NetBSD/sys/dev/i2c/fcu.c
riastradh d1579b2d70 Rename min/max -> uimin/uimax for better honesty.
These functions are defined on unsigned int.  The generic name
min/max should not silently truncate to 32 bits on 64-bit systems.
This is purely a name change -- no functional change intended.

HOWEVER!  Some subsystems have

	#define min(a, b)	((a) < (b) ? (a) : (b))
	#define max(a, b)	((a) > (b) ? (a) : (b))

even though our standard name for that is MIN/MAX.  Although these
may invite multiple evaluation bugs, these do _not_ cause integer
truncation.

To avoid `fixing' these cases, I first changed the name in libkern,
and then compile-tested every file where min/max occurred in order to
confirm that it failed -- and thus confirm that nothing shadowed
min/max -- before changing it.

I have left a handful of bootloaders that are too annoying to
compile-test, and some dead code:

cobalt ews4800mips hp300 hppa ia64 luna68k vax
acorn32/if_ie.c (not included in any kernels)
macppc/if_gm.c (superseded by gem(4))

It should be easy to fix the fallout once identified -- this way of
doing things fails safe, and the goal here, after all, is to _avoid_
silent integer truncations, not introduce them.

Maybe one day we can reintroduce min/max as type-generic things that
never silently truncate.  But we should avoid doing that for a while,
so that existing code has a chance to be detected by the compiler for
conversion to uimin/uimax without changing the semantics until we can
properly audit it all.  (Who knows, maybe in some cases integer
truncation is actually intended!)
2018-09-03 16:29:22 +00:00

512 lines
13 KiB
C

/* $NetBSD: fcu.c,v 1.8 2018/09/03 16:29:31 riastradh Exp $ */
/*-
* Copyright (c) 2018 Michael Lorenz
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: fcu.c,v 1.8 2018/09/03 16:29:31 riastradh Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/conf.h>
#include <sys/bus.h>
#include <sys/kthread.h>
#include <dev/i2c/i2cvar.h>
#include <dev/sysmon/sysmonvar.h>
#include <dev/ofw/openfirm.h>
//#define FCU_DEBUG
#ifdef FCU_DEBUG
#define DPRINTF printf
#else
#define DPRINTF if (0) printf
#endif
/* FCU registers, from OpenBSD's fcu.c */
#define FCU_FAN_FAIL 0x0b /* fans states in bits 0<1-6>7 */
#define FCU_FAN_ACTIVE 0x0d
#define FCU_FANREAD(x) 0x11 + (x)*2
#define FCU_FANSET(x) 0x10 + (x)*2
#define FCU_PWM_FAIL 0x2b
#define FCU_PWM_ACTIVE 0x2d
#define FCU_PWMREAD(x) 0x30 + (x)*2
#define FCU_MAX_FANS 10
typedef struct _fcu_zone {
bool (*filter)(const envsys_data_t *);
int nfans;
int fans[FCU_MAX_FANS];
int threshold;
} fcu_zone_t;
typedef struct _fcu_fan {
int target;
int reg;
int base_rpm, max_rpm;
int step;
int duty; /* for pwm fans */
} fcu_fan_t;
#define FCU_ZONE_CPU_A 0
#define FCU_ZONE_CPU_B 1
#define FCU_ZONE_CASE 2
#define FCU_ZONE_DRIVEBAY 3
#define FCU_ZONE_COUNT 4
struct fcu_softc {
device_t sc_dev;
i2c_tag_t sc_i2c;
i2c_addr_t sc_addr;
struct sysmon_envsys *sc_sme;
envsys_data_t sc_sensors[32];
int sc_nsensors;
fcu_zone_t sc_zones[FCU_ZONE_COUNT];
fcu_fan_t sc_fans[FCU_MAX_FANS];
int sc_nfans;
lwp_t *sc_thread;
bool sc_dying, sc_pwm;
uint8_t sc_eeprom0[160];
uint8_t sc_eeprom1[160];
};
static int fcu_match(device_t, cfdata_t, void *);
static void fcu_attach(device_t, device_t, void *);
static void fcu_sensors_refresh(struct sysmon_envsys *, envsys_data_t *);
static bool is_cpu_a(const envsys_data_t *);
static bool is_cpu_b(const envsys_data_t *);
static bool is_case(const envsys_data_t *);
static bool is_drive(const envsys_data_t *);
static void fcu_set_fan_rpm(struct fcu_softc *, fcu_fan_t *, int);
static void fcu_adjust_zone(struct fcu_softc *, int);
static void fcu_adjust(void *);
CFATTACH_DECL_NEW(fcu, sizeof(struct fcu_softc),
fcu_match, fcu_attach, NULL, NULL);
static const struct device_compatible_entry compat_data[] = {
{ "fcu", 0 },
{ NULL, 0 }
};
static int
fcu_match(device_t parent, cfdata_t match, void *aux)
{
struct i2c_attach_args *ia = aux;
int match_result;
if (iic_use_direct_match(ia, match, compat_data, &match_result))
return match_result;
if (ia->ia_addr == 0x2f)
return I2C_MATCH_ADDRESS_ONLY;
return 0;
}
static void
fcu_attach(device_t parent, device_t self, void *aux)
{
struct fcu_softc *sc = device_private(self);
struct i2c_attach_args *ia = aux;
int have_eeprom1 = 1;
sc->sc_dev = self;
sc->sc_i2c = ia->ia_tag;
sc->sc_addr = ia->ia_addr;
aprint_naive("\n");
aprint_normal(": Fan Control Unit\n");
if (get_cpuid(0, sc->sc_eeprom0) < 160) {
/*
* XXX this should never happen, we depend on the EEPROM for
* calibration data to make sense of temperature and voltage
* sensors elsewhere, and fan parameters here.
*/
aprint_error_dev(self, "no EEPROM data for CPU 0\n");
return;
}
if (get_cpuid(1, sc->sc_eeprom1) < 160)
have_eeprom1 = 0;
/* init zones */
sc->sc_zones[FCU_ZONE_CPU_A].filter = is_cpu_a;
sc->sc_zones[FCU_ZONE_CPU_A].threshold = 50;
sc->sc_zones[FCU_ZONE_CPU_A].nfans = 0;
sc->sc_zones[FCU_ZONE_CPU_B].filter = is_cpu_b;
sc->sc_zones[FCU_ZONE_CPU_B].threshold = 50;
sc->sc_zones[FCU_ZONE_CPU_B].nfans = 0;
sc->sc_zones[FCU_ZONE_CASE].filter = is_case;
sc->sc_zones[FCU_ZONE_CASE].threshold = 50;
sc->sc_zones[FCU_ZONE_CASE].nfans = 0;
sc->sc_zones[FCU_ZONE_DRIVEBAY].filter = is_drive;
sc->sc_zones[FCU_ZONE_DRIVEBAY].threshold = 30;
sc->sc_zones[FCU_ZONE_DRIVEBAY].nfans = 0;
sc->sc_sme = sysmon_envsys_create();
sc->sc_sme->sme_name = device_xname(self);
sc->sc_sme->sme_cookie = sc;
sc->sc_sme->sme_refresh = fcu_sensors_refresh;
sc->sc_sensors[0].units = ENVSYS_SFANRPM;
sc->sc_sensors[1].state = ENVSYS_SINVALID;
sc->sc_nfans = 0;
/* round up sensors */
int ch;
sc->sc_nsensors = 0;
ch = OF_child(ia->ia_cookie);
while (ch != 0) {
char type[32], descr[32];
uint32_t reg;
envsys_data_t *s = &sc->sc_sensors[sc->sc_nsensors];
if (OF_getprop(ch, "device_type", type, 32) <= 0)
goto next;
if (strcmp(type, "fan-rpm-control") == 0) {
s->units = ENVSYS_SFANRPM;
} else if (strcmp(type, "fan-pwm-control") == 0) {
/* XXX we get the type from the register number */
s->units = ENVSYS_SFANRPM;
/* skip those for now since we don't really know how to interpret them */
#if 0
} else if (strcmp(type, "power-sensor") == 0) {
s->units = ENVSYS_SVOLTS_DC;
#endif
} else if (strcmp(type, "gpi-sensor") == 0) {
s->units = ENVSYS_INDICATOR;
} else {
/* ignore other types for now */
goto next;
}
if (OF_getprop(ch, "reg", &reg, sizeof(reg)) <= 0)
goto next;
s->private = reg;
if (OF_getprop(ch, "location", descr, 32) <= 0)
goto next;
strcpy(s->desc, descr);
if (s->units == ENVSYS_SFANRPM) {
fcu_fan_t *fan = &sc->sc_fans[sc->sc_nfans];
uint8_t *eeprom = NULL;
uint16_t rmin, rmax;
if (strstr(descr, "CPU A") != NULL)
eeprom = sc->sc_eeprom0;
if (strstr(descr, "CPU B") != NULL) {
/*
* XXX
* this should never happen
*/
if (have_eeprom1 == 0) {
eeprom = sc->sc_eeprom0;
} else
eeprom = sc->sc_eeprom1;
}
fan->reg = reg;
fan->target = 0;
fan->duty = 0x80;
/* speed settings from EEPROM */
if (strstr(descr, "PUMP") != NULL) {
KASSERT(eeprom != NULL);
memcpy(&rmin, &eeprom[0x54], 2);
memcpy(&rmax, &eeprom[0x56], 2);
fan->base_rpm = rmin;
fan->max_rpm = rmax;
fan->step = (rmax - rmin) / 30;
} else if (strstr(descr, "INTAKE") != NULL) {
KASSERT(eeprom != NULL);
memcpy(&rmin, &eeprom[0x4c], 2);
memcpy(&rmax, &eeprom[0x4e], 2);
fan->base_rpm = rmin;
fan->max_rpm = rmax;
fan->step = (rmax - rmin) / 30;
} else if (strstr(descr, "EXHAUST") != NULL) {
KASSERT(eeprom != NULL);
memcpy(&rmin, &eeprom[0x50], 2);
memcpy(&rmax, &eeprom[0x52], 2);
fan->base_rpm = rmin;
fan->max_rpm = rmax;
fan->step = (rmax - rmin) / 30;
} else if (strstr(descr, "DRIVE") != NULL ) {
fan->base_rpm = 1000;
fan->max_rpm = 3000;
fan->step = 100;
} else {
fan->base_rpm = 1000;
fan->max_rpm = 3000;
fan->step = 100;
}
DPRINTF("fan %s: %d - %d rpm, step %d\n",
descr, fan->base_rpm, fan->max_rpm, fan->step);
/* now stuff them into zones */
if (strstr(descr, "CPU A") != NULL) {
fcu_zone_t *z = &sc->sc_zones[FCU_ZONE_CPU_A];
z->fans[z->nfans] = sc->sc_nfans;
z->nfans++;
} else if (strstr(descr, "CPU B") != NULL) {
fcu_zone_t *z = &sc->sc_zones[FCU_ZONE_CPU_B];
z->fans[z->nfans] = sc->sc_nfans;
z->nfans++;
} else if ((strstr(descr, "BACKSIDE") != NULL) ||
(strstr(descr, "SLOT") != NULL)) {
fcu_zone_t *z = &sc->sc_zones[FCU_ZONE_CASE];
z->fans[z->nfans] = sc->sc_nfans;
z->nfans++;
} else if (strstr(descr, "DRIVE") != NULL) {
fcu_zone_t *z = &sc->sc_zones[FCU_ZONE_DRIVEBAY];
z->fans[z->nfans] = sc->sc_nfans;
z->nfans++;
}
sc->sc_nfans++;
}
sysmon_envsys_sensor_attach(sc->sc_sme, s);
sc->sc_nsensors++;
next:
ch = OF_peer(ch);
}
sysmon_envsys_register(sc->sc_sme);
sc->sc_dying = FALSE;
kthread_create(PRI_NONE, 0, curcpu(), fcu_adjust, sc, &sc->sc_thread,
"fan control");
}
static void
fcu_sensors_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
{
struct fcu_softc *sc = sme->sme_cookie;
uint8_t cmd;
uint16_t data = -1;
int error;
if (edata->units == ENVSYS_SFANRPM) {
cmd = edata->private + 1;
} else
cmd = edata->private;
/* fcu is a macppc only thing so we can safely assume big endian */
iic_acquire_bus(sc->sc_i2c, 0);
error = iic_exec(sc->sc_i2c, I2C_OP_READ_WITH_STOP,
sc->sc_addr, &cmd, 1, &data, 2, 0);
iic_release_bus(sc->sc_i2c, 0);
if (error) {
edata->state = ENVSYS_SINVALID;
return;
}
edata->state = ENVSYS_SVALID;
switch (edata->units) {
case ENVSYS_SFANRPM:
edata->value_cur = data >> 3;
break;
case ENVSYS_SVOLTS_DC:
/* XXX this reads bogus */
edata->value_cur = data * 1000;
break;
case ENVSYS_INDICATOR:
/* guesswork for now */
edata->value_cur = data >> 8;
break;
default:
edata->state = ENVSYS_SINVALID;
}
}
static bool
is_cpu_a(const envsys_data_t *edata)
{
if (edata->units != ENVSYS_STEMP)
return false;
if (strstr(edata->desc, "CPU A") != NULL)
return TRUE;
return false;
}
static bool
is_cpu_b(const envsys_data_t *edata)
{
if (edata->units != ENVSYS_STEMP)
return false;
if (strstr(edata->desc, "CPU B") != NULL)
return TRUE;
return false;
}
static bool
is_case(const envsys_data_t *edata)
{
if (edata->units != ENVSYS_STEMP)
return false;
if ((strstr(edata->desc, "MLB") != NULL) ||
(strstr(edata->desc, "BACKSIDE") != NULL) ||
(strstr(edata->desc, "U3") != NULL))
return TRUE;
return false;
}
static bool
is_drive(const envsys_data_t *edata)
{
if (edata->units != ENVSYS_STEMP)
return false;
if (strstr(edata->desc, "DRIVE") != NULL)
return TRUE;
return false;
}
static void
fcu_set_fan_rpm(struct fcu_softc *sc, fcu_fan_t *f, int speed)
{
int error;
uint8_t cmd;
if (speed > f->max_rpm) speed = f->max_rpm;
if (speed < f->base_rpm) speed = f->base_rpm;
if (f->reg < 0x30) {
uint16_t data;
/* simple rpm fan, just poke the register */
if (f->target == speed) return;
iic_acquire_bus(sc->sc_i2c, 0);
cmd = f->reg;
data = (speed << 3);
error = iic_exec(sc->sc_i2c, I2C_OP_WRITE_WITH_STOP,
sc->sc_addr, &cmd, 1, &data, 2, 0);
iic_release_bus(sc->sc_i2c, 0);
} else {
int diff;
int nduty = f->duty;
uint16_t data;
/* pwm fan, measure speed, then adjust duty cycle */
DPRINTF("pwm fan ");
iic_acquire_bus(sc->sc_i2c, 0);
cmd = f->reg + 1;
error = iic_exec(sc->sc_i2c, I2C_OP_READ_WITH_STOP,
sc->sc_addr, &cmd, 1, &data, 2, 0);
data = data >> 3;
diff = data - speed;
DPRINTF("d %d s %d t %d diff %d ", f->duty, data, speed, diff);
if (diff > 100) {
nduty = uimax(20, nduty - 1);
}
if (diff < -100) {
nduty = uimin(0xd0, nduty + 1);
}
cmd = f->reg;
DPRINTF("%s nduty %d", __func__, nduty);
if (nduty != f->duty) {
uint8_t arg = nduty;
error = iic_exec(sc->sc_i2c, I2C_OP_WRITE_WITH_STOP,
sc->sc_addr, &cmd, 1, &arg, 1, 0);
f->duty = nduty;
sc->sc_pwm = TRUE;
}
iic_release_bus(sc->sc_i2c, 0);
DPRINTF("ok\n");
}
if (error) printf("boo\n");
f->target = speed;
}
static void
fcu_adjust_zone(struct fcu_softc *sc, int which)
{
fcu_zone_t *z = &sc->sc_zones[which];
fcu_fan_t *f;
int temp, i, speed, diff;
if (z->nfans <= 0)
return;
temp = sysmon_envsys_get_max_value(z->filter, true);
if (temp == 0) {
/* no sensor data - leave fan alone */
DPRINTF("nodata\n");
return;
}
temp = (temp - 273150000) / 1000000;
diff = temp - z->threshold;
if (diff < 0) diff = 0;
/* now adjust each fan to the new duty cycle */
for (i = 0; i < z->nfans; i++) {
if (z->fans[i] > 8) {
printf("wtf?!\n");
continue;
}
f = &sc->sc_fans[z->fans[i]];
speed = f->base_rpm + diff * f->step;
DPRINTF("diff %d base %d sp %d\n", diff, f->base_rpm, speed);
fcu_set_fan_rpm(sc, f, speed);
}
}
static void
fcu_adjust(void *cookie)
{
struct fcu_softc *sc = cookie;
int i;
uint8_t cmd, data;
while (!sc->sc_dying) {
/* poke the FCU so we don't go 747 */
iic_acquire_bus(sc->sc_i2c, 0);
cmd = FCU_FAN_ACTIVE;
iic_exec(sc->sc_i2c, I2C_OP_READ_WITH_STOP,
sc->sc_addr, &cmd, 1, &data, 1, 0);
iic_release_bus(sc->sc_i2c, 0);
sc->sc_pwm = FALSE;
for (i = 0; i < FCU_ZONE_COUNT; i++)
fcu_adjust_zone(sc, i);
kpause("fanctrl", true, mstohz(sc->sc_pwm ? 1000 : 5000), NULL);
}
kthread_exit(0);
}