NetBSD/sys/dev/i2c/max6900.c
thorpej aa41e9922c More cleanup to i2c autoconfiguration:
- Get all of the drivers onto the new match quality constants.
- Introduce a new helper function, iic_use_direct_match(), that has
  all of the logic for direct-config matching.  If it returns true,
  the driver returns the match result (which may be 0).  If it returns
  false, the driver does indirect-config matching.
- iic_compat_match() now returns a weighted match quality; matches to
  lower-indexed "compatible" device property are more-specific matches,
  and return a better match quality accordingly.
2018-06-16 21:22:13 +00:00

484 lines
13 KiB
C

/* $NetBSD: max6900.c,v 1.16 2018/06/16 21:22:13 thorpej Exp $ */
/*
* Copyright (c) 2003 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: max6900.c,v 1.16 2018/06/16 21:22:13 thorpej Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/fcntl.h>
#include <sys/uio.h>
#include <sys/conf.h>
#include <sys/event.h>
#include <dev/clock_subr.h>
#include <dev/i2c/i2cvar.h>
#include <dev/i2c/max6900reg.h>
struct maxrtc_softc {
device_t sc_dev;
i2c_tag_t sc_tag;
int sc_address;
int sc_open;
struct todr_chip_handle sc_todr;
};
static int maxrtc_match(device_t, cfdata_t, void *);
static void maxrtc_attach(device_t, device_t, void *);
CFATTACH_DECL_NEW(maxrtc, sizeof(struct maxrtc_softc),
maxrtc_match, maxrtc_attach, NULL, NULL);
extern struct cfdriver maxrtc_cd;
dev_type_open(maxrtc_open);
dev_type_close(maxrtc_close);
dev_type_read(maxrtc_read);
dev_type_write(maxrtc_write);
const struct cdevsw maxrtc_cdevsw = {
.d_open = maxrtc_open,
.d_close = maxrtc_close,
.d_read = maxrtc_read,
.d_write = maxrtc_write,
.d_ioctl = noioctl,
.d_stop = nostop,
.d_tty = notty,
.d_poll = nopoll,
.d_mmap = nommap,
.d_kqfilter = nokqfilter,
.d_discard = nodiscard,
.d_flag = D_OTHER
};
static int maxrtc_clock_read(struct maxrtc_softc *, struct clock_ymdhms *);
static int maxrtc_clock_write(struct maxrtc_softc *, struct clock_ymdhms *);
static int maxrtc_gettime(struct todr_chip_handle *, struct timeval *);
static int maxrtc_settime(struct todr_chip_handle *, struct timeval *);
int
maxrtc_match(device_t parent, cfdata_t cf, void *aux)
{
struct i2c_attach_args *ia = aux;
if ((ia->ia_addr & MAX6900_ADDRMASK) == MAX6900_ADDR)
return (I2C_MATCH_ADDRESS_ONLY);
return (0);
}
void
maxrtc_attach(device_t parent, device_t self, void *aux)
{
struct maxrtc_softc *sc = device_private(self);
struct i2c_attach_args *ia = aux;
sc->sc_tag = ia->ia_tag;
sc->sc_address = ia->ia_addr;
sc->sc_dev = self;
aprint_naive(": Real-time Clock/NVRAM\n");
aprint_normal(": MAX6900 Real-time Clock/NVRAM\n");
sc->sc_open = 0;
sc->sc_todr.cookie = sc;
sc->sc_todr.todr_gettime = maxrtc_gettime;
sc->sc_todr.todr_settime = maxrtc_settime;
sc->sc_todr.todr_setwen = NULL;
todr_attach(&sc->sc_todr);
}
/*ARGSUSED*/
int
maxrtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
{
struct maxrtc_softc *sc;
if ((sc = device_lookup_private(&maxrtc_cd, minor(dev))) == NULL)
return (ENXIO);
/* XXX: Locking */
if (sc->sc_open)
return (EBUSY);
sc->sc_open = 1;
return (0);
}
/*ARGSUSED*/
int
maxrtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
{
struct maxrtc_softc *sc;
if ((sc = device_lookup_private(&maxrtc_cd, minor(dev))) == NULL)
return (ENXIO);
sc->sc_open = 0;
return (0);
}
/*ARGSUSED*/
int
maxrtc_read(dev_t dev, struct uio *uio, int flags)
{
struct maxrtc_softc *sc;
u_int8_t ch, cmdbuf[1];
int a, error;
if ((sc = device_lookup_private(&maxrtc_cd, minor(dev))) == NULL)
return (ENXIO);
if (uio->uio_offset >= MAX6900_RAM_BYTES)
return (EINVAL);
if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
return (error);
while (uio->uio_resid && uio->uio_offset < MAX6900_RAM_BYTES) {
a = (int)uio->uio_offset;
cmdbuf[0] = MAX6900_REG_RAM(a) | MAX6900_CMD_READ;
if ((error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
sc->sc_address, cmdbuf, 1,
&ch, 1, 0)) != 0) {
iic_release_bus(sc->sc_tag, 0);
aprint_error_dev(sc->sc_dev,
"maxrtc_read: read failed at 0x%x\n", a);
return (error);
}
if ((error = uiomove(&ch, 1, uio)) != 0) {
iic_release_bus(sc->sc_tag, 0);
return (error);
}
}
iic_release_bus(sc->sc_tag, 0);
return (0);
}
/*ARGSUSED*/
int
maxrtc_write(dev_t dev, struct uio *uio, int flags)
{
struct maxrtc_softc *sc;
u_int8_t cmdbuf[2];
int a, error, sverror;
if ((sc = device_lookup_private(&maxrtc_cd, minor(dev))) == NULL)
return (ENXIO);
if (uio->uio_offset >= MAX6900_RAM_BYTES)
return (EINVAL);
if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
return (error);
/* Start by clearing the control register's write-protect bit. */
cmdbuf[0] = MAX6900_REG_CONTROL | MAX6900_CMD_WRITE;
cmdbuf[1] = 0;
if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
iic_release_bus(sc->sc_tag, 0);
aprint_error_dev(sc->sc_dev,
"maxrtc_write: failed to clear WP bit\n");
return (error);
}
while (uio->uio_resid && uio->uio_offset < MAX6900_RAM_BYTES) {
a = (int)uio->uio_offset;
cmdbuf[0] = MAX6900_REG_RAM(a) | MAX6900_CMD_WRITE;
if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
break;
if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
aprint_error_dev(sc->sc_dev,
"maxrtc_write: write failed at 0x%x\n", a);
break;
}
}
/* Set the write-protect bit again. */
cmdbuf[0] = MAX6900_REG_CONTROL | MAX6900_CMD_WRITE;
cmdbuf[1] = MAX6900_CONTROL_WP;
sverror = error;
if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
sc->sc_address, cmdbuf, 1,
&cmdbuf[1], 1, 0)) != 0) {
if (sverror != 0)
error = sverror;
aprint_error_dev(sc->sc_dev,
"maxrtc_write: failed to set WP bit\n");
}
iic_release_bus(sc->sc_tag, 0);
return (error);
}
static int
maxrtc_gettime(struct todr_chip_handle *ch, struct timeval *tv)
{
struct maxrtc_softc *sc = ch->cookie;
struct clock_ymdhms dt;
if (maxrtc_clock_read(sc, &dt) == 0)
return (-1);
tv->tv_sec = clock_ymdhms_to_secs(&dt);
tv->tv_usec = 0;
return (0);
}
static int
maxrtc_settime(struct todr_chip_handle *ch, struct timeval *tv)
{
struct maxrtc_softc *sc = ch->cookie;
struct clock_ymdhms dt;
clock_secs_to_ymdhms(tv->tv_sec, &dt);
if (maxrtc_clock_write(sc, &dt) == 0)
return (-1);
return (0);
}
/*
* While the MAX6900 has a nice Clock Burst Read/Write command,
* we can't use it, since some I2C controllers do not support
* anything other than single-byte transfers.
*/
static int max6900_rtc_offset[] = {
MAX6900_REG_SECOND,
MAX6900_REG_MINUTE,
MAX6900_REG_HOUR,
MAX6900_REG_DATE,
MAX6900_REG_MONTH,
MAX6900_REG_DAY,
MAX6900_REG_YEAR,
MAX6900_REG_CENTURY, /* control, if burst */
};
static int
maxrtc_clock_read(struct maxrtc_softc *sc, struct clock_ymdhms *dt)
{
u_int8_t bcd[MAX6900_BURST_LEN], cmdbuf[1];
int i;
if (iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) {
aprint_error_dev(sc->sc_dev,
"maxrtc_clock_read: failed to acquire I2C bus\n");
return (0);
}
/* Read each timekeeping register in order. */
for (i = 0; i < MAX6900_BURST_LEN; i++) {
cmdbuf[0] = max6900_rtc_offset[i] | MAX6900_CMD_READ;
if (iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
sc->sc_address, cmdbuf, 1,
&bcd[i], 1, I2C_F_POLL)) {
iic_release_bus(sc->sc_tag, I2C_F_POLL);
aprint_error_dev(sc->sc_dev,
"maxrtc_clock_read: failed to read rtc "
"at 0x%x\n",
max6900_rtc_offset[i]);
return (0);
}
}
/* Done with I2C */
iic_release_bus(sc->sc_tag, I2C_F_POLL);
/*
* Convert the MAX6900's register values into something useable
*/
dt->dt_sec = bcdtobin(bcd[MAX6900_BURST_SECOND] & MAX6900_SECOND_MASK);
dt->dt_min = bcdtobin(bcd[MAX6900_BURST_MINUTE] & MAX6900_MINUTE_MASK);
if (bcd[MAX6900_BURST_HOUR] & MAX6900_HOUR_12HRS) {
dt->dt_hour = bcdtobin(bcd[MAX6900_BURST_HOUR] &
MAX6900_HOUR_12MASK);
if (bcd[MAX6900_BURST_HOUR] & MAX6900_HOUR_12HRS_PM)
dt->dt_hour += 12;
} else {
dt->dt_hour = bcdtobin(bcd[MAX6900_BURST_HOUR] &
MAX6900_HOUR_24MASK);
}
dt->dt_day = bcdtobin(bcd[MAX6900_BURST_DATE] & MAX6900_DATE_MASK);
dt->dt_mon = bcdtobin(bcd[MAX6900_BURST_MONTH] & MAX6900_MONTH_MASK);
dt->dt_year = bcdtobin(bcd[MAX6900_BURST_YEAR]);
/* century in the burst control slot */
dt->dt_year += (int)bcdtobin(bcd[MAX6900_BURST_CONTROL]) * 100;
return (1);
}
static int
maxrtc_clock_write(struct maxrtc_softc *sc, struct clock_ymdhms *dt)
{
uint8_t bcd[MAX6900_BURST_LEN], cmdbuf[2];
uint8_t init_seconds, final_seconds;
int i;
/*
* Convert our time representation into something the MAX6900
* can understand.
*/
bcd[MAX6900_BURST_SECOND] = bintobcd(dt->dt_sec);
bcd[MAX6900_BURST_MINUTE] = bintobcd(dt->dt_min);
bcd[MAX6900_BURST_HOUR] = bintobcd(dt->dt_hour) & MAX6900_HOUR_24MASK;
bcd[MAX6900_BURST_DATE] = bintobcd(dt->dt_day);
bcd[MAX6900_BURST_WDAY] = bintobcd(dt->dt_wday);
bcd[MAX6900_BURST_MONTH] = bintobcd(dt->dt_mon);
bcd[MAX6900_BURST_YEAR] = bintobcd(dt->dt_year % 100);
/* century in control slot */
bcd[MAX6900_BURST_CONTROL] = bintobcd(dt->dt_year / 100);
if (iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) {
aprint_error_dev(sc->sc_dev,
"maxrtc_clock_write: failed to acquire I2C bus\n");
return (0);
}
/* Start by clearing the control register's write-protect bit. */
cmdbuf[0] = MAX6900_REG_CONTROL | MAX6900_CMD_WRITE;
cmdbuf[1] = 0;
if (iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) {
iic_release_bus(sc->sc_tag, I2C_F_POLL);
aprint_error_dev(sc->sc_dev,
"maxrtc_clock_write: failed to clear WP bit\n");
return (0);
}
/*
* The MAX6900 RTC manual recommends ensuring "atomicity" of
* a non-burst write by:
*
* - writing SECONDS
* - reading back SECONDS, remembering it as "initial seconds"
* - write the remaing RTC registers
* - read back SECONDS as "final seconds"
* - if "initial seconds" == 59, ensure "final seconds" == 59
* - else, ensure "final seconds" is no more than one second
* beyond "initial seconds".
*/
again:
cmdbuf[0] = MAX6900_REG_SECOND | MAX6900_CMD_WRITE;
if (iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
cmdbuf, 1, &bcd[MAX6900_BURST_SECOND], 1, I2C_F_POLL)) {
iic_release_bus(sc->sc_tag, I2C_F_POLL);
aprint_error_dev(sc->sc_dev,
"maxrtc_clock_write: failed to write SECONDS\n");
return (0);
}
cmdbuf[0] = MAX6900_REG_SECOND | MAX6900_CMD_READ;
if (iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
cmdbuf, 1, &init_seconds, 1, I2C_F_POLL)) {
iic_release_bus(sc->sc_tag, I2C_F_POLL);
aprint_error_dev(sc->sc_dev,
"maxrtc_clock_write: failed to read "
"INITIAL SECONDS\n");
return (0);
}
for (i = 1; i < MAX6900_BURST_LEN; i++) {
cmdbuf[0] = max6900_rtc_offset[i] | MAX6900_CMD_WRITE;
if (iic_exec(sc->sc_tag,
i != MAX6900_BURST_LEN - 1 ? I2C_OP_WRITE :
I2C_OP_WRITE_WITH_STOP, sc->sc_address,
cmdbuf, 1, &bcd[i], 1, I2C_F_POLL)) {
iic_release_bus(sc->sc_tag, I2C_F_POLL);
aprint_error_dev(sc->sc_dev,
"maxrtc_clock_write: failed to write rtc "
" at 0x%x\n",
max6900_rtc_offset[i]);
return (0);
}
}
cmdbuf[0] = MAX6900_REG_SECOND | MAX6900_CMD_READ;
if (iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
cmdbuf, 1, &final_seconds, 1, I2C_F_POLL)) {
iic_release_bus(sc->sc_tag, I2C_F_POLL);
aprint_error_dev(sc->sc_dev,
"maxrtc_clock_write: failed to read "
"FINAL SECONDS\n");
return (0);
}
if ((init_seconds == 59 && final_seconds != 59) ||
(init_seconds != 59 && final_seconds != init_seconds + 1)) {
#if 1
printf("%s: maxrtc_clock_write: init %d, final %d, try again\n",
device_xname(sc->sc_dev), init_seconds, final_seconds);
#endif
goto again;
}
/* Finish by setting the control register's write-protect bit. */
cmdbuf[0] = MAX6900_REG_CONTROL | MAX6900_CMD_WRITE;
cmdbuf[1] = MAX6900_CONTROL_WP;
if (iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address,
cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) {
iic_release_bus(sc->sc_tag, I2C_F_POLL);
aprint_error_dev(sc->sc_dev,
"maxrtc_clock_write: failed to set WP bit\n");
return (0);
}
iic_release_bus(sc->sc_tag, I2C_F_POLL);
return (1);
}