5c099b14c1
pull in just about all of the differences from the crypto-us telnet suite (which includes Kerberos 4 and connection encryption support). Also bring in the Kerberos 5 support from the Heimdal telnet, and frob a little so that it can work with the non-Heimdal telnet suite. There is still some work left to do, specifically: - Add Heimdal's ticket forwarding support to the Berkeley Kerberos 4 module. - Add connection encryption support to the Heimdal Kerberos 5 module. Hints on this can be taken from the MIT Kerberos 5 module which still exists in crypto-us. However, even with the shortcomings listed above, this is a better situation than using the stock Heimdal telnet suite, which does not understand the IPSec policy stuff, and is also based on much older code which contains bugs that we have already fixed in the NetBSD sources.
376 lines
8.4 KiB
C
376 lines
8.4 KiB
C
/* $NetBSD: ring.c,v 1.9 2000/06/22 06:47:48 thorpej Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1988, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
#ifndef lint
|
|
#if 0
|
|
static char sccsid[] = "@(#)ring.c 8.2 (Berkeley) 5/30/95";
|
|
#else
|
|
__RCSID("$NetBSD: ring.c,v 1.9 2000/06/22 06:47:48 thorpej Exp $");
|
|
#endif
|
|
#endif /* not lint */
|
|
|
|
/*
|
|
* This defines a structure for a ring buffer.
|
|
*
|
|
* The circular buffer has two parts:
|
|
*(((
|
|
* full: [consume, supply)
|
|
* empty: [supply, consume)
|
|
*]]]
|
|
*
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#ifndef NO_STRING_H
|
|
#include <string.h>
|
|
#endif
|
|
#include <strings.h>
|
|
#include <errno.h>
|
|
|
|
#ifdef size_t
|
|
#undef size_t
|
|
#endif
|
|
|
|
#include <sys/types.h>
|
|
#ifndef FILIO_H
|
|
#include <sys/ioctl.h>
|
|
#endif
|
|
#include <sys/socket.h>
|
|
|
|
#include "ring.h"
|
|
#include "general.h"
|
|
|
|
/* Internal macros */
|
|
|
|
#if !defined(MIN)
|
|
#define MIN(a,b) (((a)<(b))? (a):(b))
|
|
#endif /* !defined(MIN) */
|
|
|
|
#define ring_subtract(d,a,b) (((a)-(b) >= 0)? \
|
|
(a)-(b): (((a)-(b))+(d)->size))
|
|
|
|
#define ring_increment(d,a,c) (((a)+(c) < (d)->top)? \
|
|
(a)+(c) : (((a)+(c))-(d)->size))
|
|
|
|
#define ring_decrement(d,a,c) (((a)-(c) >= (d)->bottom)? \
|
|
(a)-(c) : (((a)-(c))-(d)->size))
|
|
|
|
|
|
/*
|
|
* The following is a clock, used to determine full, empty, etc.
|
|
*
|
|
* There is some trickiness here. Since the ring buffers are initialized
|
|
* to ZERO on allocation, we need to make sure, when interpreting the
|
|
* clock, that when the times are EQUAL, then the buffer is FULL.
|
|
*/
|
|
static u_long ring_clock = 0;
|
|
|
|
|
|
#define ring_empty(d) (((d)->consume == (d)->supply) && \
|
|
((d)->consumetime >= (d)->supplytime))
|
|
#define ring_full(d) (((d)->supply == (d)->consume) && \
|
|
((d)->supplytime > (d)->consumetime))
|
|
|
|
|
|
|
|
|
|
|
|
/* Buffer state transition routines */
|
|
|
|
int
|
|
ring_init(ring, buffer, count)
|
|
Ring *ring;
|
|
unsigned char *buffer;
|
|
int count;
|
|
{
|
|
memset((char *)ring, 0, sizeof *ring);
|
|
|
|
ring->size = count;
|
|
|
|
ring->supply = ring->consume = ring->bottom = buffer;
|
|
|
|
ring->top = ring->bottom+ring->size;
|
|
|
|
#ifdef ENCRYPTION
|
|
ring->clearto = 0;
|
|
#endif /* ENCRYPTION */
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Mark routines */
|
|
|
|
/*
|
|
* Mark the most recently supplied byte.
|
|
*/
|
|
|
|
void
|
|
ring_mark(ring)
|
|
Ring *ring;
|
|
{
|
|
ring->mark = ring_decrement(ring, ring->supply, 1);
|
|
}
|
|
|
|
/*
|
|
* Is the ring pointing to the mark?
|
|
*/
|
|
|
|
int
|
|
ring_at_mark(ring)
|
|
Ring *ring;
|
|
{
|
|
if (ring->mark == ring->consume) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clear any mark set on the ring.
|
|
*/
|
|
|
|
void
|
|
ring_clear_mark(ring)
|
|
Ring *ring;
|
|
{
|
|
ring->mark = 0;
|
|
}
|
|
|
|
/*
|
|
* Add characters from current segment to ring buffer.
|
|
*/
|
|
void
|
|
ring_supplied(ring, count)
|
|
Ring *ring;
|
|
int count;
|
|
{
|
|
ring->supply = ring_increment(ring, ring->supply, count);
|
|
ring->supplytime = ++ring_clock;
|
|
}
|
|
|
|
/*
|
|
* We have just consumed "c" bytes.
|
|
*/
|
|
void
|
|
ring_consumed(ring, count)
|
|
Ring *ring;
|
|
int count;
|
|
{
|
|
if (count == 0) /* don't update anything */
|
|
return;
|
|
|
|
if (ring->mark &&
|
|
(ring_subtract(ring, ring->mark, ring->consume) < count)) {
|
|
ring->mark = 0;
|
|
}
|
|
#ifdef ENCRYPTION
|
|
if (ring->consume < ring->clearto &&
|
|
ring->clearto <= ring->consume + count)
|
|
ring->clearto = 0;
|
|
else if (ring->consume + count > ring->top &&
|
|
ring->bottom <= ring->clearto &&
|
|
ring->bottom + ((ring->consume + count) - ring->top))
|
|
ring->clearto = 0;
|
|
#endif /* ENCRYPTION */
|
|
ring->consume = ring_increment(ring, ring->consume, count);
|
|
ring->consumetime = ++ring_clock;
|
|
/*
|
|
* Try to encourage "ring_empty_consecutive()" to be large.
|
|
*/
|
|
if (ring_empty(ring)) {
|
|
ring->consume = ring->supply = ring->bottom;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/* Buffer state query routines */
|
|
|
|
|
|
/* Number of bytes that may be supplied */
|
|
int
|
|
ring_empty_count(ring)
|
|
Ring *ring;
|
|
{
|
|
if (ring_empty(ring)) { /* if empty */
|
|
return ring->size;
|
|
} else {
|
|
return ring_subtract(ring, ring->consume, ring->supply);
|
|
}
|
|
}
|
|
|
|
/* number of CONSECUTIVE bytes that may be supplied */
|
|
int
|
|
ring_empty_consecutive(ring)
|
|
Ring *ring;
|
|
{
|
|
if ((ring->consume < ring->supply) || ring_empty(ring)) {
|
|
/*
|
|
* if consume is "below" supply, or empty, then
|
|
* return distance to the top
|
|
*/
|
|
return ring_subtract(ring, ring->top, ring->supply);
|
|
} else {
|
|
/*
|
|
* else, return what we may.
|
|
*/
|
|
return ring_subtract(ring, ring->consume, ring->supply);
|
|
}
|
|
}
|
|
|
|
/* Return the number of bytes that are available for consuming
|
|
* (but don't give more than enough to get to cross over set mark)
|
|
*/
|
|
|
|
int
|
|
ring_full_count(ring)
|
|
Ring *ring;
|
|
{
|
|
if ((ring->mark == 0) || (ring->mark == ring->consume)) {
|
|
if (ring_full(ring)) {
|
|
return ring->size; /* nothing consumed, but full */
|
|
} else {
|
|
return ring_subtract(ring, ring->supply, ring->consume);
|
|
}
|
|
} else {
|
|
return ring_subtract(ring, ring->mark, ring->consume);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return the number of CONSECUTIVE bytes available for consuming.
|
|
* However, don't return more than enough to cross over set mark.
|
|
*/
|
|
int
|
|
ring_full_consecutive(ring)
|
|
Ring *ring;
|
|
{
|
|
if ((ring->mark == 0) || (ring->mark == ring->consume)) {
|
|
if ((ring->supply < ring->consume) || ring_full(ring)) {
|
|
return ring_subtract(ring, ring->top, ring->consume);
|
|
} else {
|
|
return ring_subtract(ring, ring->supply, ring->consume);
|
|
}
|
|
} else {
|
|
if (ring->mark < ring->consume) {
|
|
return ring_subtract(ring, ring->top, ring->consume);
|
|
} else { /* Else, distance to mark */
|
|
return ring_subtract(ring, ring->mark, ring->consume);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Move data into the "supply" portion of of the ring buffer.
|
|
*/
|
|
void
|
|
ring_supply_data(ring, buffer, count)
|
|
Ring *ring;
|
|
unsigned char *buffer;
|
|
int count;
|
|
{
|
|
int i;
|
|
|
|
while (count) {
|
|
i = MIN(count, ring_empty_consecutive(ring));
|
|
memmove(ring->supply, buffer, i);
|
|
ring_supplied(ring, i);
|
|
count -= i;
|
|
buffer += i;
|
|
}
|
|
}
|
|
|
|
#ifdef notdef
|
|
|
|
/*
|
|
* Move data from the "consume" portion of the ring buffer
|
|
*/
|
|
void
|
|
ring_consume_data(ring, buffer, count)
|
|
Ring *ring;
|
|
unsigned char *buffer;
|
|
int count;
|
|
{
|
|
int i;
|
|
|
|
while (count) {
|
|
i = MIN(count, ring_full_consecutive(ring));
|
|
memmove(buffer, ring->consume, i);
|
|
ring_consumed(ring, i);
|
|
count -= i;
|
|
buffer += i;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef ENCRYPTION
|
|
void
|
|
ring_encrypt(ring, encryptor)
|
|
Ring *ring;
|
|
void (*encryptor) P((unsigned char *, int));
|
|
{
|
|
unsigned char *s, *c;
|
|
|
|
if (ring_empty(ring) || ring->clearto == ring->supply)
|
|
return;
|
|
|
|
if (!(c = ring->clearto))
|
|
c = ring->consume;
|
|
|
|
s = ring->supply;
|
|
|
|
if (s <= c) {
|
|
(*encryptor)(c, ring->top - c);
|
|
(*encryptor)(ring->bottom, s - ring->bottom);
|
|
} else
|
|
(*encryptor)(c, s - c);
|
|
|
|
ring->clearto = ring->supply;
|
|
}
|
|
|
|
void
|
|
ring_clearto(ring)
|
|
Ring *ring;
|
|
{
|
|
|
|
if (!ring_empty(ring))
|
|
ring->clearto = ring->supply;
|
|
else
|
|
ring->clearto = 0;
|
|
}
|
|
#endif /* ENCRYPTION */
|