NetBSD/sys/arch/cats/isa/isa_machdep.c
thorpej dce4476374 Overhaul how DMA ranges work in the ARM bus_dma implementation.
A new "arm32_dma_range" structure now describes a DMA window, with
a system address base, bus address base, and length.  In addition to
providing info about which memory regions are legal for DMA, the new
structure provides address translation support, as well.

As before, if a tag does not list any ranges, then all addresses are
considered valid, and no DMA address translation is performed.

This allows us to remove a large chunk of code which was duplicated and
tweaked slightly (to do the address translation) from the stock ARM
bus_dma in the XScale IOP and ARM Integrator ports.

Test compiled on all ARM platforms, test booted on Intel IQ80321 and Shark.
2002-07-31 17:34:23 +00:00

601 lines
16 KiB
C

/* $NetBSD: isa_machdep.c,v 1.6 2002/07/31 17:34:25 thorpej Exp $ */
/*-
* Copyright (c) 1996-1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Mark Brinicombe, Charles M. Hannum and by Jason R. Thorpe of the
* Numerical Aerospace Simulation Facility, NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1991 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)isa.c 7.2 (Berkeley) 5/13/91
*/
#include "opt_irqstats.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#define _ARM32_BUS_DMA_PRIVATE
#include <machine/bus.h>
#include <machine/intr.h>
#include <machine/pio.h>
#include <machine/bootconfig.h>
#include <dev/isa/isareg.h>
#include <dev/isa/isavar.h>
#include <dev/isa/isadmareg.h>
#include <dev/isa/isadmavar.h>
#include <arm/footbridge/isa/icu.h>
#include <arm/footbridge/dc21285reg.h>
#include <arm/footbridge/dc21285mem.h>
#include <uvm/uvm_extern.h>
#include "isadma.h"
/* prototypes */
static void isa_icu_init __P((void));
struct arm32_isa_chipset isa_chipset_tag;
void isa_strayintr __P((int));
void intr_calculatemasks __P((void));
int fakeintr __P((void *));
int isa_irqdispatch __P((void *arg));
u_int imask[IPL_LEVELS];
unsigned imen;
#ifdef IRQSTATS
u_int isa_intr_count[ICU_LEN];
#endif /* IRQSTATS */
#define AUTO_EOI_1
#define AUTO_EOI_2
/*
* Fill in default interrupt table (in case of spuruious interrupt
* during configuration of kernel, setup interrupt control unit
*/
static void
isa_icu_init(void)
{
/* initialize 8259's */
outb(IO_ICU1, 0x11); /* reset; program device, four bytes */
outb(IO_ICU1+1, ICU_OFFSET); /* starting at this vector index */
outb(IO_ICU1+1, 1 << IRQ_SLAVE); /* slave on line 2 */
#ifdef AUTO_EOI_1
outb(IO_ICU1+1, 2 | 1); /* auto EOI, 8086 mode */
#else
outb(IO_ICU1+1, 1); /* 8086 mode */
#endif
outb(IO_ICU1+1, 0xff); /* leave interrupts masked */
outb(IO_ICU1, 0x68); /* special mask mode (if available) */
outb(IO_ICU1, 0x0a); /* Read IRR by default. */
#ifdef REORDER_IRQ
outb(IO_ICU1, 0xc0 | (3 - 1)); /* pri order 3-7, 0-2 (com2 first) */
#endif
outb(IO_ICU2, 0x11); /* reset; program device, four bytes */
outb(IO_ICU2+1, ICU_OFFSET+8); /* staring at this vector index */
outb(IO_ICU2+1, IRQ_SLAVE);
#ifdef AUTO_EOI_2
outb(IO_ICU2+1, 2 | 1); /* auto EOI, 8086 mode */
#else
outb(IO_ICU2+1, 1); /* 8086 mode */
#endif
outb(IO_ICU2+1, 0xff); /* leave interrupts masked */
outb(IO_ICU2, 0x68); /* special mask mode (if available) */
outb(IO_ICU2, 0x0a); /* Read IRR by default. */
}
/*
* Caught a stray interrupt, notify
*/
void
isa_strayintr(irq)
int irq;
{
static u_long strays;
/*
* Stray interrupts on irq 7 occur when an interrupt line is raised
* and then lowered before the CPU acknowledges it. This generally
* means either the device is screwed or something is cli'ing too
* long and it's timing out.
*/
if (++strays <= 5)
log(LOG_ERR, "stray interrupt %d%s\n", irq,
strays >= 5 ? "; stopped logging" : "");
}
int intrtype[ICU_LEN], intrmask[ICU_LEN], intrlevel[ICU_LEN];
struct irqhandler *intrhand[ICU_LEN];
/*
* Recalculate the interrupt masks from scratch.
* We could code special registry and deregistry versions of this function that
* would be faster, but the code would be nastier, and we don't expect this to
* happen very much anyway.
*/
void
intr_calculatemasks()
{
int irq, level;
struct irqhandler *q;
/* First, figure out which levels each IRQ uses. */
for (irq = 0; irq < ICU_LEN; irq++) {
int levels = 0;
for (q = intrhand[irq]; q; q = q->ih_next)
levels |= 1 << q->ih_level;
intrlevel[irq] = levels;
}
/* Then figure out which IRQs use each level. */
for (level = 0; level < IPL_LEVELS; level++) {
int irqs = 0;
for (irq = 0; irq < ICU_LEN; irq++)
if (intrlevel[irq] & (1 << level))
irqs |= 1 << irq;
imask[level] = irqs;
}
/*
* IPL_NONE is used for hardware interrupts that are never blocked,
* and do not block anything else.
*/
imask[IPL_NONE] = 0;
/*
* Enforce a hierarchy that gives slow devices a better chance at not
* dropping data.
*/
imask[IPL_BIO] |= imask[IPL_NONE];
imask[IPL_NET] |= imask[IPL_BIO];
imask[IPL_TTY] |= imask[IPL_NET];
/*
* There are tty, network and disk drivers that use free() at interrupt
* time, so imp > (tty | net | bio).
*/
imask[IPL_IMP] |= imask[IPL_TTY];
imask[IPL_AUDIO] |= imask[IPL_IMP];
/*
* Since run queues may be manipulated by both the statclock and tty,
* network, and disk drivers, clock > imp.
*/
imask[IPL_CLOCK] |= imask[IPL_AUDIO];
imask[IPL_CLOCK] |= imask[IPL_IMP];
/*
* IPL_HIGH must block everything that can manipulate a run queue.
*/
imask[IPL_HIGH] |= imask[IPL_CLOCK];
/*
* We need serial drivers to run at the absolute highest priority to
* avoid overruns, so serial > high.
*/
imask[IPL_SERIAL] |= imask[IPL_HIGH];
/* And eventually calculate the complete masks. */
for (irq = 0; irq < ICU_LEN; irq++) {
int irqs = 1 << irq;
for (q = intrhand[irq]; q; q = q->ih_next)
irqs |= imask[q->ih_level];
intrmask[irq] = irqs;
}
/* Lastly, determine which IRQs are actually in use. */
{
int irqs = 0;
for (irq = 0; irq < ICU_LEN; irq++)
if (intrhand[irq])
irqs |= 1 << irq;
if (irqs >= 0x100) /* any IRQs >= 8 in use */
irqs |= 1 << IRQ_SLAVE;
imen = ~irqs;
SET_ICUS();
}
#if 0
printf("type\tmask\tlevel\thand\n");
for (irq = 0; irq < ICU_LEN; irq++) {
printf("%x\t%04x\t%x\t%p\n", intrtype[irq], intrmask[irq],
intrlevel[irq], intrhand[irq]);
}
for (level = 0; level < IPL_LEVELS; ++level)
printf("%d: %08x\n", level, imask[level]);
#endif
}
int
fakeintr(arg)
void *arg;
{
return 0;
}
#define LEGAL_IRQ(x) ((x) >= 0 && (x) < ICU_LEN && (x) != 2)
int
isa_intr_alloc(ic, mask, type, irq)
isa_chipset_tag_t ic;
int mask;
int type;
int *irq;
{
int i, tmp, bestirq, count;
struct irqhandler **p, *q;
if (type == IST_NONE)
panic("intr_alloc: bogus type");
bestirq = -1;
count = -1;
/* some interrupts should never be dynamically allocated */
mask &= 0xdef8;
/*
* XXX some interrupts will be used later (6 for fdc, 12 for pms).
* the right answer is to do "breadth-first" searching of devices.
*/
mask &= 0xefbf;
for (i = 0; i < ICU_LEN; i++) {
if (LEGAL_IRQ(i) == 0 || (mask & (1<<i)) == 0)
continue;
switch(intrtype[i]) {
case IST_NONE:
/*
* if nothing's using the irq, just return it
*/
*irq = i;
return (0);
case IST_EDGE:
case IST_LEVEL:
if (type != intrtype[i])
continue;
/*
* if the irq is shareable, count the number of other
* handlers, and if it's smaller than the last irq like
* this, remember it
*
* XXX We should probably also consider the
* interrupt level and stick IPL_TTY with other
* IPL_TTY, etc.
*/
for (p = &intrhand[i], tmp = 0; (q = *p) != NULL;
p = &q->ih_next, tmp++)
;
if ((bestirq == -1) || (count > tmp)) {
bestirq = i;
count = tmp;
}
break;
case IST_PULSE:
/* this just isn't shareable */
continue;
}
}
if (bestirq == -1)
return (1);
*irq = bestirq;
return (0);
}
const struct evcnt *
isa_intr_evcnt(isa_chipset_tag_t ic, int irq)
{
/* XXX for now, no evcnt parent reported */
return NULL;
}
/*
* Set up an interrupt handler to start being called.
* XXX PRONE TO RACE CONDITIONS, UGLY, 'INTERESTING' INSERTION ALGORITHM.
*/
void *
isa_intr_establish(ic, irq, type, level, ih_fun, ih_arg)
isa_chipset_tag_t ic;
int irq;
int type;
int level;
int (*ih_fun) __P((void *));
void *ih_arg;
{
struct irqhandler **p, *q, *ih;
static struct irqhandler fakehand = {fakeintr};
/* printf("isa_intr_establish(%d, %d, %d)\n", irq, type, level);*/
/* no point in sleeping unless someone can free memory. */
ih = malloc(sizeof *ih, M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
if (ih == NULL)
panic("isa_intr_establish: can't malloc handler info");
if (!LEGAL_IRQ(irq) || type == IST_NONE)
panic("intr_establish: bogus irq or type");
switch (intrtype[irq]) {
case IST_NONE:
intrtype[irq] = type;
/* printf("Setting irq %d to type %d - ", irq, type);*/
if (irq < 8) {
outb(0x4d0, (inb(0x4d0) & ~(1 << irq))
| ((type == IST_LEVEL) ? (1 << irq) : 0));
/* printf("%02x\n", inb(0x4d0));*/
} else {
outb(0x4d1, (inb(0x4d1) & ~(1 << irq))
| ((type == IST_LEVEL) ? (1 << irq) : 0));
/* printf("%02x\n", inb(0x4d1));*/
}
break;
case IST_EDGE:
case IST_LEVEL:
if (type == intrtype[irq])
break;
case IST_PULSE:
if (type != IST_NONE)
panic("intr_establish: can't share %s with %s",
isa_intr_typename(intrtype[irq]),
isa_intr_typename(type));
break;
}
/*
* Figure out where to put the handler.
* This is O(N^2), but we want to preserve the order, and N is
* generally small.
*/
for (p = &intrhand[irq]; (q = *p) != NULL; p = &q->ih_next)
;
/*
* Actually install a fake handler momentarily, since we might be doing
* this with interrupts enabled and don't want the real routine called
* until masking is set up.
*/
fakehand.ih_level = level;
*p = &fakehand;
intr_calculatemasks();
/*
* Poke the real handler in now.
*/
ih->ih_func = ih_fun;
ih->ih_arg = ih_arg;
/* ih->ih_count = 0;*/
ih->ih_next = NULL;
ih->ih_level = level;
ih->ih_num = irq;
*p = ih;
return (ih);
}
/*
* Deregister an interrupt handler.
*/
void
isa_intr_disestablish(ic, arg)
isa_chipset_tag_t ic;
void *arg;
{
struct irqhandler *ih = arg;
int irq = ih->ih_num;
struct irqhandler **p, *q;
if (!LEGAL_IRQ(irq))
panic("intr_disestablish: bogus irq");
/*
* Remove the handler from the chain.
* This is O(n^2), too.
*/
for (p = &intrhand[irq]; (q = *p) != NULL && q != ih; p = &q->ih_next)
;
if (q)
*p = q->ih_next;
else
panic("intr_disestablish: handler not registered");
free(ih, M_DEVBUF);
intr_calculatemasks();
if (intrhand[irq] == NULL)
intrtype[irq] = IST_NONE;
}
/*
* isa_intr_init()
*
* Initialise the ISA ICU and attach an ISA interrupt handler to the
* ISA interrupt line on the footbridge.
*/
void
isa_intr_init(void)
{
static void *isa_ih;
isa_icu_init();
isa_ih = intr_claim(IRQ_IN_L2, IPL_BIO, "isabus",
isa_irqdispatch, NULL);
}
/* Static array of ISA DMA segments. We only have one on CATS */
#if NISADMA > 0
struct arm32_dma_range cats_isa_dma_ranges[1];
#endif
void
isa_cats_init(iobase, membase)
u_int iobase, membase;
{
#if NISADMA > 0
extern struct arm32_dma_range *footbridge_isa_dma_ranges;
extern int footbridge_isa_dma_nranges;
cats_isa_dma_ranges[0].dr_sysbase = bootconfig.dram[0].address;
cats_isa_dma_ranges[0].dr_busbase = bootconfig.dram[0].address;
cats_isa_dma_ranges[0].dr_len = (16 * 1024 * 1024);
footbridge_isa_dma_ranges = cats_isa_dma_ranges;
footbridge_isa_dma_nranges = 1;
#endif
isa_io_init(iobase, membase);
}
void
isa_attach_hook(parent, self, iba)
struct device *parent, *self;
struct isabus_attach_args *iba;
{
/*
* Since we can only have one ISA bus, we just use a single
* statically allocated ISA chipset structure. Pass it up
* now.
*/
iba->iba_ic = &isa_chipset_tag;
#if NISADMA > 0
isa_dma_init();
#endif
}
int
isa_irqdispatch(arg)
void *arg;
{
int irq;
struct irqhandler *p;
u_int iack;
int res;
iack = *((u_int *)(DC21285_PCI_IACK_VBASE));
iack &= 0xff;
if (iack < 0x20 || iack > 0x2f) {
printf("isa_irqdispatch: %x\n", iack);
return(0);
}
irq = iack & 0x0f;
#ifdef IRQSTATS
++isa_intr_count[irq];
#endif /* IRQSTATS */
p = intrhand[irq];
while (p) {
#ifdef IRQSTATS
/* ++p->ih_count;*/
#endif /* IRQSTATS */
res = p->ih_func(p->ih_arg);
p = p->ih_next;
}
return(0);
}
void
isa_fillw(val, addr, len)
u_int val;
void *addr;
size_t len;
{
if ((u_int)addr >= isa_mem_data_vaddr()
&& (u_int)addr < isa_mem_data_vaddr() + 0x100000) {
bus_size_t offset = ((u_int)addr) & 0xfffff;
bus_space_set_region_2(&isa_mem_bs_tag,
(bus_space_handle_t)isa_mem_bs_tag.bs_cookie, offset,
val, len);
} else {
u_short *ptr = addr;
while (len > 0) {
*ptr++ = val;
--len;
}
}
}