1807 lines
42 KiB
C
1807 lines
42 KiB
C
/* $NetBSD: z8530tty.c,v 1.77 2001/05/30 15:24:24 lukem Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1993, 1994, 1995, 1996, 1997, 1998, 1999
|
|
* Charles M. Hannum. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Charles M. Hannum.
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1994 Gordon W. Ross
|
|
* Copyright (c) 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This software was developed by the Computer Systems Engineering group
|
|
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
|
|
* contributed to Berkeley.
|
|
*
|
|
* All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Lawrence Berkeley Laboratory.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)zs.c 8.1 (Berkeley) 7/19/93
|
|
*/
|
|
|
|
/*
|
|
* Zilog Z8530 Dual UART driver (tty interface)
|
|
*
|
|
* This is the "slave" driver that will be attached to
|
|
* the "zsc" driver for plain "tty" async. serial lines.
|
|
*
|
|
* Credits, history:
|
|
*
|
|
* The original version of this code was the sparc/dev/zs.c driver
|
|
* as distributed with the Berkeley 4.4 Lite release. Since then,
|
|
* Gordon Ross reorganized the code into the current parent/child
|
|
* driver scheme, separating the Sun keyboard and mouse support
|
|
* into independent child drivers.
|
|
*
|
|
* RTS/CTS flow-control support was a collaboration of:
|
|
* Gordon Ross <gwr@netbsd.org>,
|
|
* Bill Studenmund <wrstuden@loki.stanford.edu>
|
|
* Ian Dall <Ian.Dall@dsto.defence.gov.au>
|
|
*
|
|
* The driver was massively overhauled in November 1997 by Charles Hannum,
|
|
* fixing *many* bugs, and substantially improving performance.
|
|
*/
|
|
|
|
#include "opt_kgdb.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/device.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/file.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/timepps.h>
|
|
#include <sys/tty.h>
|
|
#include <sys/time.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/syslog.h>
|
|
|
|
#include <dev/ic/z8530reg.h>
|
|
#include <machine/z8530var.h>
|
|
|
|
#include <dev/cons.h>
|
|
|
|
#include "locators.h"
|
|
|
|
/*
|
|
* How many input characters we can buffer.
|
|
* The port-specific var.h may override this.
|
|
* Note: must be a power of two!
|
|
*/
|
|
#ifndef ZSTTY_RING_SIZE
|
|
#define ZSTTY_RING_SIZE 2048
|
|
#endif
|
|
|
|
static struct cnm_state zstty_cnm_state;
|
|
/*
|
|
* Make this an option variable one can patch.
|
|
* But be warned: this must be a power of 2!
|
|
*/
|
|
u_int zstty_rbuf_size = ZSTTY_RING_SIZE;
|
|
|
|
/* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
|
|
u_int zstty_rbuf_hiwat = (ZSTTY_RING_SIZE * 1) / 4;
|
|
u_int zstty_rbuf_lowat = (ZSTTY_RING_SIZE * 3) / 4;
|
|
|
|
static int zsppscap =
|
|
PPS_TSFMT_TSPEC |
|
|
PPS_CAPTUREASSERT |
|
|
PPS_CAPTURECLEAR |
|
|
#ifdef PPS_SYNC
|
|
PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
|
|
#endif /* PPS_SYNC */
|
|
PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
|
|
|
|
struct zstty_softc {
|
|
struct device zst_dev; /* required first: base device */
|
|
struct tty *zst_tty;
|
|
struct zs_chanstate *zst_cs;
|
|
|
|
struct callout zst_diag_ch;
|
|
|
|
u_int zst_overflows,
|
|
zst_floods,
|
|
zst_errors;
|
|
|
|
int zst_hwflags, /* see z8530var.h */
|
|
zst_swflags; /* TIOCFLAG_SOFTCAR, ... <ttycom.h> */
|
|
|
|
u_int zst_r_hiwat,
|
|
zst_r_lowat;
|
|
u_char *volatile zst_rbget,
|
|
*volatile zst_rbput;
|
|
volatile u_int zst_rbavail;
|
|
u_char *zst_rbuf,
|
|
*zst_ebuf;
|
|
|
|
/*
|
|
* The transmit byte count and address are used for pseudo-DMA
|
|
* output in the hardware interrupt code. PDMA can be suspended
|
|
* to get pending changes done; heldtbc is used for this. It can
|
|
* also be stopped for ^S; this sets TS_TTSTOP in tp->t_state.
|
|
*/
|
|
u_char *zst_tba; /* transmit buffer address */
|
|
u_int zst_tbc, /* transmit byte count */
|
|
zst_heldtbc; /* held tbc while xmission stopped */
|
|
|
|
/* Flags to communicate with zstty_softint() */
|
|
volatile u_char zst_rx_flags, /* receiver blocked */
|
|
#define RX_TTY_BLOCKED 0x01
|
|
#define RX_TTY_OVERFLOWED 0x02
|
|
#define RX_IBUF_BLOCKED 0x04
|
|
#define RX_IBUF_OVERFLOWED 0x08
|
|
#define RX_ANY_BLOCK 0x0f
|
|
zst_tx_busy, /* working on an output chunk */
|
|
zst_tx_done, /* done with one output chunk */
|
|
zst_tx_stopped, /* H/W level stop (lost CTS) */
|
|
zst_st_check, /* got a status interrupt */
|
|
zst_rx_ready;
|
|
|
|
/* PPS signal on DCD, with or without inkernel clock disciplining */
|
|
u_char zst_ppsmask; /* pps signal mask */
|
|
u_char zst_ppsassert; /* pps leading edge */
|
|
u_char zst_ppsclear; /* pps trailing edge */
|
|
pps_info_t ppsinfo;
|
|
pps_params_t ppsparam;
|
|
};
|
|
|
|
/* Macros to clear/set/test flags. */
|
|
#define SET(t, f) (t) |= (f)
|
|
#define CLR(t, f) (t) &= ~(f)
|
|
#define ISSET(t, f) ((t) & (f))
|
|
|
|
/* Definition of the driver for autoconfig. */
|
|
static int zstty_match(struct device *, struct cfdata *, void *);
|
|
static void zstty_attach(struct device *, struct device *, void *);
|
|
|
|
struct cfattach zstty_ca = {
|
|
sizeof(struct zstty_softc), zstty_match, zstty_attach
|
|
};
|
|
|
|
extern struct cfdriver zstty_cd;
|
|
|
|
struct zsops zsops_tty;
|
|
|
|
/* Routines called from other code. */
|
|
cdev_decl(zs); /* open, close, read, write, ioctl, stop, ... */
|
|
|
|
static void zs_shutdown __P((struct zstty_softc *));
|
|
static void zsstart __P((struct tty *));
|
|
static int zsparam __P((struct tty *, struct termios *));
|
|
static void zs_modem __P((struct zstty_softc *, int));
|
|
static void tiocm_to_zs __P((struct zstty_softc *, u_long, int));
|
|
static int zs_to_tiocm __P((struct zstty_softc *));
|
|
static int zshwiflow __P((struct tty *, int));
|
|
static void zs_hwiflow __P((struct zstty_softc *));
|
|
static void zs_maskintr __P((struct zstty_softc *));
|
|
|
|
/* Low-level routines. */
|
|
static void zstty_rxint __P((struct zs_chanstate *));
|
|
static void zstty_stint __P((struct zs_chanstate *, int));
|
|
static void zstty_txint __P((struct zs_chanstate *));
|
|
static void zstty_softint __P((struct zs_chanstate *));
|
|
|
|
#define ZSUNIT(x) (minor(x) & 0x7ffff)
|
|
#define ZSDIALOUT(x) (minor(x) & 0x80000)
|
|
|
|
/*
|
|
* zstty_match: how is this zs channel configured?
|
|
*/
|
|
int
|
|
zstty_match(parent, cf, aux)
|
|
struct device *parent;
|
|
struct cfdata *cf;
|
|
void *aux;
|
|
{
|
|
struct zsc_attach_args *args = aux;
|
|
|
|
/* Exact match is better than wildcard. */
|
|
if (cf->cf_loc[ZSCCF_CHANNEL] == args->channel)
|
|
return 2;
|
|
|
|
/* This driver accepts wildcard. */
|
|
if (cf->cf_loc[ZSCCF_CHANNEL] == ZSCCF_CHANNEL_DEFAULT)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
zstty_attach(parent, self, aux)
|
|
struct device *parent, *self;
|
|
void *aux;
|
|
|
|
{
|
|
struct zsc_softc *zsc = (void *) parent;
|
|
struct zstty_softc *zst = (void *) self;
|
|
struct cfdata *cf = self->dv_cfdata;
|
|
struct zsc_attach_args *args = aux;
|
|
struct zs_chanstate *cs;
|
|
struct tty *tp;
|
|
int channel, s, tty_unit;
|
|
dev_t dev;
|
|
char *i, *o;
|
|
|
|
callout_init(&zst->zst_diag_ch);
|
|
cn_init_magic(&zstty_cnm_state);
|
|
|
|
tty_unit = zst->zst_dev.dv_unit;
|
|
channel = args->channel;
|
|
cs = zsc->zsc_cs[channel];
|
|
cs->cs_private = zst;
|
|
cs->cs_ops = &zsops_tty;
|
|
|
|
zst->zst_cs = cs;
|
|
zst->zst_swflags = cf->cf_flags; /* softcar, etc. */
|
|
zst->zst_hwflags = args->hwflags;
|
|
dev = makedev(zs_major, tty_unit);
|
|
|
|
if (zst->zst_swflags)
|
|
printf(" flags 0x%x", zst->zst_swflags);
|
|
|
|
/*
|
|
* Check whether we serve as a console device.
|
|
* XXX - split console input/output channels aren't
|
|
* supported yet on /dev/console
|
|
*/
|
|
i = o = NULL;
|
|
if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
|
|
i = "input";
|
|
if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
|
|
args->consdev->cn_dev = dev;
|
|
cn_tab->cn_pollc = args->consdev->cn_pollc;
|
|
cn_tab->cn_getc = args->consdev->cn_getc;
|
|
}
|
|
cn_tab->cn_dev = dev;
|
|
/* Set console magic to BREAK */
|
|
cn_set_magic("\047\001");
|
|
}
|
|
if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
|
|
o = "output";
|
|
if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
|
|
cn_tab->cn_putc = args->consdev->cn_putc;
|
|
}
|
|
cn_tab->cn_dev = dev;
|
|
}
|
|
if (i != NULL || o != NULL)
|
|
printf(" (console %s)", i ? (o ? "i/o" : i) : o);
|
|
|
|
#ifdef KGDB
|
|
if (zs_check_kgdb(cs, dev)) {
|
|
/*
|
|
* Allow kgdb to "take over" this port. Returns true
|
|
* if this serial port is in-use by kgdb.
|
|
*/
|
|
printf(" (kgdb)\n");
|
|
/*
|
|
* This is the kgdb port (exclusive use)
|
|
* so skip the normal attach code.
|
|
*/
|
|
return;
|
|
}
|
|
#endif
|
|
printf("\n");
|
|
|
|
tp = ttymalloc();
|
|
tp->t_dev = dev;
|
|
tp->t_oproc = zsstart;
|
|
tp->t_param = zsparam;
|
|
tp->t_hwiflow = zshwiflow;
|
|
tty_attach(tp);
|
|
|
|
zst->zst_tty = tp;
|
|
zst->zst_rbuf = malloc(zstty_rbuf_size << 1, M_DEVBUF, M_WAITOK);
|
|
zst->zst_ebuf = zst->zst_rbuf + (zstty_rbuf_size << 1);
|
|
/* Disable the high water mark. */
|
|
zst->zst_r_hiwat = 0;
|
|
zst->zst_r_lowat = 0;
|
|
zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
|
|
zst->zst_rbavail = zstty_rbuf_size;
|
|
|
|
/* if there are no enable/disable functions, assume the device
|
|
is always enabled */
|
|
if (!cs->enable)
|
|
cs->enabled = 1;
|
|
|
|
/*
|
|
* Hardware init
|
|
*/
|
|
if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
|
|
/* Call zsparam similar to open. */
|
|
struct termios t;
|
|
|
|
/* Wait a while for previous console output to complete */
|
|
DELAY(10000);
|
|
|
|
/* Setup the "new" parameters in t. */
|
|
t.c_ispeed = 0;
|
|
t.c_ospeed = cs->cs_defspeed;
|
|
t.c_cflag = cs->cs_defcflag;
|
|
|
|
s = splzs();
|
|
|
|
/*
|
|
* Turn on receiver and status interrupts.
|
|
* We defer the actual write of the register to zsparam(),
|
|
* but we must make sure status interrupts are turned on by
|
|
* the time zsparam() reads the initial rr0 state.
|
|
*/
|
|
SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
|
|
|
|
splx(s);
|
|
|
|
/* Make sure zsparam will see changes. */
|
|
tp->t_ospeed = 0;
|
|
(void) zsparam(tp, &t);
|
|
|
|
s = splzs();
|
|
|
|
/* Make sure DTR is on now. */
|
|
zs_modem(zst, 1);
|
|
|
|
splx(s);
|
|
} else if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_NORESET)) {
|
|
/* Not the console; may need reset. */
|
|
int reset;
|
|
|
|
reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET;
|
|
|
|
s = splzs();
|
|
|
|
zs_write_reg(cs, 9, reset);
|
|
|
|
/* Will raise DTR in open. */
|
|
zs_modem(zst, 0);
|
|
|
|
splx(s);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Return pointer to our tty.
|
|
*/
|
|
struct tty *
|
|
zstty(dev)
|
|
dev_t dev;
|
|
{
|
|
struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
|
|
|
|
return (zst->zst_tty);
|
|
}
|
|
|
|
|
|
void
|
|
zs_shutdown(zst)
|
|
struct zstty_softc *zst;
|
|
{
|
|
struct zs_chanstate *cs = zst->zst_cs;
|
|
struct tty *tp = zst->zst_tty;
|
|
int s;
|
|
|
|
s = splzs();
|
|
|
|
/* If we were asserting flow control, then deassert it. */
|
|
SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
|
|
zs_hwiflow(zst);
|
|
|
|
/* Clear any break condition set with TIOCSBRK. */
|
|
zs_break(cs, 0);
|
|
|
|
/* Turn off PPS capture on last close. */
|
|
zst->zst_ppsmask = 0;
|
|
zst->ppsparam.mode = 0;
|
|
|
|
/*
|
|
* Hang up if necessary. Wait a bit, so the other side has time to
|
|
* notice even if we immediately open the port again.
|
|
*/
|
|
if (ISSET(tp->t_cflag, HUPCL)) {
|
|
zs_modem(zst, 0);
|
|
(void) tsleep(cs, TTIPRI, ttclos, hz);
|
|
}
|
|
|
|
/* Turn off interrupts if not the console. */
|
|
if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
|
|
CLR(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
|
|
cs->cs_creg[1] = cs->cs_preg[1];
|
|
zs_write_reg(cs, 1, cs->cs_creg[1]);
|
|
}
|
|
|
|
/* Call the power management hook. */
|
|
if (cs->disable) {
|
|
#ifdef DIAGNOSTIC
|
|
if (!cs->enabled)
|
|
panic("zs_shutdown: not enabled?");
|
|
#endif
|
|
(*cs->disable)(zst->zst_cs);
|
|
}
|
|
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Open a zs serial (tty) port.
|
|
*/
|
|
int
|
|
zsopen(dev, flags, mode, p)
|
|
dev_t dev;
|
|
int flags;
|
|
int mode;
|
|
struct proc *p;
|
|
{
|
|
struct zstty_softc *zst;
|
|
struct zs_chanstate *cs;
|
|
struct tty *tp;
|
|
int s, s2;
|
|
int error;
|
|
|
|
zst = device_lookup(&zstty_cd, ZSUNIT(dev));
|
|
if (zst == NULL)
|
|
return (ENXIO);
|
|
|
|
tp = zst->zst_tty;
|
|
cs = zst->zst_cs;
|
|
|
|
/* If KGDB took the line, then tp==NULL */
|
|
if (tp == NULL)
|
|
return (EBUSY);
|
|
|
|
if (ISSET(tp->t_state, TS_ISOPEN) &&
|
|
ISSET(tp->t_state, TS_XCLUDE) &&
|
|
p->p_ucred->cr_uid != 0)
|
|
return (EBUSY);
|
|
|
|
s = spltty();
|
|
|
|
/*
|
|
* Do the following iff this is a first open.
|
|
*/
|
|
if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
|
|
struct termios t;
|
|
|
|
tp->t_dev = dev;
|
|
|
|
/* Call the power management hook. */
|
|
if (cs->enable) {
|
|
if ((*cs->enable)(cs)) {
|
|
splx(s);
|
|
printf("%s: device enable failed\n",
|
|
zst->zst_dev.dv_xname);
|
|
return (EIO);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize the termios status to the defaults. Add in the
|
|
* sticky bits from TIOCSFLAGS.
|
|
*/
|
|
t.c_ispeed = 0;
|
|
t.c_ospeed = cs->cs_defspeed;
|
|
t.c_cflag = cs->cs_defcflag;
|
|
if (ISSET(zst->zst_swflags, TIOCFLAG_CLOCAL))
|
|
SET(t.c_cflag, CLOCAL);
|
|
if (ISSET(zst->zst_swflags, TIOCFLAG_CRTSCTS))
|
|
SET(t.c_cflag, CRTSCTS);
|
|
if (ISSET(zst->zst_swflags, TIOCFLAG_CDTRCTS))
|
|
SET(t.c_cflag, CDTRCTS);
|
|
if (ISSET(zst->zst_swflags, TIOCFLAG_MDMBUF))
|
|
SET(t.c_cflag, MDMBUF);
|
|
|
|
s2 = splzs();
|
|
|
|
/*
|
|
* Turn on receiver and status interrupts.
|
|
* We defer the actual write of the register to zsparam(),
|
|
* but we must make sure status interrupts are turned on by
|
|
* the time zsparam() reads the initial rr0 state.
|
|
*/
|
|
SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
|
|
|
|
/* Clear PPS capture state on first open. */
|
|
zst->zst_ppsmask = 0;
|
|
zst->ppsparam.mode = 0;
|
|
|
|
splx(s2);
|
|
|
|
/* Make sure zsparam will see changes. */
|
|
tp->t_ospeed = 0;
|
|
(void) zsparam(tp, &t);
|
|
|
|
/*
|
|
* Note: zsparam has done: cflag, ispeed, ospeed
|
|
* so we just need to do: iflag, oflag, lflag, cc
|
|
* For "raw" mode, just leave all zeros.
|
|
*/
|
|
if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_RAW)) {
|
|
tp->t_iflag = TTYDEF_IFLAG;
|
|
tp->t_oflag = TTYDEF_OFLAG;
|
|
tp->t_lflag = TTYDEF_LFLAG;
|
|
} else {
|
|
tp->t_iflag = 0;
|
|
tp->t_oflag = 0;
|
|
tp->t_lflag = 0;
|
|
}
|
|
ttychars(tp);
|
|
ttsetwater(tp);
|
|
|
|
s2 = splzs();
|
|
|
|
/*
|
|
* Turn on DTR. We must always do this, even if carrier is not
|
|
* present, because otherwise we'd have to use TIOCSDTR
|
|
* immediately after setting CLOCAL, which applications do not
|
|
* expect. We always assert DTR while the device is open
|
|
* unless explicitly requested to deassert it.
|
|
*/
|
|
zs_modem(zst, 1);
|
|
|
|
/* Clear the input ring, and unblock. */
|
|
zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
|
|
zst->zst_rbavail = zstty_rbuf_size;
|
|
zs_iflush(cs);
|
|
CLR(zst->zst_rx_flags, RX_ANY_BLOCK);
|
|
zs_hwiflow(zst);
|
|
|
|
splx(s2);
|
|
}
|
|
|
|
splx(s);
|
|
|
|
error = ttyopen(tp, ZSDIALOUT(dev), ISSET(flags, O_NONBLOCK));
|
|
if (error)
|
|
goto bad;
|
|
|
|
error = (*tp->t_linesw->l_open)(dev, tp);
|
|
if (error)
|
|
goto bad;
|
|
|
|
return (0);
|
|
|
|
bad:
|
|
if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
|
|
/*
|
|
* We failed to open the device, and nobody else had it opened.
|
|
* Clean up the state as appropriate.
|
|
*/
|
|
zs_shutdown(zst);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Close a zs serial port.
|
|
*/
|
|
int
|
|
zsclose(dev, flags, mode, p)
|
|
dev_t dev;
|
|
int flags;
|
|
int mode;
|
|
struct proc *p;
|
|
{
|
|
struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
|
|
struct tty *tp = zst->zst_tty;
|
|
|
|
/* XXX This is for cons.c. */
|
|
if (!ISSET(tp->t_state, TS_ISOPEN))
|
|
return 0;
|
|
|
|
(*tp->t_linesw->l_close)(tp, flags);
|
|
ttyclose(tp);
|
|
|
|
if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
|
|
/*
|
|
* Although we got a last close, the device may still be in
|
|
* use; e.g. if this was the dialout node, and there are still
|
|
* processes waiting for carrier on the non-dialout node.
|
|
*/
|
|
zs_shutdown(zst);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Read/write zs serial port.
|
|
*/
|
|
int
|
|
zsread(dev, uio, flags)
|
|
dev_t dev;
|
|
struct uio *uio;
|
|
int flags;
|
|
{
|
|
struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
|
|
struct tty *tp = zst->zst_tty;
|
|
|
|
return ((*tp->t_linesw->l_read)(tp, uio, flags));
|
|
}
|
|
|
|
int
|
|
zswrite(dev, uio, flags)
|
|
dev_t dev;
|
|
struct uio *uio;
|
|
int flags;
|
|
{
|
|
struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
|
|
struct tty *tp = zst->zst_tty;
|
|
|
|
return ((*tp->t_linesw->l_write)(tp, uio, flags));
|
|
}
|
|
|
|
int
|
|
zspoll(dev, events, p)
|
|
dev_t dev;
|
|
int events;
|
|
struct proc *p;
|
|
{
|
|
struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
|
|
struct tty *tp = zst->zst_tty;
|
|
|
|
return ((*tp->t_linesw->l_poll)(tp, events, p));
|
|
}
|
|
|
|
int
|
|
zsioctl(dev, cmd, data, flag, p)
|
|
dev_t dev;
|
|
u_long cmd;
|
|
caddr_t data;
|
|
int flag;
|
|
struct proc *p;
|
|
{
|
|
struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
|
|
struct zs_chanstate *cs = zst->zst_cs;
|
|
struct tty *tp = zst->zst_tty;
|
|
int error;
|
|
int s;
|
|
|
|
error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, p);
|
|
if (error >= 0)
|
|
return (error);
|
|
|
|
error = ttioctl(tp, cmd, data, flag, p);
|
|
if (error >= 0)
|
|
return (error);
|
|
|
|
#ifdef ZS_MD_IOCTL
|
|
error = ZS_MD_IOCTL;
|
|
if (error >= 0)
|
|
return (error);
|
|
#endif /* ZS_MD_IOCTL */
|
|
|
|
error = 0;
|
|
|
|
s = splzs();
|
|
|
|
switch (cmd) {
|
|
case TIOCSBRK:
|
|
zs_break(cs, 1);
|
|
break;
|
|
|
|
case TIOCCBRK:
|
|
zs_break(cs, 0);
|
|
break;
|
|
|
|
case TIOCGFLAGS:
|
|
*(int *)data = zst->zst_swflags;
|
|
break;
|
|
|
|
case TIOCSFLAGS:
|
|
error = suser(p->p_ucred, &p->p_acflag);
|
|
if (error)
|
|
break;
|
|
zst->zst_swflags = *(int *)data;
|
|
break;
|
|
|
|
case TIOCSDTR:
|
|
zs_modem(zst, 1);
|
|
break;
|
|
|
|
case TIOCCDTR:
|
|
zs_modem(zst, 0);
|
|
break;
|
|
|
|
case TIOCMSET:
|
|
case TIOCMBIS:
|
|
case TIOCMBIC:
|
|
tiocm_to_zs(zst, cmd, *(int *)data);
|
|
break;
|
|
|
|
case TIOCMGET:
|
|
*(int *)data = zs_to_tiocm(zst);
|
|
break;
|
|
|
|
case PPS_IOC_CREATE:
|
|
break;
|
|
|
|
case PPS_IOC_DESTROY:
|
|
break;
|
|
|
|
case PPS_IOC_GETPARAMS: {
|
|
pps_params_t *pp;
|
|
pp = (pps_params_t *)data;
|
|
*pp = zst->ppsparam;
|
|
break;
|
|
}
|
|
|
|
case PPS_IOC_SETPARAMS: {
|
|
pps_params_t *pp;
|
|
int mode;
|
|
if (cs->cs_rr0_pps == 0) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
pp = (pps_params_t *)data;
|
|
if (pp->mode & ~zsppscap) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
zst->ppsparam = *pp;
|
|
/*
|
|
* compute masks from user-specified timestamp state.
|
|
*/
|
|
mode = zst->ppsparam.mode;
|
|
#ifdef PPS_SYNC
|
|
if (mode & PPS_HARDPPSONASSERT) {
|
|
mode |= PPS_CAPTUREASSERT;
|
|
/* XXX revoke any previous HARDPPS source */
|
|
}
|
|
if (mode & PPS_HARDPPSONCLEAR) {
|
|
mode |= PPS_CAPTURECLEAR;
|
|
/* XXX revoke any previous HARDPPS source */
|
|
}
|
|
#endif /* PPS_SYNC */
|
|
switch (mode & PPS_CAPTUREBOTH) {
|
|
case 0:
|
|
zst->zst_ppsmask = 0;
|
|
break;
|
|
|
|
case PPS_CAPTUREASSERT:
|
|
zst->zst_ppsmask = ZSRR0_DCD;
|
|
zst->zst_ppsassert = ZSRR0_DCD;
|
|
zst->zst_ppsclear = -1;
|
|
break;
|
|
|
|
case PPS_CAPTURECLEAR:
|
|
zst->zst_ppsmask = ZSRR0_DCD;
|
|
zst->zst_ppsassert = -1;
|
|
zst->zst_ppsclear = 0;
|
|
break;
|
|
|
|
case PPS_CAPTUREBOTH:
|
|
zst->zst_ppsmask = ZSRR0_DCD;
|
|
zst->zst_ppsassert = ZSRR0_DCD;
|
|
zst->zst_ppsclear = 0;
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Now update interrupts.
|
|
*/
|
|
zs_maskintr(zst);
|
|
/*
|
|
* If nothing is being transmitted, set up new current values,
|
|
* else mark them as pending.
|
|
*/
|
|
if (!cs->cs_heldchange) {
|
|
if (zst->zst_tx_busy) {
|
|
zst->zst_heldtbc = zst->zst_tbc;
|
|
zst->zst_tbc = 0;
|
|
cs->cs_heldchange = 1;
|
|
} else
|
|
zs_loadchannelregs(cs);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case PPS_IOC_GETCAP:
|
|
*(int *)data = zsppscap;
|
|
break;
|
|
|
|
case PPS_IOC_FETCH: {
|
|
pps_info_t *pi;
|
|
pi = (pps_info_t *)data;
|
|
*pi = zst->ppsinfo;
|
|
break;
|
|
}
|
|
|
|
case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
|
|
if (cs->cs_rr0_pps == 0) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
/*
|
|
* Some GPS clocks models use the falling rather than
|
|
* rising edge as the on-the-second signal.
|
|
* The old API has no way to specify PPS polarity.
|
|
*/
|
|
zst->zst_ppsmask = ZSRR0_DCD;
|
|
#ifndef PPS_TRAILING_EDGE
|
|
zst->zst_ppsassert = ZSRR0_DCD;
|
|
zst->zst_ppsclear = -1;
|
|
TIMESPEC_TO_TIMEVAL((struct timeval *)data,
|
|
&zst->ppsinfo.assert_timestamp);
|
|
#else
|
|
zst->zst_ppsassert = -1;
|
|
zst->zst_ppsclear = 01;
|
|
TIMESPEC_TO_TIMEVAL((struct timeval *)data,
|
|
&zst->ppsinfo.clear_timestamp);
|
|
#endif
|
|
/*
|
|
* Now update interrupts.
|
|
*/
|
|
zs_maskintr(zst);
|
|
/*
|
|
* If nothing is being transmitted, set up new current values,
|
|
* else mark them as pending.
|
|
*/
|
|
if (!cs->cs_heldchange) {
|
|
if (zst->zst_tx_busy) {
|
|
zst->zst_heldtbc = zst->zst_tbc;
|
|
zst->zst_tbc = 0;
|
|
cs->cs_heldchange = 1;
|
|
} else
|
|
zs_loadchannelregs(cs);
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
error = ENOTTY;
|
|
break;
|
|
}
|
|
|
|
splx(s);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Start or restart transmission.
|
|
*/
|
|
static void
|
|
zsstart(tp)
|
|
struct tty *tp;
|
|
{
|
|
struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
|
|
struct zs_chanstate *cs = zst->zst_cs;
|
|
int s;
|
|
|
|
s = spltty();
|
|
if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
|
|
goto out;
|
|
if (zst->zst_tx_stopped)
|
|
goto out;
|
|
|
|
if (tp->t_outq.c_cc <= tp->t_lowat) {
|
|
if (ISSET(tp->t_state, TS_ASLEEP)) {
|
|
CLR(tp->t_state, TS_ASLEEP);
|
|
wakeup((caddr_t)&tp->t_outq);
|
|
}
|
|
selwakeup(&tp->t_wsel);
|
|
if (tp->t_outq.c_cc == 0)
|
|
goto out;
|
|
}
|
|
|
|
/* Grab the first contiguous region of buffer space. */
|
|
{
|
|
u_char *tba;
|
|
int tbc;
|
|
|
|
tba = tp->t_outq.c_cf;
|
|
tbc = ndqb(&tp->t_outq, 0);
|
|
|
|
(void) splzs();
|
|
|
|
zst->zst_tba = tba;
|
|
zst->zst_tbc = tbc;
|
|
}
|
|
|
|
SET(tp->t_state, TS_BUSY);
|
|
zst->zst_tx_busy = 1;
|
|
|
|
/* Enable transmit completion interrupts if necessary. */
|
|
if (!ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
|
|
SET(cs->cs_preg[1], ZSWR1_TIE);
|
|
cs->cs_creg[1] = cs->cs_preg[1];
|
|
zs_write_reg(cs, 1, cs->cs_creg[1]);
|
|
}
|
|
|
|
/* Output the first character of the contiguous buffer. */
|
|
{
|
|
zs_write_data(cs, *zst->zst_tba);
|
|
zst->zst_tbc--;
|
|
zst->zst_tba++;
|
|
}
|
|
out:
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Stop output, e.g., for ^S or output flush.
|
|
*/
|
|
void
|
|
zsstop(tp, flag)
|
|
struct tty *tp;
|
|
int flag;
|
|
{
|
|
struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
|
|
int s;
|
|
|
|
s = splzs();
|
|
if (ISSET(tp->t_state, TS_BUSY)) {
|
|
/* Stop transmitting at the next chunk. */
|
|
zst->zst_tbc = 0;
|
|
zst->zst_heldtbc = 0;
|
|
if (!ISSET(tp->t_state, TS_TTSTOP))
|
|
SET(tp->t_state, TS_FLUSH);
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Set ZS tty parameters from termios.
|
|
* XXX - Should just copy the whole termios after
|
|
* making sure all the changes could be done.
|
|
*/
|
|
static int
|
|
zsparam(tp, t)
|
|
struct tty *tp;
|
|
struct termios *t;
|
|
{
|
|
struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
|
|
struct zs_chanstate *cs = zst->zst_cs;
|
|
int ospeed, cflag;
|
|
u_char tmp3, tmp4, tmp5;
|
|
int s, error;
|
|
|
|
ospeed = t->c_ospeed;
|
|
cflag = t->c_cflag;
|
|
|
|
/* Check requested parameters. */
|
|
if (ospeed < 0)
|
|
return (EINVAL);
|
|
if (t->c_ispeed && t->c_ispeed != ospeed)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* For the console, always force CLOCAL and !HUPCL, so that the port
|
|
* is always active.
|
|
*/
|
|
if (ISSET(zst->zst_swflags, TIOCFLAG_SOFTCAR) ||
|
|
ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
|
|
SET(cflag, CLOCAL);
|
|
CLR(cflag, HUPCL);
|
|
}
|
|
|
|
/*
|
|
* Only whack the UART when params change.
|
|
* Some callers need to clear tp->t_ospeed
|
|
* to make sure initialization gets done.
|
|
*/
|
|
if (tp->t_ospeed == ospeed &&
|
|
tp->t_cflag == cflag)
|
|
return (0);
|
|
|
|
/*
|
|
* Call MD functions to deal with changed
|
|
* clock modes or H/W flow control modes.
|
|
* The BRG divisor is set now. (reg 12,13)
|
|
*/
|
|
error = zs_set_speed(cs, ospeed);
|
|
if (error)
|
|
return (error);
|
|
error = zs_set_modes(cs, cflag);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* Block interrupts so that state will not
|
|
* be altered until we are done setting it up.
|
|
*
|
|
* Initial values in cs_preg are set before
|
|
* our attach routine is called. The master
|
|
* interrupt enable is handled by zsc.c
|
|
*
|
|
*/
|
|
s = splzs();
|
|
|
|
/*
|
|
* Recalculate which status ints to enable.
|
|
*/
|
|
zs_maskintr(zst);
|
|
|
|
/* Recompute character size bits. */
|
|
tmp3 = cs->cs_preg[3];
|
|
tmp5 = cs->cs_preg[5];
|
|
CLR(tmp3, ZSWR3_RXSIZE);
|
|
CLR(tmp5, ZSWR5_TXSIZE);
|
|
switch (ISSET(cflag, CSIZE)) {
|
|
case CS5:
|
|
SET(tmp3, ZSWR3_RX_5);
|
|
SET(tmp5, ZSWR5_TX_5);
|
|
break;
|
|
case CS6:
|
|
SET(tmp3, ZSWR3_RX_6);
|
|
SET(tmp5, ZSWR5_TX_6);
|
|
break;
|
|
case CS7:
|
|
SET(tmp3, ZSWR3_RX_7);
|
|
SET(tmp5, ZSWR5_TX_7);
|
|
break;
|
|
case CS8:
|
|
SET(tmp3, ZSWR3_RX_8);
|
|
SET(tmp5, ZSWR5_TX_8);
|
|
break;
|
|
}
|
|
cs->cs_preg[3] = tmp3;
|
|
cs->cs_preg[5] = tmp5;
|
|
|
|
/*
|
|
* Recompute the stop bits and parity bits. Note that
|
|
* zs_set_speed() may have set clock selection bits etc.
|
|
* in wr4, so those must preserved.
|
|
*/
|
|
tmp4 = cs->cs_preg[4];
|
|
CLR(tmp4, ZSWR4_SBMASK | ZSWR4_PARMASK);
|
|
if (ISSET(cflag, CSTOPB))
|
|
SET(tmp4, ZSWR4_TWOSB);
|
|
else
|
|
SET(tmp4, ZSWR4_ONESB);
|
|
if (!ISSET(cflag, PARODD))
|
|
SET(tmp4, ZSWR4_EVENP);
|
|
if (ISSET(cflag, PARENB))
|
|
SET(tmp4, ZSWR4_PARENB);
|
|
cs->cs_preg[4] = tmp4;
|
|
|
|
/* And copy to tty. */
|
|
tp->t_ispeed = 0;
|
|
tp->t_ospeed = ospeed;
|
|
tp->t_cflag = cflag;
|
|
|
|
/*
|
|
* If nothing is being transmitted, set up new current values,
|
|
* else mark them as pending.
|
|
*/
|
|
if (!cs->cs_heldchange) {
|
|
if (zst->zst_tx_busy) {
|
|
zst->zst_heldtbc = zst->zst_tbc;
|
|
zst->zst_tbc = 0;
|
|
cs->cs_heldchange = 1;
|
|
} else
|
|
zs_loadchannelregs(cs);
|
|
}
|
|
|
|
/*
|
|
* If hardware flow control is disabled, turn off the buffer water
|
|
* marks and unblock any soft flow control state. Otherwise, enable
|
|
* the water marks.
|
|
*/
|
|
if (!ISSET(cflag, CHWFLOW)) {
|
|
zst->zst_r_hiwat = 0;
|
|
zst->zst_r_lowat = 0;
|
|
if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
|
|
CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
|
|
zst->zst_rx_ready = 1;
|
|
cs->cs_softreq = 1;
|
|
}
|
|
if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
|
|
CLR(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
|
|
zs_hwiflow(zst);
|
|
}
|
|
} else {
|
|
zst->zst_r_hiwat = zstty_rbuf_hiwat;
|
|
zst->zst_r_lowat = zstty_rbuf_lowat;
|
|
}
|
|
|
|
/*
|
|
* Force a recheck of the hardware carrier and flow control status,
|
|
* since we may have changed which bits we're looking at.
|
|
*/
|
|
zstty_stint(cs, 1);
|
|
|
|
splx(s);
|
|
|
|
/*
|
|
* If hardware flow control is disabled, unblock any hard flow control
|
|
* state.
|
|
*/
|
|
if (!ISSET(cflag, CHWFLOW)) {
|
|
if (zst->zst_tx_stopped) {
|
|
zst->zst_tx_stopped = 0;
|
|
zsstart(tp);
|
|
}
|
|
}
|
|
|
|
zstty_softint(cs);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Compute interupt enable bits and set in the pending bits. Called both
|
|
* in zsparam() and when PPS (pulse per second timing) state changes.
|
|
* Must be called at splzs().
|
|
*/
|
|
static void
|
|
zs_maskintr(zst)
|
|
struct zstty_softc *zst;
|
|
{
|
|
struct zs_chanstate *cs = zst->zst_cs;
|
|
int tmp15;
|
|
|
|
cs->cs_rr0_mask = cs->cs_rr0_cts | cs->cs_rr0_dcd;
|
|
if (zst->zst_ppsmask != 0)
|
|
cs->cs_rr0_mask |= cs->cs_rr0_pps;
|
|
tmp15 = cs->cs_preg[15];
|
|
if (ISSET(cs->cs_rr0_mask, ZSRR0_DCD))
|
|
SET(tmp15, ZSWR15_DCD_IE);
|
|
else
|
|
CLR(tmp15, ZSWR15_DCD_IE);
|
|
if (ISSET(cs->cs_rr0_mask, ZSRR0_CTS))
|
|
SET(tmp15, ZSWR15_CTS_IE);
|
|
else
|
|
CLR(tmp15, ZSWR15_CTS_IE);
|
|
cs->cs_preg[15] = tmp15;
|
|
}
|
|
|
|
|
|
/*
|
|
* Raise or lower modem control (DTR/RTS) signals. If a character is
|
|
* in transmission, the change is deferred.
|
|
*/
|
|
static void
|
|
zs_modem(zst, onoff)
|
|
struct zstty_softc *zst;
|
|
int onoff;
|
|
{
|
|
struct zs_chanstate *cs = zst->zst_cs;
|
|
|
|
if (cs->cs_wr5_dtr == 0)
|
|
return;
|
|
|
|
if (onoff)
|
|
SET(cs->cs_preg[5], cs->cs_wr5_dtr);
|
|
else
|
|
CLR(cs->cs_preg[5], cs->cs_wr5_dtr);
|
|
|
|
if (!cs->cs_heldchange) {
|
|
if (zst->zst_tx_busy) {
|
|
zst->zst_heldtbc = zst->zst_tbc;
|
|
zst->zst_tbc = 0;
|
|
cs->cs_heldchange = 1;
|
|
} else
|
|
zs_loadchannelregs(cs);
|
|
}
|
|
}
|
|
|
|
static void
|
|
tiocm_to_zs(zst, how, ttybits)
|
|
struct zstty_softc *zst;
|
|
u_long how;
|
|
int ttybits;
|
|
{
|
|
struct zs_chanstate *cs = zst->zst_cs;
|
|
u_char zsbits;
|
|
|
|
zsbits = 0;
|
|
if (ISSET(ttybits, TIOCM_DTR))
|
|
SET(zsbits, ZSWR5_DTR);
|
|
if (ISSET(ttybits, TIOCM_RTS))
|
|
SET(zsbits, ZSWR5_RTS);
|
|
|
|
switch (how) {
|
|
case TIOCMBIC:
|
|
CLR(cs->cs_preg[5], zsbits);
|
|
break;
|
|
|
|
case TIOCMBIS:
|
|
SET(cs->cs_preg[5], zsbits);
|
|
break;
|
|
|
|
case TIOCMSET:
|
|
CLR(cs->cs_preg[5], ZSWR5_RTS | ZSWR5_DTR);
|
|
SET(cs->cs_preg[5], zsbits);
|
|
break;
|
|
}
|
|
|
|
if (!cs->cs_heldchange) {
|
|
if (zst->zst_tx_busy) {
|
|
zst->zst_heldtbc = zst->zst_tbc;
|
|
zst->zst_tbc = 0;
|
|
cs->cs_heldchange = 1;
|
|
} else
|
|
zs_loadchannelregs(cs);
|
|
}
|
|
}
|
|
|
|
static int
|
|
zs_to_tiocm(zst)
|
|
struct zstty_softc *zst;
|
|
{
|
|
struct zs_chanstate *cs = zst->zst_cs;
|
|
u_char zsbits;
|
|
int ttybits = 0;
|
|
|
|
zsbits = cs->cs_preg[5];
|
|
if (ISSET(zsbits, ZSWR5_DTR))
|
|
SET(ttybits, TIOCM_DTR);
|
|
if (ISSET(zsbits, ZSWR5_RTS))
|
|
SET(ttybits, TIOCM_RTS);
|
|
|
|
zsbits = cs->cs_rr0;
|
|
if (ISSET(zsbits, ZSRR0_DCD))
|
|
SET(ttybits, TIOCM_CD);
|
|
if (ISSET(zsbits, ZSRR0_CTS))
|
|
SET(ttybits, TIOCM_CTS);
|
|
|
|
return (ttybits);
|
|
}
|
|
|
|
/*
|
|
* Try to block or unblock input using hardware flow-control.
|
|
* This is called by kern/tty.c if MDMBUF|CRTSCTS is set, and
|
|
* if this function returns non-zero, the TS_TBLOCK flag will
|
|
* be set or cleared according to the "block" arg passed.
|
|
*/
|
|
int
|
|
zshwiflow(tp, block)
|
|
struct tty *tp;
|
|
int block;
|
|
{
|
|
struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
|
|
struct zs_chanstate *cs = zst->zst_cs;
|
|
int s;
|
|
|
|
if (cs->cs_wr5_rts == 0)
|
|
return (0);
|
|
|
|
s = splzs();
|
|
if (block) {
|
|
if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
|
|
SET(zst->zst_rx_flags, RX_TTY_BLOCKED);
|
|
zs_hwiflow(zst);
|
|
}
|
|
} else {
|
|
if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
|
|
CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
|
|
zst->zst_rx_ready = 1;
|
|
cs->cs_softreq = 1;
|
|
}
|
|
if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
|
|
CLR(zst->zst_rx_flags, RX_TTY_BLOCKED);
|
|
zs_hwiflow(zst);
|
|
}
|
|
}
|
|
splx(s);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Internal version of zshwiflow
|
|
* called at splzs
|
|
*/
|
|
static void
|
|
zs_hwiflow(zst)
|
|
struct zstty_softc *zst;
|
|
{
|
|
struct zs_chanstate *cs = zst->zst_cs;
|
|
|
|
if (cs->cs_wr5_rts == 0)
|
|
return;
|
|
|
|
if (ISSET(zst->zst_rx_flags, RX_ANY_BLOCK)) {
|
|
CLR(cs->cs_preg[5], cs->cs_wr5_rts);
|
|
CLR(cs->cs_creg[5], cs->cs_wr5_rts);
|
|
} else {
|
|
SET(cs->cs_preg[5], cs->cs_wr5_rts);
|
|
SET(cs->cs_creg[5], cs->cs_wr5_rts);
|
|
}
|
|
zs_write_reg(cs, 5, cs->cs_creg[5]);
|
|
}
|
|
|
|
|
|
/****************************************************************
|
|
* Interface to the lower layer (zscc)
|
|
****************************************************************/
|
|
|
|
#define integrate static inline
|
|
integrate void zstty_rxsoft __P((struct zstty_softc *, struct tty *));
|
|
integrate void zstty_txsoft __P((struct zstty_softc *, struct tty *));
|
|
integrate void zstty_stsoft __P((struct zstty_softc *, struct tty *));
|
|
static void zstty_diag __P((void *));
|
|
|
|
/*
|
|
* receiver ready interrupt.
|
|
* called at splzs
|
|
*/
|
|
static void
|
|
zstty_rxint(cs)
|
|
struct zs_chanstate *cs;
|
|
{
|
|
struct zstty_softc *zst = cs->cs_private;
|
|
u_char *put, *end;
|
|
u_int cc;
|
|
u_char rr0, rr1, c;
|
|
|
|
end = zst->zst_ebuf;
|
|
put = zst->zst_rbput;
|
|
cc = zst->zst_rbavail;
|
|
|
|
while (cc > 0) {
|
|
/*
|
|
* First read the status, because reading the received char
|
|
* destroys the status of this char.
|
|
*/
|
|
rr1 = zs_read_reg(cs, 1);
|
|
c = zs_read_data(cs);
|
|
|
|
if (ISSET(rr1, ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) {
|
|
/* Clear the receive error. */
|
|
zs_write_csr(cs, ZSWR0_RESET_ERRORS);
|
|
}
|
|
|
|
cn_check_magic(zst->zst_tty->t_dev, c, zstty_cnm_state);
|
|
put[0] = c;
|
|
put[1] = rr1;
|
|
put += 2;
|
|
if (put >= end)
|
|
put = zst->zst_rbuf;
|
|
cc--;
|
|
|
|
rr0 = zs_read_csr(cs);
|
|
if (!ISSET(rr0, ZSRR0_RX_READY))
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Current string of incoming characters ended because
|
|
* no more data was available or we ran out of space.
|
|
* Schedule a receive event if any data was received.
|
|
* If we're out of space, turn off receive interrupts.
|
|
*/
|
|
zst->zst_rbput = put;
|
|
zst->zst_rbavail = cc;
|
|
if (!ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
|
|
zst->zst_rx_ready = 1;
|
|
cs->cs_softreq = 1;
|
|
}
|
|
|
|
/*
|
|
* See if we are in danger of overflowing a buffer. If
|
|
* so, use hardware flow control to ease the pressure.
|
|
*/
|
|
if (!ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED) &&
|
|
cc < zst->zst_r_hiwat) {
|
|
SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
|
|
zs_hwiflow(zst);
|
|
}
|
|
|
|
/*
|
|
* If we're out of space, disable receive interrupts
|
|
* until the queue has drained a bit.
|
|
*/
|
|
if (!cc) {
|
|
SET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
|
|
CLR(cs->cs_preg[1], ZSWR1_RIE);
|
|
cs->cs_creg[1] = cs->cs_preg[1];
|
|
zs_write_reg(cs, 1, cs->cs_creg[1]);
|
|
}
|
|
|
|
#if 0
|
|
printf("%xH%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* transmitter ready interrupt. (splzs)
|
|
*/
|
|
static void
|
|
zstty_txint(cs)
|
|
struct zs_chanstate *cs;
|
|
{
|
|
struct zstty_softc *zst = cs->cs_private;
|
|
|
|
/*
|
|
* If we've delayed a parameter change, do it now, and restart
|
|
* output.
|
|
*/
|
|
if (cs->cs_heldchange) {
|
|
zs_loadchannelregs(cs);
|
|
cs->cs_heldchange = 0;
|
|
zst->zst_tbc = zst->zst_heldtbc;
|
|
zst->zst_heldtbc = 0;
|
|
}
|
|
|
|
/* Output the next character in the buffer, if any. */
|
|
if (zst->zst_tbc > 0) {
|
|
zs_write_data(cs, *zst->zst_tba);
|
|
zst->zst_tbc--;
|
|
zst->zst_tba++;
|
|
} else {
|
|
/* Disable transmit completion interrupts if necessary. */
|
|
if (ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
|
|
CLR(cs->cs_preg[1], ZSWR1_TIE);
|
|
cs->cs_creg[1] = cs->cs_preg[1];
|
|
zs_write_reg(cs, 1, cs->cs_creg[1]);
|
|
}
|
|
if (zst->zst_tx_busy) {
|
|
zst->zst_tx_busy = 0;
|
|
zst->zst_tx_done = 1;
|
|
cs->cs_softreq = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* status change interrupt. (splzs)
|
|
*/
|
|
static void
|
|
zstty_stint(cs, force)
|
|
struct zs_chanstate *cs;
|
|
int force;
|
|
{
|
|
struct zstty_softc *zst = cs->cs_private;
|
|
u_char rr0, delta;
|
|
|
|
rr0 = zs_read_csr(cs);
|
|
zs_write_csr(cs, ZSWR0_RESET_STATUS);
|
|
|
|
/*
|
|
* Check here for console break, so that we can abort
|
|
* even when interrupts are locking up the machine.
|
|
*/
|
|
if (ISSET(rr0, ZSRR0_BREAK))
|
|
cn_check_magic(zst->zst_tty->t_dev, CNC_BREAK, zstty_cnm_state);
|
|
|
|
if (!force)
|
|
delta = rr0 ^ cs->cs_rr0;
|
|
else
|
|
delta = cs->cs_rr0_mask;
|
|
cs->cs_rr0 = rr0;
|
|
|
|
if (ISSET(delta, cs->cs_rr0_mask)) {
|
|
SET(cs->cs_rr0_delta, delta);
|
|
|
|
/*
|
|
* Pulse-per-second clock signal on edge of DCD?
|
|
*/
|
|
if (ISSET(delta, zst->zst_ppsmask)) {
|
|
struct timeval tv;
|
|
if (ISSET(rr0, zst->zst_ppsmask) == zst->zst_ppsassert) {
|
|
/* XXX nanotime() */
|
|
microtime(&tv);
|
|
TIMEVAL_TO_TIMESPEC(&tv,
|
|
&zst->ppsinfo.assert_timestamp);
|
|
if (zst->ppsparam.mode & PPS_OFFSETASSERT) {
|
|
timespecadd(&zst->ppsinfo.assert_timestamp,
|
|
&zst->ppsparam.assert_offset,
|
|
&zst->ppsinfo.assert_timestamp);
|
|
}
|
|
|
|
#ifdef PPS_SYNC
|
|
if (zst->ppsparam.mode & PPS_HARDPPSONASSERT)
|
|
hardpps(&tv, tv.tv_usec);
|
|
#endif
|
|
zst->ppsinfo.assert_sequence++;
|
|
zst->ppsinfo.current_mode = zst->ppsparam.mode;
|
|
} else if (ISSET(rr0, zst->zst_ppsmask) ==
|
|
zst->zst_ppsclear) {
|
|
/* XXX nanotime() */
|
|
microtime(&tv);
|
|
TIMEVAL_TO_TIMESPEC(&tv,
|
|
&zst->ppsinfo.clear_timestamp);
|
|
if (zst->ppsparam.mode & PPS_OFFSETCLEAR) {
|
|
timespecadd(&zst->ppsinfo.clear_timestamp,
|
|
&zst->ppsparam.clear_offset,
|
|
&zst->ppsinfo.clear_timestamp);
|
|
}
|
|
|
|
#ifdef PPS_SYNC
|
|
if (zst->ppsparam.mode & PPS_HARDPPSONCLEAR)
|
|
hardpps(&tv, tv.tv_usec);
|
|
#endif
|
|
zst->ppsinfo.clear_sequence++;
|
|
zst->ppsinfo.current_mode = zst->ppsparam.mode;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stop output immediately if we lose the output
|
|
* flow control signal or carrier detect.
|
|
*/
|
|
if (ISSET(~rr0, cs->cs_rr0_mask)) {
|
|
zst->zst_tbc = 0;
|
|
zst->zst_heldtbc = 0;
|
|
}
|
|
|
|
zst->zst_st_check = 1;
|
|
cs->cs_softreq = 1;
|
|
}
|
|
}
|
|
|
|
void
|
|
zstty_diag(arg)
|
|
void *arg;
|
|
{
|
|
struct zstty_softc *zst = arg;
|
|
int overflows, floods;
|
|
int s;
|
|
|
|
s = splzs();
|
|
overflows = zst->zst_overflows;
|
|
zst->zst_overflows = 0;
|
|
floods = zst->zst_floods;
|
|
zst->zst_floods = 0;
|
|
zst->zst_errors = 0;
|
|
splx(s);
|
|
|
|
log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
|
|
zst->zst_dev.dv_xname,
|
|
overflows, overflows == 1 ? "" : "s",
|
|
floods, floods == 1 ? "" : "s");
|
|
}
|
|
|
|
integrate void
|
|
zstty_rxsoft(zst, tp)
|
|
struct zstty_softc *zst;
|
|
struct tty *tp;
|
|
{
|
|
struct zs_chanstate *cs = zst->zst_cs;
|
|
int (*rint) __P((int c, struct tty *tp)) = tp->t_linesw->l_rint;
|
|
u_char *get, *end;
|
|
u_int cc, scc;
|
|
u_char rr1;
|
|
int code;
|
|
int s;
|
|
|
|
end = zst->zst_ebuf;
|
|
get = zst->zst_rbget;
|
|
scc = cc = zstty_rbuf_size - zst->zst_rbavail;
|
|
|
|
if (cc == zstty_rbuf_size) {
|
|
zst->zst_floods++;
|
|
if (zst->zst_errors++ == 0)
|
|
callout_reset(&zst->zst_diag_ch, 60 * hz,
|
|
zstty_diag, zst);
|
|
}
|
|
|
|
/* If not yet open, drop the entire buffer content here */
|
|
if (!ISSET(tp->t_state, TS_ISOPEN)) {
|
|
get += cc << 1;
|
|
if (get >= end)
|
|
get -= zstty_rbuf_size << 1;
|
|
cc = 0;
|
|
}
|
|
while (cc) {
|
|
code = get[0];
|
|
rr1 = get[1];
|
|
if (ISSET(rr1, ZSRR1_DO | ZSRR1_FE | ZSRR1_PE)) {
|
|
if (ISSET(rr1, ZSRR1_DO)) {
|
|
zst->zst_overflows++;
|
|
if (zst->zst_errors++ == 0)
|
|
callout_reset(&zst->zst_diag_ch,
|
|
60 * hz, zstty_diag, zst);
|
|
}
|
|
if (ISSET(rr1, ZSRR1_FE))
|
|
SET(code, TTY_FE);
|
|
if (ISSET(rr1, ZSRR1_PE))
|
|
SET(code, TTY_PE);
|
|
}
|
|
if ((*rint)(code, tp) == -1) {
|
|
/*
|
|
* The line discipline's buffer is out of space.
|
|
*/
|
|
if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
|
|
/*
|
|
* We're either not using flow control, or the
|
|
* line discipline didn't tell us to block for
|
|
* some reason. Either way, we have no way to
|
|
* know when there's more space available, so
|
|
* just drop the rest of the data.
|
|
*/
|
|
get += cc << 1;
|
|
if (get >= end)
|
|
get -= zstty_rbuf_size << 1;
|
|
cc = 0;
|
|
} else {
|
|
/*
|
|
* Don't schedule any more receive processing
|
|
* until the line discipline tells us there's
|
|
* space available (through comhwiflow()).
|
|
* Leave the rest of the data in the input
|
|
* buffer.
|
|
*/
|
|
SET(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
|
|
}
|
|
break;
|
|
}
|
|
get += 2;
|
|
if (get >= end)
|
|
get = zst->zst_rbuf;
|
|
cc--;
|
|
}
|
|
|
|
if (cc != scc) {
|
|
zst->zst_rbget = get;
|
|
s = splzs();
|
|
cc = zst->zst_rbavail += scc - cc;
|
|
/* Buffers should be ok again, release possible block. */
|
|
if (cc >= zst->zst_r_lowat) {
|
|
if (ISSET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED)) {
|
|
CLR(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
|
|
SET(cs->cs_preg[1], ZSWR1_RIE);
|
|
cs->cs_creg[1] = cs->cs_preg[1];
|
|
zs_write_reg(cs, 1, cs->cs_creg[1]);
|
|
}
|
|
if (ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED)) {
|
|
CLR(zst->zst_rx_flags, RX_IBUF_BLOCKED);
|
|
zs_hwiflow(zst);
|
|
}
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
#if 0
|
|
printf("%xS%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
|
|
#endif
|
|
}
|
|
|
|
integrate void
|
|
zstty_txsoft(zst, tp)
|
|
struct zstty_softc *zst;
|
|
struct tty *tp;
|
|
{
|
|
|
|
CLR(tp->t_state, TS_BUSY);
|
|
if (ISSET(tp->t_state, TS_FLUSH))
|
|
CLR(tp->t_state, TS_FLUSH);
|
|
else
|
|
ndflush(&tp->t_outq, (int)(zst->zst_tba - tp->t_outq.c_cf));
|
|
(*tp->t_linesw->l_start)(tp);
|
|
}
|
|
|
|
integrate void
|
|
zstty_stsoft(zst, tp)
|
|
struct zstty_softc *zst;
|
|
struct tty *tp;
|
|
{
|
|
struct zs_chanstate *cs = zst->zst_cs;
|
|
u_char rr0, delta;
|
|
int s;
|
|
|
|
s = splzs();
|
|
rr0 = cs->cs_rr0;
|
|
delta = cs->cs_rr0_delta;
|
|
cs->cs_rr0_delta = 0;
|
|
splx(s);
|
|
|
|
if (ISSET(delta, cs->cs_rr0_dcd)) {
|
|
/*
|
|
* Inform the tty layer that carrier detect changed.
|
|
*/
|
|
(void) (*tp->t_linesw->l_modem)(tp, ISSET(rr0, ZSRR0_DCD));
|
|
}
|
|
|
|
if (ISSET(delta, cs->cs_rr0_cts)) {
|
|
/* Block or unblock output according to flow control. */
|
|
if (ISSET(rr0, cs->cs_rr0_cts)) {
|
|
zst->zst_tx_stopped = 0;
|
|
(*tp->t_linesw->l_start)(tp);
|
|
} else {
|
|
zst->zst_tx_stopped = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Software interrupt. Called at zssoft
|
|
*
|
|
* The main job to be done here is to empty the input ring
|
|
* by passing its contents up to the tty layer. The ring is
|
|
* always emptied during this operation, therefore the ring
|
|
* must not be larger than the space after "high water" in
|
|
* the tty layer, or the tty layer might drop our input.
|
|
*
|
|
* Note: an "input blockage" condition is assumed to exist if
|
|
* EITHER the TS_TBLOCK flag or zst_rx_blocked flag is set.
|
|
*/
|
|
static void
|
|
zstty_softint(cs)
|
|
struct zs_chanstate *cs;
|
|
{
|
|
struct zstty_softc *zst = cs->cs_private;
|
|
struct tty *tp = zst->zst_tty;
|
|
int s;
|
|
|
|
s = spltty();
|
|
|
|
if (zst->zst_rx_ready) {
|
|
zst->zst_rx_ready = 0;
|
|
zstty_rxsoft(zst, tp);
|
|
}
|
|
|
|
if (zst->zst_st_check) {
|
|
zst->zst_st_check = 0;
|
|
zstty_stsoft(zst, tp);
|
|
}
|
|
|
|
if (zst->zst_tx_done) {
|
|
zst->zst_tx_done = 0;
|
|
zstty_txsoft(zst, tp);
|
|
}
|
|
|
|
splx(s);
|
|
}
|
|
|
|
struct zsops zsops_tty = {
|
|
zstty_rxint, /* receive char available */
|
|
zstty_stint, /* external/status */
|
|
zstty_txint, /* xmit buffer empty */
|
|
zstty_softint, /* process software interrupt */
|
|
};
|