NetBSD/sys/arch/hp300/hpux/hpux_compat.c
mycroft 4862b84c92 Add RCS identifiers (this time on the correct side of the branch), and
incorporate recent changes in netbsd-0-9 branch.
1993-08-01 19:22:24 +00:00

1735 lines
36 KiB
C

/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah Hdr: hpux_compat.c 1.41 91/04/06
* from: @(#)hpux_compat.c 7.16 (Berkeley) 5/30/91
* $Id: hpux_compat.c,v 1.3 1993/08/01 19:24:53 mycroft Exp $
*/
/*
* Various HPUX compatibility routines
*/
#ifdef HPUXCOMPAT
#include "param.h"
#include "systm.h"
#include "signalvar.h"
#include "kernel.h"
#include "filedesc.h"
#include "proc.h"
#include "buf.h"
#include "wait.h"
#include "file.h"
#include "namei.h"
#include "vnode.h"
#include "ioctl.h"
#include "ptrace.h"
#include "stat.h"
#include "syslog.h"
#include "malloc.h"
#include "mount.h"
#include "ipc.h"
#include "user.h"
#include "machine/cpu.h"
#include "machine/reg.h"
#include "machine/psl.h"
#include "machine/vmparam.h"
#include "hpux.h"
#include "hpux_termio.h"
#ifdef DEBUG
int unimpresponse = 0;
#endif
/* SYS5 style UTSNAME info */
struct hpuxutsname protoutsname = {
"4.4bsd", "", "2.0", "B", "9000/3?0", ""
};
/* 6.0 and later style context */
#ifdef FPCOPROC
char hpuxcontext[] =
"standalone HP-MC68881 HP-MC68020 HP-MC68010 localroot default";
#else
char hpuxcontext[] =
"standalone HP-MC68020 HP-MC68010 localroot default";
#endif
/* YP domainname */
char domainname[MAXHOSTNAMELEN] = "unknown";
int domainnamelen = 7;
#define NERR 79
#define BERR 1000
/* indexed by BSD errno */
short bsdtohpuxerrnomap[NERR] = {
/*00*/ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
/*10*/ 10, 45, 12, 13, 14, 15, 16, 17, 18, 19,
/*20*/ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
/*30*/ 30, 31, 32, 33, 34, 246, 245, 244, 216, 217,
/*40*/ 218, 219, 220, 221, 222, 223, 224, 225, 226, 227,
/*50*/ 228, 229, 230, 231, 232, 233, 234, 235, 236, 237,
/*60*/ 238, 239, 249, 248, 241, 242, 247,BERR,BERR,BERR,
/*70*/ 70, 71,BERR,BERR,BERR,BERR,BERR, 46,BERR
};
notimp(p, uap, retval, code, nargs)
struct proc *p;
int *uap, *retval;
int code, nargs;
{
int error = 0;
#ifdef DEBUG
register int *argp = uap;
extern char *hpuxsyscallnames[];
printf("HPUX %s(", hpuxsyscallnames[code]);
if (nargs)
while (nargs--)
printf("%x%c", *argp++, nargs? ',' : ')');
else
printf(")");
printf("\n");
switch (unimpresponse) {
case 0:
error = nosys(p, uap, retval);
break;
case 1:
error = EINVAL;
break;
}
#else
error = nosys(p, uap, retval);
#endif
uprintf("HP-UX system call %d not implemented\n", code);
return (error);
}
hpuxexecv(p, uap, retval)
struct proc *p;
struct args {
char *fname;
char **argp;
char **envp;
} *uap;
int *retval;
{
extern int execve();
uap->envp = NULL;
return (execve(p, uap, retval));
}
/*
* HPUX versions of wait and wait3 actually pass the parameters
* (status pointer, options, rusage) into the kernel rather than
* handling it in the C library stub. We also need to map any
* termination signal from BSD to HPUX.
*/
hpuxwait3(p, uap, retval)
struct proc *p;
struct args {
int *status;
int options;
int rusage;
} *uap;
int *retval;
{
/* rusage pointer must be zero */
if (uap->rusage)
return (EINVAL);
p->p_regs[PS] = PSL_ALLCC;
p->p_regs[R0] = uap->options;
p->p_regs[R1] = uap->rusage;
return (hpuxwait(p, uap, retval));
}
hpuxwait(p, uap, retval)
struct proc *p;
struct args {
int *status;
} *uap;
int *retval;
{
int sig, *statp, error;
statp = uap->status; /* owait clobbers first arg */
error = owait(p, uap, retval);
/*
* HP-UX wait always returns EINTR when interrupted by a signal
* (well, unless its emulating a BSD process, but we don't bother...)
*/
if (error == ERESTART)
error = EINTR;
if (error)
return (error);
sig = retval[1] & 0xFF;
if (sig == WSTOPPED) {
sig = (retval[1] >> 8) & 0xFF;
retval[1] = (bsdtohpuxsig(sig) << 8) | WSTOPPED;
} else if (sig)
retval[1] = (retval[1] & 0xFF00) |
bsdtohpuxsig(sig & 0x7F) | (sig & 0x80);
if (statp)
if (suword((caddr_t)statp, retval[1]))
error = EFAULT;
return (error);
}
hpuxwaitpid(p, uap, retval)
struct proc *p;
struct args {
int pid;
int *status;
int options;
struct rusage *rusage; /* wait4 arg */
} *uap;
int *retval;
{
int sig, *statp, error;
uap->rusage = 0;
error = wait4(p, uap, retval);
/*
* HP-UX wait always returns EINTR when interrupted by a signal
* (well, unless its emulating a BSD process, but we don't bother...)
*/
if (error == ERESTART)
error = EINTR;
if (error)
return (error);
sig = retval[1] & 0xFF;
if (sig == WSTOPPED) {
sig = (retval[1] >> 8) & 0xFF;
retval[1] = (bsdtohpuxsig(sig) << 8) | WSTOPPED;
} else if (sig)
retval[1] = (retval[1] & 0xFF00) |
bsdtohpuxsig(sig & 0x7F) | (sig & 0x80);
if (statp)
if (suword((caddr_t)statp, retval[1]))
error = EFAULT;
return (error);
}
/*
* Must remap some bits in the mode mask.
* O_CREAT, O_TRUNC, and O_EXCL must be remapped,
* O_SYNCIO (0100000) is removed entirely.
*/
hpuxopen(p, uap, retval)
struct proc *p;
register struct args {
char *fname;
int mode;
int crtmode;
} *uap;
int *retval;
{
int mode;
mode = uap->mode;
uap->mode &= ~(HPUXFSYNCIO|HPUXFEXCL|HPUXFTRUNC|HPUXFCREAT);
if (mode & HPUXFCREAT) {
/*
* simulate the pre-NFS behavior that opening a
* file for READ+CREATE ignores the CREATE (unless
* EXCL is set in which case we will return the
* proper error).
*/
if ((mode & HPUXFEXCL) || (FFLAGS(mode) & FWRITE))
uap->mode |= O_CREAT;
}
if (mode & HPUXFTRUNC)
uap->mode |= O_TRUNC;
if (mode & HPUXFEXCL)
uap->mode |= O_EXCL;
return (open(p, uap, retval));
}
/* XXX */
#define UF_FNDELAY_ON 0x20
#define UF_FIONBIO_ON 0x40
/* XXX */
hpuxfcntl(p, uap, retval)
struct proc *p;
register struct args {
int fdes;
int cmd;
int arg;
} *uap;
int *retval;
{
int mode, error;
char *fp;
if (uap->cmd == F_GETFL || uap->cmd == F_SETFL) {
if ((unsigned)uap->fdes >= p->p_fd->fd_nfiles ||
p->p_fd->fd_ofiles[uap->fdes] == NULL)
return (EBADF);
fp = &p->p_fd->fd_ofileflags[uap->fdes];
}
switch (uap->cmd) {
case F_SETFL:
if (uap->arg & FNONBLOCK)
*fp |= UF_FNDELAY_ON;
else {
*fp &= ~UF_FNDELAY_ON;
if (*fp & UF_FIONBIO_ON)
uap->arg |= FNONBLOCK;
}
uap->arg &= ~(HPUXFSYNCIO|HPUXFREMOTE|FUSECACHE);
break;
case F_GETFL:
case F_DUPFD:
case F_GETFD:
case F_SETFD:
break;
default:
return (EINVAL);
}
error = fcntl(p, uap, retval);
if (error == 0 && uap->cmd == F_GETFL) {
mode = *retval;
*retval &= ~(O_CREAT|O_TRUNC|O_EXCL|FUSECACHE);
if ((mode & FNONBLOCK) && (*fp & UF_FNDELAY_ON) == 0)
*retval &= ~FNONBLOCK;
if (mode & O_CREAT)
*retval |= HPUXFCREAT;
if (mode & O_TRUNC)
*retval |= HPUXFTRUNC;
if (mode & O_EXCL)
*retval |= HPUXFEXCL;
}
return (error);
}
/*
* Read and write should return a 0 count when an operation
* on a VNODE would block, not an error.
*
* In 6.2 and 6.5 sockets appear to return EWOULDBLOCK.
* In 7.0 the behavior for sockets depends on whether FNONBLOCK is in effect.
*/
hpuxread(p, uap, retval)
struct proc *p;
struct args {
int fd;
} *uap;
int *retval;
{
int error;
error = read(p, uap, retval);
if (error == EWOULDBLOCK &&
(p->p_fd->fd_ofiles[uap->fd]->f_type == DTYPE_VNODE ||
p->p_fd->fd_ofileflags[uap->fd] & UF_FNDELAY_ON)) {
error = 0;
*retval = 0;
}
return (error);
}
hpuxwrite(p, uap, retval)
struct proc *p;
struct args {
int fd;
} *uap;
int *retval;
{
int error;
error = write(p, uap, retval);
if (error == EWOULDBLOCK &&
(p->p_fd->fd_ofiles[uap->fd]->f_type == DTYPE_VNODE ||
p->p_fd->fd_ofileflags[uap->fd] & UF_FNDELAY_ON)) {
error = 0;
*retval = 0;
}
return (error);
}
hpuxreadv(p, uap, retval)
struct proc *p;
struct args {
int fd;
} *uap;
int *retval;
{
int error;
error = readv(p, uap, retval);
if (error == EWOULDBLOCK &&
(p->p_fd->fd_ofiles[uap->fd]->f_type == DTYPE_VNODE ||
p->p_fd->fd_ofileflags[uap->fd] & UF_FNDELAY_ON)) {
error = 0;
*retval = 0;
}
return (error);
}
hpuxwritev(p, uap, retval)
struct proc *p;
struct args {
int fd;
} *uap;
int *retval;
{
int error;
error = writev(p, uap, retval);
if (error == EWOULDBLOCK &&
(p->p_fd->fd_ofiles[uap->fd]->f_type == DTYPE_VNODE ||
p->p_fd->fd_ofileflags[uap->fd] & UF_FNDELAY_ON)) {
error = 0;
*retval = 0;
}
return (error);
}
/*
* 4.3bsd dup allows dup2 to come in on the same syscall entry
* and hence allows two arguments. HPUX dup has only one arg.
*/
hpuxdup(p, uap, retval)
struct proc *p;
register struct args {
int i;
} *uap;
int *retval;
{
register struct filedesc *fdp = p->p_fd;
struct file *fp;
int fd, error;
if (((unsigned)uap->i) >= fdp->fd_nfiles ||
(fp = fdp->fd_ofiles[uap->i]) == NULL)
return (EBADF);
if (error = fdalloc(p, 0, &fd))
return (error);
fdp->fd_ofiles[fd] = fp;
fdp->fd_ofileflags[fd] = fdp->fd_ofileflags[uap->i] &~ UF_EXCLOSE;
fp->f_count++;
if (fd > fdp->fd_lastfile)
fdp->fd_lastfile = fd;
*retval = fd;
return (0);
}
hpuxutssys(p, uap, retval)
struct proc *p;
register struct args {
struct hpuxutsname *uts;
int dev;
int request;
} *uap;
int *retval;
{
register int i;
int error;
switch (uap->request) {
/* uname */
case 0:
/* fill in machine type */
switch (machineid) {
case HP_320:
protoutsname.machine[6] = '2';
break;
/* includes 318 and 319 */
case HP_330:
protoutsname.machine[6] = '3';
break;
case HP_340:
protoutsname.machine[6] = '4';
break;
case HP_350:
protoutsname.machine[6] = '5';
break;
case HP_360:
protoutsname.machine[6] = '6';
break;
case HP_370:
protoutsname.machine[6] = '7';
break;
/* includes 345 */
case HP_375:
protoutsname.machine[6] = '7';
protoutsname.machine[7] = '5';
break;
}
/* copy hostname (sans domain) to nodename */
for (i = 0; i < 8 && hostname[i] != '.'; i++)
protoutsname.nodename[i] = hostname[i];
protoutsname.nodename[i] = '\0';
error = copyout((caddr_t)&protoutsname, (caddr_t)uap->uts,
sizeof(struct hpuxutsname));
break;
/* gethostname */
case 5:
/* uap->dev is length */
if (uap->dev > hostnamelen + 1)
uap->dev = hostnamelen + 1;
error = copyout((caddr_t)hostname, (caddr_t)uap->uts,
uap->dev);
break;
case 1: /* ?? */
case 2: /* ustat */
case 3: /* ?? */
case 4: /* sethostname */
default:
error = EINVAL;
break;
}
return (error);
}
hpuxstat(p, uap, retval)
struct proc *p;
struct args {
char *fname;
struct hpuxstat *hsb;
} *uap;
int *retval;
{
return (hpuxstat1(uap->fname, uap->hsb, FOLLOW));
}
hpuxlstat(p, uap, retval)
struct proc *p;
struct args {
char *fname;
struct hpuxstat *hsb;
} *uap;
int *retval;
{
return (hpuxstat1(uap->fname, uap->hsb, NOFOLLOW));
}
hpuxfstat(p, uap, retval)
struct proc *p;
register struct args {
int fdes;
struct hpuxstat *hsb;
} *uap;
int *retval;
{
register struct filedesc *fdp = p->p_fd;
register struct file *fp;
struct stat sb;
int error;
if (((unsigned)uap->fdes) >= fdp->fd_nfiles ||
(fp = fdp->fd_ofiles[uap->fdes]) == NULL)
return (EBADF);
switch (fp->f_type) {
case DTYPE_VNODE:
error = vn_stat((struct vnode *)fp->f_data, &sb);
break;
case DTYPE_SOCKET:
error = soo_stat((struct socket *)fp->f_data, &sb);
break;
default:
panic("fstat");
/*NOTREACHED*/
}
/* is this right for sockets?? */
if (error == 0)
error = bsdtohpuxstat(&sb, uap->hsb);
return (error);
}
hpuxulimit(p, uap, retval)
struct proc *p;
register struct args {
int cmd;
long newlimit;
} *uap;
off_t *retval;
{
struct rlimit *limp;
int error = 0;
limp = &p->p_rlimit[RLIMIT_FSIZE];
switch (uap->cmd) {
case 2:
uap->newlimit *= 512;
if (uap->newlimit > limp->rlim_max &&
(error = suser(p->p_ucred, &p->p_acflag)))
break;
limp->rlim_cur = limp->rlim_max = uap->newlimit;
/* else fall into... */
case 1:
*retval = limp->rlim_max / 512;
break;
case 3:
limp = &p->p_rlimit[RLIMIT_DATA];
*retval = ctob(p->p_vmspace->vm_tsize) + limp->rlim_max;
break;
default:
error = EINVAL;
break;
}
return (error);
}
/*
* Map "real time" priorities 0 (high) thru 127 (low) into nice
* values -16 (high) thru -1 (low).
*/
hpuxrtprio(cp, uap, retval)
struct proc *cp;
register struct args {
int pid;
int prio;
} *uap;
int *retval;
{
struct proc *p;
int nice, error;
if (uap->prio < RTPRIO_MIN && uap->prio > RTPRIO_MAX &&
uap->prio != RTPRIO_NOCHG && uap->prio != RTPRIO_RTOFF)
return (EINVAL);
if (uap->pid == 0)
p = cp;
else if ((p = pfind(uap->pid)) == 0)
return (ESRCH);
nice = p->p_nice;
if (nice < NZERO)
*retval = (nice + 16) << 3;
else
*retval = RTPRIO_RTOFF;
switch (uap->prio) {
case RTPRIO_NOCHG:
return (0);
case RTPRIO_RTOFF:
if (nice >= NZERO)
return (0);
nice = NZERO;
break;
default:
nice = (uap->prio >> 3) - 16;
break;
}
error = donice(cp, p, nice);
if (error == EACCES)
error = EPERM;
return (error);
}
hpuxadvise(p, uap, retval)
struct proc *p;
struct args {
int arg;
} *uap;
int *retval;
{
int error = 0;
switch (uap->arg) {
case 0:
p->p_addr->u_pcb.pcb_flags |= PCB_HPUXMMAP;
break;
case 1:
ICIA();
break;
case 2:
DCIA();
break;
default:
error = EINVAL;
break;
}
return (error);
}
hpuxptrace(p, uap, retval)
struct proc *p;
struct args {
int req;
int pid;
int *addr;
int data;
} *uap;
int *retval;
{
int error;
if (uap->req == PT_STEP || uap->req == PT_CONTINUE) {
if (uap->data) {
uap->data = hpuxtobsdsig(uap->data);
if (uap->data == 0)
uap->data = NSIG;
}
}
error = ptrace(p, uap, retval);
return (error);
}
hpuxgetdomainname(p, uap, retval)
struct proc *p;
register struct args {
char *domainname;
u_int len;
} *uap;
int *retval;
{
if (uap->len > domainnamelen + 1)
uap->len = domainnamelen + 1;
return (copyout(domainname, uap->domainname, uap->len));
}
hpuxsetdomainname(p, uap, retval)
struct proc *p;
register struct args {
char *domainname;
u_int len;
} *uap;
int *retval;
{
int error;
if (error = suser(p->p_ucred, &p->p_acflag))
return (error);
if (uap->len > sizeof (domainname) - 1)
return (EINVAL);
domainnamelen = uap->len;
error = copyin(uap->domainname, domainname, uap->len);
domainname[domainnamelen] = 0;
return (error);
}
#ifdef SYSVSHM
hpuxshmat(p, uap, retval)
struct proc *p;
int *uap, *retval;
{
return (shmat(p, uap, retval));
}
hpuxshmctl(p, uap, retval)
struct proc *p;
int *uap, *retval;
{
return (shmctl(p, uap, retval));
}
hpuxshmdt(p, uap, retval)
struct proc *p;
int *uap, *retval;
{
return (shmdt(p, uap, retval));
}
hpuxshmget(p, uap, retval)
struct proc *p;
int *uap, *retval;
{
return (shmget(p, uap, retval));
}
#endif
/*
* Fake semaphore routines, just don't return an error.
* Should be adequate for starbase to run.
*/
hpuxsemctl(p, uap, retval)
struct proc *p;
struct args {
int semid;
u_int semnum;
int cmd;
int arg;
} *uap;
int *retval;
{
/* XXX: should do something here */
return (0);
}
hpuxsemget(p, uap, retval)
struct proc *p;
struct args {
key_t key;
int nsems;
int semflg;
} *uap;
int *retval;
{
/* XXX: should do something here */
return (0);
}
hpuxsemop(p, uap, retval)
struct proc *p;
struct args {
int semid;
struct sembuf *sops;
u_int nsops;
} *uap;
int *retval;
{
/* XXX: should do something here */
return (0);
}
/* convert from BSD to HPUX errno */
bsdtohpuxerrno(err)
int err;
{
if (err < 0 || err >= NERR)
return(BERR);
return((int)bsdtohpuxerrnomap[err]);
}
hpuxstat1(fname, hsb, follow)
char *fname;
struct hpuxstat *hsb;
int follow;
{
register struct nameidata *ndp;
int error;
struct stat sb;
struct nameidata nd;
ndp = &nd;
ndp->ni_nameiop = LOOKUP | LOCKLEAF | follow;
ndp->ni_segflg = UIO_USERSPACE;
ndp->ni_dirp = fname;
if (error = namei(ndp, curproc))
return (error);
error = vn_stat(ndp->ni_vp, &sb);
vput(ndp->ni_vp);
if (error == 0)
error = bsdtohpuxstat(&sb, hsb);
return (error);
}
#include "grf.h"
bsdtohpuxstat(sb, hsb)
struct stat *sb;
struct hpuxstat *hsb;
{
struct hpuxstat ds;
bzero((caddr_t)&ds, sizeof(ds));
ds.hst_dev = sb->st_dev;
ds.hst_ino = (u_long)sb->st_ino;
ds.hst_mode = sb->st_mode;
ds.hst_nlink = sb->st_nlink;
ds.hst_uid = (u_short)sb->st_uid;
ds.hst_gid = (u_short)sb->st_gid;
#if NGRF > 0
/* XXX: I don't want to talk about it... */
if ((sb->st_mode & S_IFMT) == S_IFCHR && major(sb->st_rdev) == 10)
ds.hst_rdev = grfdevno(sb->st_rdev);
else
#endif
ds.hst_rdev = bsdtohpuxdev(sb->st_rdev);
ds.hst_size = sb->st_size;
ds.hst_atime = sb->st_atime;
ds.hst_mtime = sb->st_mtime;
ds.hst_ctime = sb->st_ctime;
ds.hst_blksize = sb->st_blksize;
ds.hst_blocks = sb->st_blocks;
return(copyout((caddr_t)&ds, (caddr_t)hsb, sizeof(ds)));
}
hpuxtobsdioctl(com)
int com;
{
switch (com) {
case HPUXTIOCSLTC:
com = TIOCSLTC; break;
case HPUXTIOCGLTC:
com = TIOCGLTC; break;
case HPUXTIOCSPGRP:
com = TIOCSPGRP; break;
case HPUXTIOCGPGRP:
com = TIOCGPGRP; break;
case HPUXTIOCLBIS:
com = TIOCLBIS; break;
case HPUXTIOCLBIC:
com = TIOCLBIC; break;
case HPUXTIOCLSET:
com = TIOCLSET; break;
case HPUXTIOCLGET:
com = TIOCLGET; break;
}
return(com);
}
/*
* HPUX ioctl system call. The differences here are:
* IOC_IN also means IOC_VOID if the size portion is zero.
* no FIOCLEX/FIONCLEX/FIOASYNC/FIOGETOWN/FIOSETOWN
* the sgttyb struct is 2 bytes longer
*/
hpuxioctl(p, uap, retval)
struct proc *p;
register struct args {
int fdes;
int cmd;
caddr_t cmarg;
} *uap;
int *retval;
{
register struct filedesc *fdp = p->p_fd;
register struct file *fp;
register int com, error;
register u_int size;
caddr_t memp = 0;
#define STK_PARAMS 128
char stkbuf[STK_PARAMS];
caddr_t data = stkbuf;
com = uap->cmd;
/* XXX */
if (com == HPUXTIOCGETP || com == HPUXTIOCSETP)
return (getsettty(p, uap->fdes, com, uap->cmarg));
if (((unsigned)uap->fdes) >= fdp->fd_nfiles ||
(fp = fdp->fd_ofiles[uap->fdes]) == NULL)
return (EBADF);
if ((fp->f_flag & (FREAD|FWRITE)) == 0)
return (EBADF);
/*
* Interpret high order word to find
* amount of data to be copied to/from the
* user's address space.
*/
size = IOCPARM_LEN(com);
if (size > IOCPARM_MAX)
return (ENOTTY);
if (size > sizeof (stkbuf)) {
memp = (caddr_t)malloc((u_long)size, M_IOCTLOPS, M_WAITOK);
data = memp;
}
if (com&IOC_IN) {
if (size) {
error = copyin(uap->cmarg, data, (u_int)size);
if (error) {
if (memp)
free(memp, M_IOCTLOPS);
return (error);
}
} else
*(caddr_t *)data = uap->cmarg;
} else if ((com&IOC_OUT) && size)
/*
* Zero the buffer so the user always
* gets back something deterministic.
*/
bzero(data, size);
else if (com&IOC_VOID)
*(caddr_t *)data = uap->cmarg;
switch (com) {
case HPUXFIOSNBIO:
{
char *ofp = &fdp->fd_ofileflags[uap->fdes];
int tmp;
if (*(int *)data)
*ofp |= UF_FIONBIO_ON;
else
*ofp &= ~UF_FIONBIO_ON;
/*
* Only set/clear if FNONBLOCK not in effect
*/
if ((*ofp & UF_FNDELAY_ON) == 0) {
tmp = fp->f_flag & FNONBLOCK;
error = (*fp->f_ops->fo_ioctl)(fp, FIONBIO,
(caddr_t)&tmp, p);
}
break;
}
case HPUXTIOCCONS:
*(int *)data = 1;
error = (*fp->f_ops->fo_ioctl)(fp, TIOCCONS, data, p);
break;
/* BSD-style job control ioctls */
case HPUXTIOCLBIS:
case HPUXTIOCLBIC:
case HPUXTIOCLSET:
*(int *)data &= HPUXLTOSTOP;
if (*(int *)data & HPUXLTOSTOP)
*(int *)data = LTOSTOP;
/* fall into */
case HPUXTIOCLGET:
case HPUXTIOCSLTC:
case HPUXTIOCGLTC:
case HPUXTIOCSPGRP:
case HPUXTIOCGPGRP:
error = (*fp->f_ops->fo_ioctl)
(fp, hpuxtobsdioctl(com), data, p);
if (error == 0 && com == HPUXTIOCLGET) {
*(int *)data &= LTOSTOP;
if (*(int *)data & LTOSTOP)
*(int *)data = HPUXLTOSTOP;
}
break;
/* SYS 5 termio */
case HPUXTCGETA:
case HPUXTCSETA:
case HPUXTCSETAW:
case HPUXTCSETAF:
error = hpuxtermio(fp, com, data, p);
break;
default:
error = (*fp->f_ops->fo_ioctl)(fp, com, data, p);
break;
}
/*
* Copy any data to user, size was
* already set and checked above.
*/
if (error == 0 && (com&IOC_OUT) && size)
error = copyout(data, uap->cmarg, (u_int)size);
if (memp)
free(memp, M_IOCTLOPS);
return (error);
}
/*
* Man page lies, behaviour here is based on observed behaviour.
*/
hpuxgetcontext(p, uap, retval)
struct proc *p;
struct args {
char *buf;
int len;
} *uap;
int *retval;
{
int error = 0;
register int len;
len = MIN(uap->len, sizeof(hpuxcontext));
if (len)
error = copyout(hpuxcontext, uap->buf, (u_int)len);
if (error == 0)
*retval = sizeof(hpuxcontext);
return (error);
}
/*
* This is the equivalent of BSD getpgrp but with more restrictions.
* Note we do not check the real uid or "saved" uid.
*/
hpuxgetpgrp2(cp, uap, retval)
struct proc *cp;
register struct args {
int pid;
} *uap;
int *retval;
{
register struct proc *p;
if (uap->pid == 0)
uap->pid = cp->p_pid;
p = pfind(uap->pid);
if (p == 0)
return (ESRCH);
if (cp->p_ucred->cr_uid && p->p_ucred->cr_uid != cp->p_ucred->cr_uid &&
!inferior(p))
return (EPERM);
*retval = p->p_pgid;
return (0);
}
/*
* This is the equivalent of BSD setpgrp but with more restrictions.
* Note we do not check the real uid or "saved" uid or pgrp.
*/
hpuxsetpgrp2(p, uap, retval)
struct proc *p;
struct args {
int pid;
int pgrp;
} *uap;
int *retval;
{
/* empirically determined */
if (uap->pgrp < 0 || uap->pgrp >= 30000)
return (EINVAL);
return (setpgid(p, uap, retval));
}
/*
* XXX Same as BSD setre[ug]id right now. Need to consider saved ids.
*/
hpuxsetresuid(p, uap, retval)
struct proc *p;
struct args {
int ruid;
int euid;
int suid;
} *uap;
int *retval;
{
return (osetreuid(p, uap, retval));
}
hpuxsetresgid(p, uap, retval)
struct proc *p;
struct args {
int rgid;
int egid;
int sgid;
} *uap;
int *retval;
{
return (osetregid(p, uap, retval));
}
/*
* XXX: simple recognition hack to see if we can make grmd work.
*/
hpuxlockf(p, uap, retval)
struct proc *p;
struct args {
int fd;
int func;
long size;
} *uap;
int *retval;
{
#ifdef DEBUG
log(LOG_DEBUG, "%d: lockf(%d, %d, %d)\n",
p->p_pid, uap->fd, uap->func, uap->size);
#endif
return (0);
}
hpuxgetaccess(p, uap, retval)
register struct proc *p;
register struct args {
char *path;
int uid;
int ngroups;
int *gidset;
void *label;
void *privs;
} *uap;
int *retval;
{
struct nameidata *ndp;
int lgroups[NGROUPS];
int error = 0;
register struct ucred *cred;
register struct vnode *vp;
/*
* Build an appropriate credential structure
*/
cred = crdup(p->p_ucred);
switch (uap->uid) {
case 65502: /* UID_EUID */
break;
case 65503: /* UID_RUID */
cred->cr_uid = p->p_cred->p_ruid;
break;
case 65504: /* UID_SUID */
error = EINVAL;
break;
default:
if (uap->uid > 65504)
error = EINVAL;
cred->cr_uid = uap->uid;
break;
}
switch (uap->ngroups) {
case -1: /* NGROUPS_EGID */
cred->cr_ngroups = 1;
break;
case -5: /* NGROUPS_EGID_SUPP */
break;
case -2: /* NGROUPS_RGID */
cred->cr_ngroups = 1;
cred->cr_gid = p->p_cred->p_rgid;
break;
case -6: /* NGROUPS_RGID_SUPP */
cred->cr_gid = p->p_cred->p_rgid;
break;
case -3: /* NGROUPS_SGID */
case -7: /* NGROUPS_SGID_SUPP */
error = EINVAL;
break;
case -4: /* NGROUPS_SUPP */
if (cred->cr_ngroups > 1)
cred->cr_gid = cred->cr_groups[1];
else
error = EINVAL;
break;
default:
if (uap->ngroups > 0 && uap->ngroups <= NGROUPS)
error = copyin((caddr_t)uap->gidset,
(caddr_t)&lgroups[0],
uap->ngroups * sizeof(lgroups[0]));
else
error = EINVAL;
if (error == 0) {
int gid;
for (gid = 0; gid < uap->ngroups; gid++)
cred->cr_groups[gid] = lgroups[gid];
cred->cr_ngroups = uap->ngroups;
}
break;
}
/*
* Lookup file using caller's effective IDs.
*/
if (error == 0) {
ndp->ni_nameiop = LOOKUP | FOLLOW | LOCKLEAF;
ndp->ni_segflg = UIO_USERSPACE;
ndp->ni_dirp = uap->path;
error = namei(ndp, p);
}
if (error) {
crfree(cred);
return (error);
}
/*
* Use the constructed credentials for access checks.
*/
vp = ndp->ni_vp;
*retval = 0;
if (VOP_ACCESS(vp, VREAD, cred, p) == 0)
*retval |= R_OK;
if (vn_writechk(vp) == 0 && VOP_ACCESS(vp, VWRITE, cred, p) == 0)
*retval |= W_OK;
/* XXX we return X_OK for root on VREG even if not */
if (VOP_ACCESS(vp, VEXEC, cred, p) == 0)
*retval |= X_OK;
vput(vp);
crfree(cred);
return (error);
}
/*
* Brutal hack! Map HPUX u-area offsets into BSD u offsets.
* No apologies offered, if you don't like it, rewrite it!
*/
extern char kstack[];
#define UOFF(f) ((int)&((struct user *)0)->f)
#define HPUOFF(f) ((int)&((struct hpuxuser *)0)->f)
/* simplified FP structure */
struct bsdfp {
int save[54];
int reg[24];
int ctrl[3];
};
hpuxtobsduoff(off)
int *off;
{
register int *ar0 = curproc->p_regs;
struct hpuxfp *hp;
struct bsdfp *bp;
register u_int raddr;
/* u_ar0 field; procxmt puts in U_ar0 */
if ((int)off == HPUOFF(hpuxu_ar0))
return(UOFF(U_ar0));
#ifdef FPCOPROC
/* 68881 registers from PCB */
hp = (struct hpuxfp *)HPUOFF(hpuxu_fp);
bp = (struct bsdfp *)UOFF(u_pcb.pcb_fpregs);
if (off >= hp->hpfp_ctrl && off < &hp->hpfp_ctrl[3])
return((int)&bp->ctrl[off - hp->hpfp_ctrl]);
if (off >= hp->hpfp_reg && off < &hp->hpfp_reg[24])
return((int)&bp->reg[off - hp->hpfp_reg]);
#endif
/*
* Everything else we recognize comes from the kernel stack,
* so we convert off to an absolute address (if not already)
* for simplicity.
*/
if (off < (int *)ctob(UPAGES))
off = (int *)((u_int)off + (u_int)kstack);
/*
* 68020 registers.
* We know that the HPUX registers are in the same order as ours.
* The only difference is that their PS is 2 bytes instead of a
* padded 4 like ours throwing the alignment off.
*/
if (off >= ar0 && off < &ar0[18]) {
/*
* PS: return low word and high word of PC as HP-UX would
* (e.g. &u.u_ar0[16.5]).
*/
if (off == &ar0[PS])
raddr = (u_int) &((short *)ar0)[PS*2+1];
/*
* PC: off will be &u.u_ar0[16.5]
*/
else if (off == (int *)&(((short *)ar0)[PS*2+1]))
raddr = (u_int) &ar0[PC];
/*
* D0-D7, A0-A7: easy
*/
else
raddr = (u_int) &ar0[(int)(off - ar0)];
return((int)(raddr - (u_int)kstack));
}
/* everything else */
return(-1);
}
/*
* Kludge up a uarea dump so that HPUX debuggers can find out
* what they need. IMPORTANT NOTE: we do not EVEN attempt to
* convert the entire user struct.
*/
hpuxdumpu(vp, cred)
struct vnode *vp;
struct ucred *cred;
{
struct proc *p = curproc;
int error;
struct hpuxuser *faku;
struct bsdfp *bp;
short *foop;
faku = (struct hpuxuser *)malloc((u_long)ctob(1), M_TEMP, M_WAITOK);
/*
* Make sure there is no mistake about this
* being a real user structure.
*/
bzero((caddr_t)faku, ctob(1));
/*
* Fill in the process sizes.
*/
faku->hpuxu_tsize = p->p_vmspace->vm_tsize;
faku->hpuxu_dsize = p->p_vmspace->vm_dsize;
faku->hpuxu_ssize = p->p_vmspace->vm_ssize;
/*
* Fill in the exec header for CDB.
* This was saved back in exec(). As far as I can tell CDB
* only uses this information to verify that a particular
* core file goes with a particular binary.
*/
bcopy((caddr_t)p->p_addr->u_pcb.pcb_exec,
(caddr_t)&faku->hpuxu_exdata, sizeof (struct hpux_exec));
/*
* Adjust user's saved registers (on kernel stack) to reflect
* HPUX order. Note that HPUX saves the SR as 2 bytes not 4
* so we have to move it up.
*/
faku->hpuxu_ar0 = p->p_regs;
foop = (short *) p->p_regs;
foop[32] = foop[33];
foop[33] = foop[34];
foop[34] = foop[35];
#ifdef FPCOPROC
/*
* Copy 68881 registers from our PCB format to HPUX format
*/
bp = (struct bsdfp *) &p->p_addr->u_pcb.pcb_fpregs;
bcopy((caddr_t)bp->save, (caddr_t)faku->hpuxu_fp.hpfp_save,
sizeof(bp->save));
bcopy((caddr_t)bp->ctrl, (caddr_t)faku->hpuxu_fp.hpfp_ctrl,
sizeof(bp->ctrl));
bcopy((caddr_t)bp->reg, (caddr_t)faku->hpuxu_fp.hpfp_reg,
sizeof(bp->reg));
#endif
/*
* Slay the dragon
*/
faku->hpuxu_dragon = -1;
/*
* Dump this artfully constructed page in place of the
* user struct page.
*/
error = vn_rdwr(UIO_WRITE, vp, (caddr_t)faku, ctob(1), (off_t)0,
UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred,
(int *)NULL, p);
/*
* Dump the remaining UPAGES-1 pages normally
*/
if (!error)
error = vn_rdwr(UIO_WRITE, vp, kstack + ctob(1),
ctob(UPAGES-1), (off_t)ctob(1), UIO_SYSSPACE,
IO_NODELOCKED|IO_UNIT, cred, (int *)NULL, p);
free((caddr_t)faku, M_TEMP);
return(error);
}
/*
* The remaining routines are essentially the same as those in kern_xxx.c
* and vfs_xxx.c as defined under "#ifdef COMPAT". We replicate them here
* to avoid HPUXCOMPAT dependencies in those files and to make sure that
* HP-UX compatibility still works even when COMPAT is not defined.
*/
/* #ifdef COMPAT */
#define HPUX_HZ 50
#include "sys/times.h"
/* from old timeb.h */
struct hpuxtimeb {
time_t time;
u_short millitm;
short timezone;
short dstflag;
};
/* ye ole stat structure */
struct ohpuxstat {
dev_t ohst_dev;
u_short ohst_ino;
u_short ohst_mode;
short ohst_nlink;
short ohst_uid;
short ohst_gid;
dev_t ohst_rdev;
int ohst_size;
int ohst_atime;
int ohst_mtime;
int ohst_ctime;
};
/*
* SYS V style setpgrp()
*/
ohpuxsetpgrp(p, uap, retval)
register struct proc *p;
int *uap, *retval;
{
if (p->p_pid != p->p_pgid)
enterpgrp(p, p->p_pid, 0);
*retval = p->p_pgid;
return (0);
}
ohpuxtime(p, uap, retval)
struct proc *p;
register struct args {
long *tp;
} *uap;
time_t *retval;
{
int error = 0;
if (uap->tp)
error = copyout((caddr_t)&time.tv_sec, (caddr_t)uap->tp,
sizeof (long));
*retval = time.tv_sec;
return (error);
}
ohpuxstime(p, uap, retval)
struct proc *p;
register struct args {
int time;
} *uap;
int *retval;
{
struct timeval tv;
int s, error;
tv.tv_sec = uap->time;
tv.tv_usec = 0;
if (error = suser(p->p_ucred, &p->p_acflag))
return (error);
/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
boottime.tv_sec += tv.tv_sec - time.tv_sec;
s = splhigh(); time = tv; splx(s);
resettodr();
return (0);
}
ohpuxftime(p, uap, retval)
struct proc *p;
register struct args {
struct hpuxtimeb *tp;
} *uap;
int *retval;
{
struct hpuxtimeb tb;
int s;
s = splhigh();
tb.time = time.tv_sec;
tb.millitm = time.tv_usec / 1000;
splx(s);
tb.timezone = tz.tz_minuteswest;
tb.dstflag = tz.tz_dsttime;
return (copyout((caddr_t)&tb, (caddr_t)uap->tp, sizeof (tb)));
}
ohpuxalarm(p, uap, retval)
register struct proc *p;
register struct args {
int deltat;
} *uap;
int *retval;
{
int s = splhigh();
untimeout(realitexpire, (caddr_t)p);
timerclear(&p->p_realtimer.it_interval);
*retval = 0;
if (timerisset(&p->p_realtimer.it_value) &&
timercmp(&p->p_realtimer.it_value, &time, >))
*retval = p->p_realtimer.it_value.tv_sec - time.tv_sec;
if (uap->deltat == 0) {
timerclear(&p->p_realtimer.it_value);
splx(s);
return (0);
}
p->p_realtimer.it_value = time;
p->p_realtimer.it_value.tv_sec += uap->deltat;
timeout(realitexpire, (caddr_t)p, hzto(&p->p_realtimer.it_value));
splx(s);
return (0);
}
ohpuxnice(p, uap, retval)
register struct proc *p;
register struct args {
int niceness;
} *uap;
int *retval;
{
int error;
error = donice(p, p, (p->p_nice-NZERO)+uap->niceness);
if (error == 0)
*retval = p->p_nice - NZERO;
return (error);
}
ohpuxtimes(p, uap, retval)
struct proc *p;
register struct args {
struct tms *tmsb;
} *uap;
time_t *retval;
{
struct tms atms;
int error;
atms.tms_utime = hpuxscale(&p->p_utime);
atms.tms_stime = hpuxscale(&p->p_stime);
atms.tms_cutime = hpuxscale(&p->p_stats->p_cru.ru_utime);
atms.tms_cstime = hpuxscale(&p->p_stats->p_cru.ru_stime);
error = copyout((caddr_t)&atms, (caddr_t)uap->tmsb, sizeof (atms));
if (error == 0)
*retval = hpuxscale(&time) - hpuxscale(&boottime);
return (error);
}
/*
* Doesn't exactly do what the documentation says.
* What we really do is return 1/HPUX_HZ-th of a second since that
* is what HP-UX returns.
*/
hpuxscale(tvp)
register struct timeval *tvp;
{
return (tvp->tv_sec * HPUX_HZ + tvp->tv_usec * HPUX_HZ / 1000000);
}
/*
* Set IUPD and IACC times on file.
* Can't set ICHG.
*/
ohpuxutime(p, uap, retval)
struct proc *p;
register struct a {
char *fname;
time_t *tptr;
} *uap;
int *retval;
{
register struct vnode *vp;
register struct nameidata *ndp;
struct vattr vattr;
time_t tv[2];
int error;
struct nameidata nd;
ndp = &nd;
if (uap->tptr) {
error = copyin((caddr_t)uap->tptr, (caddr_t)tv, sizeof (tv));
if (error)
return (error);
} else
tv[0] = tv[1] = time.tv_sec;
ndp->ni_nameiop = LOOKUP | FOLLOW | LOCKLEAF;
ndp->ni_segflg = UIO_USERSPACE;
ndp->ni_dirp = uap->fname;
vattr_null(&vattr);
vattr.va_atime.tv_sec = tv[0];
vattr.va_atime.tv_usec = 0;
vattr.va_mtime.tv_sec = tv[1];
vattr.va_mtime.tv_usec = 0;
if (error = namei(ndp, p))
return (error);
vp = ndp->ni_vp;
if (vp->v_mount->mnt_flag & MNT_RDONLY)
error = EROFS;
else
error = VOP_SETATTR(vp, &vattr, ndp->ni_cred, p);
vput(vp);
return (error);
}
ohpuxpause(p, uap, retval)
struct proc *p;
int *uap, *retval;
{
(void) tsleep(kstack, PPAUSE | PCATCH, "pause", 0);
/* always return EINTR rather than ERESTART... */
return (EINTR);
}
/*
* The old fstat system call.
*/
ohpuxfstat(p, uap, retval)
struct proc *p;
register struct args {
int fd;
struct ohpuxstat *sb;
} *uap;
int *retval;
{
register struct filedesc *fdp = p->p_fd;
struct file *fp;
if (((unsigned)uap->fd) >= fdp->fd_nfiles ||
(fp = fdp->fd_ofiles[uap->fd]) == NULL)
return (EBADF);
if (fp->f_type != DTYPE_VNODE)
return (EINVAL);
return (ohpuxstat1((struct vnode *)fp->f_data, uap->sb));
}
/*
* Old stat system call. This version follows links.
*/
ohpuxstat(p, uap, retval)
struct proc *p;
register struct args {
char *fname;
struct ohpuxstat *sb;
} *uap;
int *retval;
{
register struct nameidata *ndp;
int error;
struct nameidata nd;
ndp = &nd;
ndp->ni_nameiop = LOOKUP | LOCKLEAF | FOLLOW;
ndp->ni_segflg = UIO_USERSPACE;
ndp->ni_dirp = uap->fname;
if (error = namei(ndp, p))
return (error);
error = ohpuxstat1(ndp->ni_vp, uap->sb);
vput(ndp->ni_vp);
return (error);
}
int
ohpuxstat1(vp, ub)
register struct vnode *vp;
struct ohpuxstat *ub;
{
struct ohpuxstat ds;
struct vattr vattr;
register int error;
error = VOP_GETATTR(vp, &vattr, curproc->p_ucred, curproc);
if (error)
return(error);
/*
* Copy from inode table
*/
ds.ohst_dev = vattr.va_fsid;
ds.ohst_ino = (short)vattr.va_fileid;
ds.ohst_mode = (u_short)vattr.va_mode;
ds.ohst_nlink = vattr.va_nlink;
ds.ohst_uid = (short)vattr.va_uid;
ds.ohst_gid = (short)vattr.va_gid;
ds.ohst_rdev = (dev_t)vattr.va_rdev;
ds.ohst_size = (int)vattr.va_size;
ds.ohst_atime = (int)vattr.va_atime.tv_sec;
ds.ohst_mtime = (int)vattr.va_mtime.tv_sec;
ds.ohst_ctime = (int)vattr.va_ctime.tv_sec;
return (copyout((caddr_t)&ds, (caddr_t)ub, sizeof(ds)));
}
/* #endif */
#endif