed, adjust our wait set.
*/
SDPRINTF(("(stw %p) master raced\n", self));
wset = *set;
PTQ_FOREACH(target, &pt_sigwaiting, pt_sleep)
__sigplusset(target->pt_sigwait, &wset);
}
} else {
/*
* ECANCELED - new sigwaiter arrived and added to master
* wait set, or some sigwaiter exited due to timeout
* and removed from master wait set. All the work
* was done already, so just update our timeout
* and go back to syscall.
*/
}
/* Timeout was adjusted by the syscall, just call again. */
}
/* NOTREACHED */
return (0);
}
/*
* firstsig is stolen from kern_sig.c
* XXX this is an abstraction violation; except for this, all of
* the knowledge about the composition of sigset_t's was encapsulated
* in signal.h.
* Putting this function in signal.h caused problems with other parts of the
* kernel that #included <signal.h> but didn't have a prototype for ffs.
*/
static int
firstsig(const sigset_t *ss)
{
int sig;
sig = ffs((int)ss->__bits[0]);
if (sig != 0)
return (sig);
#if _NSIG > 33
sig = ffs((int)ss->__bits[1]);
if (sig != 0)
return (sig + 32);
#endif
#if _NSIG > 65
sig = ffs((int)ss->__bits[2]);
if (sig != 0)
return (sig + 64);
#endif
#if _NSIG > 97
sig = ffs((int)ss->__bits[3]);
if (sig != 0)
return (sig + 96);
#endif
return (0);
}
int
pthread_sigmask(int how, const sigset_t *set, sigset_t *oset)
{
sigset_t tmp, takelist;
pthread_t self;
int i;
siginfo_t si;
self = pthread__self();
/*
* While other threads may read a process's sigmask,
* they won't write it, so we don't need to lock our reads of it.
*/
if (oset != NULL)
*oset = self->pt_sigmask;
if (set == NULL)
return 0;
pthread_spinlock(self, &self->pt_siglock);
if (how == SIG_BLOCK) {
__sigplusset(set, &self->pt_sigmask);
/*
* Blocking of signals that are now
* blocked by all threads will be done
* lazily, at signal delivery time.
*/
if (__predict_true(pthread__started)) {
pthread_spinunlock(self, &self->pt_siglock);
return 0;
}
} else if (how == SIG_UNBLOCK)
__sigminusset(set, &self->pt_sigmask);
else if (how == SIG_SETMASK)
self->pt_sigmask = *set;
else {
pthread_spinunlock(self, &self->pt_siglock);
return EINVAL;
}
if (__predict_false(pthread__started == 0)) {
pt_process_sigmask = self->pt_sigmask;
_sys___sigprocmask14(SIG_SETMASK, &pt_process_sigmask, NULL);
pthread_spinunlock(self, &self->pt_siglock);
return 0;
}
/* See if there are any signals to take */
__sigemptyset14(&takelist);
tmp = self->pt_siglist;
while ((i = firstsig(&tmp)) != 0) {
if (!__sigismember14(&self->pt_sigmask, i)) {
__sigaddset14(&takelist, i);
__sigdelset14(&self->pt_siglist, i);
}
__sigdelset14(&tmp, i);
}
pthread_spinlock(self, &pt_process_siglock);
tmp = pt_process_siglist;
while ((i = firstsig(&tmp)) != 0) {
if (!__sigismember14(&self->pt_sigmask, i)) {
__sigaddset14(&takelist, i);
__sigdelset14(&pt_process_siglist, i);
}
__sigdelset14(&tmp, i);
}
/* Unblock any signals that were blocked process-wide before this. */
tmp = pt_process_sigmask;
__sigandset(&self->pt_sigmask, &tmp);
if (!__sigsetequal(&tmp, &pt_process_sigmask)) {
pt_process_sigmask = tmp;
_sys___sigprocmask14(SIG_SETMASK, &pt_process_sigmask, NULL);
}
pthread_spinunlock(self, &pt_process_siglock);
pthread__make_siginfo(&si, 0);
while ((i = firstsig(&takelist)) != 0) {
/* Take the signal */
SDPRINTF(("(pt_sigmask %p) taking unblocked signal %d\n",
self, i));
si.si_signo = i;
pthread__kill_self(self, &si);
__sigdelset14(&takelist, i);
}
pthread_spinunlock(self, &self->pt_siglock);
return 0;
}
/*
* Dispatch a signal to thread t, if it is non-null, and to any
* willing thread, if t is null.
*/
void
pthread__signal(pthread_t self, pthread_t t, siginfo_t *si)
{
pthread_t target, good, okay;
if (t) {
target = t;
pthread_spinlock(self, &target->pt_siglock);
} else {
/*
* Pick a thread that doesn't have the signal blocked
* and can be reasonably forced to run.
*/
okay = good = NULL;
pthread_spinlock(self, &pthread__allqueue_lock);
PTQ_FOREACH(target, &pthread__allqueue, pt_allq) {
/*
* Changing to PT_STATE_ZOMBIE is protected by
* the pthread__allqueue lock, so we can just
* test for it here.
*/
if ((target->pt_state == PT_STATE_ZOMBIE) ||
(target->pt_type != PT_THREAD_NORMAL))
continue;
pthread_spinlock(self, &target->pt_siglock);
SDPRINTF((
"(pt_signal %p) target %p: state %d, mask %08x\n",
self, target, target->pt_state, target->pt_sigmask.__bits[0]));
if (!__sigismember14(&target->pt_sigmask,
si->si_signo)) {
if (target->pt_blockgen == target->pt_unblockgen) {
good = target;
/* Leave target locked */
break;
} else if (okay == NULL) {
okay = target;
/* Leave target locked */
continue;
}
}
pthread_spinunlock(self, &target->pt_siglock);
}
pthread_spinunlock(self, &pthread__allqueue_lock);
if (good) {
target = good;
if (okay)
pthread_spinunlock(self, &okay->pt_siglock);
} else {
target = okay;
}
if (target == NULL) {
/*
* They all have it blocked. Note that in our
* process-wide signal mask, and stash the signal
* for later unblocking.
*/
pthread_spinlock(self, &pt_process_siglock);
__sigaddset14(&pt_process_sigmask, si->si_signo);
SDPRINTF(("(pt_signal %p) lazily setting proc sigmask to "
"%08x\n", self, pt_process_sigmask.__bits[0]));
_sys___sigprocmask14(SIG_SETMASK, &pt_process_sigmask, NULL);
__sigaddset14(&pt_process_siglist, si->si_signo);
pthread_spinunlock(self, &pt_process_siglock);
return;
}
}
/*
* We now have a signal and a victim.
* The victim's pt_siglock is locked.
*/
/*
* Reset the process signal mask so we can take another
* signal. We will not exhaust our supply of upcalls; if
* another signal is delivered after this, the resolve_locks
* dance will permit us to finish and recycle before the next
* upcall reaches this point.
*/
pthread_spinlock(self, &pt_process_siglock);
SDPRINTF(("(pt_signal %p) setting proc sigmask to "
"%08x\n", self, pt_process_sigmask.__bits[0]));
_sys___sigprocmask14(SIG_SETMASK, &pt_process_sigmask, NULL);
pthread_spinunlock(self, &pt_process_siglock);
pthread__kill(self, target, si);
pthread_spinunlock(self, &target->pt_siglock);
}
/*
* Call the signal handler in the context of this thread. Not quite as
* suicidal as it sounds.
* Must be called with target's siglock held.
*/
static void
pthread__kill_self(pthread_t self, siginfo_t *si)
{
sigset_t oldmask;
struct sigaction act;
ucontext_t uc; /* XXX: we don't pass the right context here */
pthread_spinlock(self, &pt_sigacts_lock);
act = pt_sigacts[si->si_signo];
pthread_spinunlock(self, &pt_sigacts_lock);
SDPRINTF(("(pthread__kill_self %p) sig %d\n", self, si->si_signo));
oldmask = self->pt_sigmask;
__sigplusset(&act.sa_mask, &self->pt_sigmask);
if ((act.sa_flags & SA_NODEFER) == 0)
__sigaddset14(&self->pt_sigmask, si->si_signo);
pthread_spinunlock(self, &self->pt_siglock);
(*act.sa_sigaction)(si->si_signo, si, &uc);
pthread_spinlock(self, &self->pt_siglock);
self->pt_sigmask = oldmask;
}
/* Must be called with target's siglock held */
static void
pthread__kill(pthread_t self, pthread_t target, siginfo_t *si)
{
int deliver;
SDPRINTF(("(pthread__kill %p) target %p sig %d code %d\n", self, target,
si->si_signo, si->si_code));
if (__sigismember14(&target->pt_sigmask, si->si_signo)) {
SDPRINTF(("(pthread__kill %p) target masked\n", target));
/*
* If the target is waiting for this signal in sigtimedwait(),
* make the target runnable but do not deliver the signal.
* Otherwise record the signal for later delivery.
* XXX not MPsafe.
*/
pthread_spinlock(self, &self->pt_statelock);
if (target->pt_state == PT_STATE_BLOCKED_QUEUE &&
target->pt_sleepq == &pt_sigwaiting &&
__sigismember14(target->pt_sigwait, si->si_signo)) {
SDPRINTF(("(pthread__kill %p) stw\n", target));
target->pt_wsig->si_signo = si->si_signo;
pthread_spinunlock(self, &self->pt_statelock);
deliver = 0;
} else {
SDPRINTF(("(pthread__kill %p) deferring\n", target));
pthread_spinunlock(self, &self->pt_statelock);
__sigaddset14(&target->pt_siglist, si->si_signo);
return;
}
} else {
SDPRINTF(("(pthread__kill %p) target %p delivering\n",
self, target));
deliver = 1;
}
if (self == target) {
pthread__kill_self(self, si);
return;
}
/*
* Ensure the victim is not running.
* In a MP world, it could be on another processor somewhere.
*
* XXX As long as this is uniprocessor, encountering a running
* target process is a bug.
*/
pthread__assert(target->pt_state != PT_STATE_RUNNING ||
target->pt_blockgen != target->pt_unblockgen);
/*
* Holding the state lock blocks out cancellation and any other
* attempts to set this thread up to take a signal.
*/
pthread_spinlock(self, &target->pt_statelock);
if (target->pt_blockgen != target->pt_unblockgen) {
SDPRINTF(("(pthread__kill %p) target blocked\n", target));
/*
* The target is not on a queue at all, and
* won't run again for a while. Try to wake it
* from its torpor, then mark the signal for
* later processing.
*/
__sigaddset14(&target->pt_sigblocked, si->si_signo);
__sigaddset14(&target->pt_sigmask, si->si_signo);
pthread_spinlock(self, &target->pt_flaglock);
target->pt_flags |= PT_FLAG_SIGDEFERRED;
pthread_spinunlock(self, &target->pt_flaglock);
pthread_spinunlock(self, &target->pt_statelock);
_lwp_wakeup(target->pt_blockedlwp);
return;
}
SDPRINTF(("(pthread__kill %p) target state %d\n", target,
target->pt_state));
switch (target->pt_state) {
case PT_STATE_SUSPENDED:
pthread_spinlock(self, &pthread__runqueue_lock);
PTQ_REMOVE(&pthread__suspqueue, target, pt_runq);
pthread_spinunlock(self, &pthread__runqueue_lock);
break;
case PT_STATE_RUNNABLE:
pthread_spinlock(self, &pthread__runqueue_lock);
PTQ_REMOVE(&pthread__runqueue, target, pt_runq);
pthread_spinunlock(self, &pthread__runqueue_lock);
break;
case PT_STATE_BLOCKED_QUEUE:
pthread_spinlock(self, target->pt_sleeplock);
PTQ_REMOVE(target->pt_sleepq, target, pt_sleep);
pthread_spinunlock(self, target->pt_sleeplock);
break;
case PT_STATE_ZOMBIE:
pthread_spinunlock(self, &target->pt_statelock);
return;
default:
;
}
if (deliver)
pthread__deliver_signal(self, target, si);
pthread__sched(self, target);
pthread_spinunlock(self, &target->pt_statelock);
}
/* Must be called with target's siglock held */
void
pthread__deliver_signal(pthread_t self, pthread_t target, siginfo_t *si)
{
ucontext_t *uc, *olduc;
struct sigaction act;
siginfo_t *siginfop;
caddr_t sp;
size_t ucsize;
pthread_spinlock(self, &pt_sigacts_lock);
act = pt_sigacts[si->si_signo];
pthread_spinunlock(self, &pt_sigacts_lock);
if (target->pt_trapuc) {
olduc = target->pt_trapuc;
target->pt_trapuc = NULL;
} else
olduc = target->pt_uc;
/*
* Get the current signal mask, but unblock the current signal,
* because we might have been sigdeferred and the signal would
* have been blocked because of that. Since we are delivering
* the signal now, we cannot have this signal blocked anyway.
* XXX: Is it better to check for SIGDEFERRED here?
*/
olduc->uc_sigmask = target->pt_sigmask;
__sigdelset14(&olduc->uc_sigmask, si->si_signo);
/*
* Prevent anyone else from considering this thread for handling
* more instances of this signal.
*/
__sigplusset(&act.sa_mask, &target->pt_sigmask);
if ((act.sa_flags & SA_NODEFER) == 0)
__sigaddset14(&target->pt_sigmask, si->si_signo);
/*
* We'd like to just pass oldmask and si to the
* pthread__signal_tramp(), but makecontext() can't reasonably
* pass structures, just word-size things or smaller. We also
* don't want to involve malloc() here, inside the upcall
* handler. So we borrow a bit of space from the target's
* stack, which we were adjusting anyway.
*/
sp = STACK_MAX(olduc, sizeof(ucontext_t));
sp = STACK_GROW(sp, STACKSPACE);
siginfop = (void *)STACK_ALLOC(sp, sizeof(siginfo_t));
sp = STACK_GROW(sp, sizeof(siginfo_t));
*siginfop = *si;
/*
* XXX We are blatantly ignoring SIGALTSTACK. It would screw
* with our notion of stack->thread mappings.
*/
sp = STACK_ALIGN(sp, ~_UC_UCONTEXT_ALIGN);
ucsize = roundup(sizeof(ucontext_t), (~_UC_UCONTEXT_ALIGN) + 1);
uc = (void *)STACK_ALLOC(sp, ucsize);
sp = STACK_GROW(sp, ucsize);
_INITCONTEXT_U(uc);
uc->uc_stack.ss_sp = sp;
uc->uc_stack.ss_size = 0;
uc->uc_link = NULL;
SDPRINTF(("(makecontext %p): target %p: sig: %d uc: %p oldmask: %08x\n",
self, target, si->si_signo, olduc, olduc->uc_sigmask.__bits[0]));
makecontext(uc, pthread__signal_tramp, 3, act.sa_handler, siginfop,
olduc);
target->pt_uc = uc;
}
void
pthread__signal_deferred(pthread_t self, pthread_t t)
{
int i;
siginfo_t si;
pthread_spinlock(self, &t->pt_siglock);
pthread__make_siginfo(&si, 0);
while ((i = firstsig(&t->pt_sigblocked)) != 0) {
__sigdelset14(&t->pt_sigblocked, i);
si.si_signo = i;
pthread__deliver_signal(self, t, &si);
}
t->pt_flags &= ~PT_FLAG_SIGDEFERRED;
pthread_spinunlock(self, &t->pt_siglock);
}
static void
pthread__signal_tramp(void (*handler)(int, siginfo_t *, void *),
siginfo_t *info, ucontext_t *uc)
{
SDPRINTF(("(tramp %p) sig %d code %d uc %p oldmask %08x\n",
pthread__self(), info->si_signo, info->si_code, uc,
uc->uc_sigmask.__bits[0]));
(*handler)(info->si_signo, info, uc);
pthread__self()->pt_flags |= PT_FLAG_SIGNALED;
/*
* We've finished the handler, so this thread can restore the
* original signal mask. Note that traditional BSD behavior
* allows for the handler to change the signal mask; we handle
* that here.
*/
pthread_sigmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
/*
* Jump back to what we were doing before we were interrupted
* by a signal.
*/
_setcontext_u(uc);
/*NOTREACHED*/
pthread__abort();
}
/*
* The execve() system call and the libc exec*() calls that use it are
* specified to propagate the signal mask of the current thread to the
* initial thread of the new process image. Since thread signal masks
* are maintained in userlevel, this wrapper is necessary to give the
* kernel the correct value.
*/
int
execve(const char *path, char *const argv[], char *const envp[])
{
pthread_t self;
int ret;
self = pthread__self();
/*
* Don't acquire pt_process_siglock, even though it seems like
* the right thing to do. The most common reason to be here is
* that we're on the child side of a fork() or vfork()
* call. In either case, another thread could have held
* pt_process_siglock at the moment of forking, and acquiring
* it here would cause us to deadlock. Additionally, in the
* case of vfork(), acquiring the lock here would cause it to
* be locked in the parent's address space and cause a
* deadlock there the next time a signal routine is called.
*
* The remaining case is where a live multithreaded program
* calls exec*() from one of several threads with no explicit
* synchronization. It may get the wrong process sigmask in
* the new process image if another thread executes a signal
* routine between the sigprocmask and the _sys_execve()
* call. I don't have much sympathy for such a program.
*/
_sys___sigprocmask14(SIG_SETMASK, &self->pt_sigmask, NULL);
ret = _sys_execve(path, argv, envp);
/* Normally, we shouldn't get here; this is an error condition. */
_sys___sigprocmask14(SIG_SETMASK, &pt_process_sigmask, NULL);
return ret;
}