NetBSD/sys/dev/usb/uftdi.c

780 lines
23 KiB
C

/* $NetBSD: uftdi.c,v 1.74 2020/03/14 02:35:33 christos Exp $ */
/*
* Copyright (c) 2000 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson (lennart@augustsson.net).
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: uftdi.c,v 1.74 2020/03/14 02:35:33 christos Exp $");
#ifdef _KERNEL_OPT
#include "opt_usb.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/conf.h>
#include <sys/tty.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/ucomvar.h>
#include <dev/usb/uftdireg.h>
#ifdef UFTDI_DEBUG
#define DPRINTF(x) if (uftdidebug) printf x
#define DPRINTFN(n,x) if (uftdidebug>(n)) printf x
int uftdidebug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
#define UFTDI_CONFIG_NO 1
/*
* These are the default number of bytes transferred per frame if the
* endpoint doesn't tell us. The output buffer size is a hard limit
* for devices that use a 6-bit size encoding.
*/
#define UFTDIIBUFSIZE 64
#define UFTDIOBUFSIZE 64
/*
* Magic constants! Where do these come from? They're what Linux uses...
*/
#define UFTDI_MAX_IBUFSIZE 512
#define UFTDI_MAX_OBUFSIZE 256
struct uftdi_softc {
device_t sc_dev; /* base device */
struct usbd_device * sc_udev; /* device */
struct usbd_interface * sc_iface; /* interface */
int sc_iface_no;
enum uftdi_type sc_type;
u_int sc_flags;
#define FLAGS_BAUDCLK_12M 0x00000001
#define FLAGS_ROUNDOFF_232A 0x00000002
#define FLAGS_BAUDBITS_HINDEX 0x00000004
u_int sc_hdrlen;
u_int sc_chiptype;
u_char sc_msr;
u_char sc_lsr;
device_t sc_subdev;
bool sc_dying;
u_int last_lcr;
};
static void uftdi_get_status(void *, int, u_char *, u_char *);
static void uftdi_set(void *, int, int, int);
static int uftdi_param(void *, int, struct termios *);
static int uftdi_open(void *, int);
static void uftdi_read(void *, int, u_char **, uint32_t *);
static void uftdi_write(void *, int, u_char *, u_char *, uint32_t *);
static void uftdi_break(void *, int, int);
static const struct ucom_methods uftdi_methods = {
.ucom_get_status = uftdi_get_status,
.ucom_set = uftdi_set,
.ucom_param = uftdi_param,
.ucom_open = uftdi_open,
.ucom_read = uftdi_read,
.ucom_write = uftdi_write,
};
/*
* The devices default to UFTDI_TYPE_8U232AM.
* Remember to update uftdi_attach() if it should be UFTDI_TYPE_SIO instead
*/
static const struct usb_devno uftdi_devs[] = {
{ USB_VENDOR_BBELECTRONICS, USB_PRODUCT_BBELECTRONICS_USOTL4 },
{ USB_VENDOR_FALCOM, USB_PRODUCT_FALCOM_TWIST },
{ USB_VENDOR_FALCOM, USB_PRODUCT_FALCOM_SAMBA },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_SERIAL_230X },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_SERIAL_232H },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_SERIAL_232RL },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_SERIAL_2232C },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_SERIAL_4232H },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_SERIAL_8U100AX },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_SERIAL_8U232AM },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_MHAM_KW },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_MHAM_YS },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_MHAM_Y6 },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_MHAM_Y8 },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_MHAM_IC },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_MHAM_DB9 },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_MHAM_RS232 },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_MHAM_Y9 },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_COASTAL_TNCX },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_CTI_485_MINI },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_CTI_NANO_485 },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_SEMC_DSS20 },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_LCD_LK202_24_USB },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_LCD_LK204_24_USB },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_LCD_MX200_USB },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_LCD_MX4_MX5_USB },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_LCD_CFA_631 },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_LCD_CFA_632 },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_LCD_CFA_633 },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_LCD_CFA_634 },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_LCD_CFA_635 },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_OPENRD_JTAGKEY },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_BEAGLEBONE },
{ USB_VENDOR_FTDI, USB_PRODUCT_FTDI_MAXSTREAM_PKG_U },
{ USB_VENDOR_xxFTDI, USB_PRODUCT_xxFTDI_SHEEVAPLUG_JTAG },
{ USB_VENDOR_INTREPIDCS, USB_PRODUCT_INTREPIDCS_VALUECAN },
{ USB_VENDOR_INTREPIDCS, USB_PRODUCT_INTREPIDCS_NEOVI },
{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_PCOPRS1 },
{ USB_VENDOR_RATOC, USB_PRODUCT_RATOC_REXUSB60F },
{ USB_VENDOR_RTSYS, USB_PRODUCT_RTSYS_CT57A },
{ USB_VENDOR_RTSYS, USB_PRODUCT_RTSYS_RTS03 },
{ USB_VENDOR_SEALEVEL, USB_PRODUCT_SEALEVEL_USBSERIAL },
{ USB_VENDOR_SEALEVEL, USB_PRODUCT_SEALEVEL_SEAPORT4P1 },
{ USB_VENDOR_SEALEVEL, USB_PRODUCT_SEALEVEL_SEAPORT4P2 },
{ USB_VENDOR_SEALEVEL, USB_PRODUCT_SEALEVEL_SEAPORT4P3 },
{ USB_VENDOR_SEALEVEL, USB_PRODUCT_SEALEVEL_SEAPORT4P4 },
{ USB_VENDOR_SIIG2, USB_PRODUCT_SIIG2_US2308 },
{ USB_VENDOR_MISC, USB_PRODUCT_MISC_TELLSTICK },
{ USB_VENDOR_MISC, USB_PRODUCT_MISC_TELLSTICK_DUO },
};
#define uftdi_lookup(v, p) usb_lookup(uftdi_devs, v, p)
static int uftdi_match(device_t, cfdata_t, void *);
static void uftdi_attach(device_t, device_t, void *);
static void uftdi_childdet(device_t, device_t);
static int uftdi_detach(device_t, int);
CFATTACH_DECL2_NEW(uftdi, sizeof(struct uftdi_softc), uftdi_match,
uftdi_attach, uftdi_detach, NULL, NULL, uftdi_childdet);
static int
uftdi_match(device_t parent, cfdata_t match, void *aux)
{
struct usbif_attach_arg *uiaa = aux;
DPRINTFN(20,("uftdi: vendor=%#x, product=%#x\n",
uiaa->uiaa_vendor, uiaa->uiaa_product));
if (uiaa->uiaa_configno != UFTDI_CONFIG_NO)
return UMATCH_NONE;
return uftdi_lookup(uiaa->uiaa_vendor, uiaa->uiaa_product) != NULL ?
UMATCH_VENDOR_PRODUCT_CONF_IFACE : UMATCH_NONE;
}
static void
uftdi_attach(device_t parent, device_t self, void *aux)
{
struct uftdi_softc *sc = device_private(self);
struct usbif_attach_arg *uiaa = aux;
struct usbd_device *dev = uiaa->uiaa_device;
struct usbd_interface *iface = uiaa->uiaa_iface;
usb_device_descriptor_t *ddesc;
usb_interface_descriptor_t *id;
usb_endpoint_descriptor_t *ed;
char *devinfop;
int i;
struct ucom_attach_args ucaa;
DPRINTFN(10,("\nuftdi_attach: sc=%p\n", sc));
aprint_naive("\n");
aprint_normal("\n");
devinfop = usbd_devinfo_alloc(dev, 0);
aprint_normal_dev(self, "%s\n", devinfop);
usbd_devinfo_free(devinfop);
sc->sc_dev = self;
sc->sc_udev = dev;
sc->sc_dying = false;
sc->sc_iface_no = uiaa->uiaa_ifaceno;
sc->sc_type = UFTDI_TYPE_8U232AM; /* most devices are post-8U232AM */
sc->sc_hdrlen = 0;
ddesc = usbd_get_device_descriptor(dev);
sc->sc_chiptype = UGETW(ddesc->bcdDevice);
switch (sc->sc_chiptype) {
case 0x0200:
if (ddesc->iSerialNumber != 0)
sc->sc_flags |= FLAGS_ROUNDOFF_232A;
ucaa.ucaa_portno = 0;
break;
case 0x0400:
ucaa.ucaa_portno = 0;
break;
case 0x0500:
sc->sc_flags |= FLAGS_BAUDBITS_HINDEX;
ucaa.ucaa_portno = FTDI_PIT_SIOA + sc->sc_iface_no;
break;
case 0x0600:
ucaa.ucaa_portno = 0;
break;
case 0x0700:
case 0x0800:
case 0x0900:
sc->sc_flags |= FLAGS_BAUDCLK_12M;
sc->sc_flags |= FLAGS_BAUDBITS_HINDEX;
ucaa.ucaa_portno = FTDI_PIT_SIOA + sc->sc_iface_no;
break;
case 0x1000:
sc->sc_flags |= FLAGS_BAUDBITS_HINDEX;
ucaa.ucaa_portno = FTDI_PIT_SIOA + sc->sc_iface_no;
break;
default:
if (sc->sc_chiptype < 0x0200) {
sc->sc_type = UFTDI_TYPE_SIO;
sc->sc_hdrlen = 1;
}
ucaa.ucaa_portno = 0;
break;
}
id = usbd_get_interface_descriptor(iface);
sc->sc_iface = iface;
ucaa.ucaa_bulkin = ucaa.ucaa_bulkout = -1;
ucaa.ucaa_ibufsize = ucaa.ucaa_obufsize = 0;
for (i = 0; i < id->bNumEndpoints; i++) {
int addr, dir, attr;
ed = usbd_interface2endpoint_descriptor(iface, i);
if (ed == NULL) {
aprint_error_dev(self,
"could not read endpoint descriptor\n");
goto bad;
}
addr = ed->bEndpointAddress;
dir = UE_GET_DIR(ed->bEndpointAddress);
attr = ed->bmAttributes & UE_XFERTYPE;
if (dir == UE_DIR_IN && attr == UE_BULK) {
ucaa.ucaa_bulkin = addr;
ucaa.ucaa_ibufsize = UGETW(ed->wMaxPacketSize);
if (ucaa.ucaa_ibufsize >= UFTDI_MAX_IBUFSIZE)
ucaa.ucaa_ibufsize = UFTDI_MAX_IBUFSIZE;
} else if (dir == UE_DIR_OUT && attr == UE_BULK) {
ucaa.ucaa_bulkout = addr;
ucaa.ucaa_obufsize = UGETW(ed->wMaxPacketSize)
- sc->sc_hdrlen;
if (ucaa.ucaa_obufsize >= UFTDI_MAX_OBUFSIZE)
ucaa.ucaa_obufsize = UFTDI_MAX_OBUFSIZE;
/* Limit length if we have a 6-bit header. */
if ((sc->sc_hdrlen > 0) &&
(ucaa.ucaa_obufsize > UFTDIOBUFSIZE))
ucaa.ucaa_obufsize = UFTDIOBUFSIZE;
} else {
aprint_error_dev(self, "unexpected endpoint\n");
goto bad;
}
}
if (ucaa.ucaa_bulkin == -1) {
aprint_error_dev(self, "Could not find data bulk in\n");
goto bad;
}
if (ucaa.ucaa_bulkout == -1) {
aprint_error_dev(self, "Could not find data bulk out\n");
goto bad;
}
/* ucaa_bulkin, ucaa_bulkout set above */
if (ucaa.ucaa_ibufsize == 0)
ucaa.ucaa_ibufsize = UFTDIIBUFSIZE;
ucaa.ucaa_ibufsizepad = ucaa.ucaa_ibufsize;
if (ucaa.ucaa_obufsize == 0)
ucaa.ucaa_obufsize = UFTDIOBUFSIZE - sc->sc_hdrlen;
ucaa.ucaa_opkthdrlen = sc->sc_hdrlen;
ucaa.ucaa_device = dev;
ucaa.ucaa_iface = iface;
ucaa.ucaa_methods = &uftdi_methods;
ucaa.ucaa_arg = sc;
ucaa.ucaa_info = NULL;
DPRINTF(("uftdi: in=%#x out=%#x isize=%#x osize=%#x\n",
ucaa.ucaa_bulkin, ucaa.ucaa_bulkout,
ucaa.ucaa_ibufsize, ucaa.ucaa_obufsize));
sc->sc_subdev = config_found_sm_loc(self, "ucombus", NULL,
&ucaa, ucomprint, ucomsubmatch);
usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
if (!pmf_device_register(self, NULL, NULL))
aprint_error_dev(self, "couldn't establish power handler\n");
return;
bad:
DPRINTF(("uftdi_attach: ATTACH ERROR\n"));
sc->sc_dying = true;
return;
}
static void
uftdi_childdet(device_t self, device_t child)
{
struct uftdi_softc *sc = device_private(self);
KASSERT(child == sc->sc_subdev);
sc->sc_subdev = NULL;
}
static int
uftdi_detach(device_t self, int flags)
{
struct uftdi_softc *sc = device_private(self);
int rv = 0;
DPRINTF(("uftdi_detach: sc=%p flags=%d\n", sc, flags));
sc->sc_dying = true;
if (sc->sc_subdev != NULL) {
rv = config_detach(sc->sc_subdev, flags);
sc->sc_subdev = NULL;
}
usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
return rv;
}
static int
uftdi_open(void *vsc, int portno)
{
struct uftdi_softc *sc = vsc;
usb_device_request_t req;
usbd_status err;
struct termios t;
DPRINTF(("uftdi_open: sc=%p\n", sc));
if (sc->sc_dying)
return EIO;
/* Perform a full reset on the device */
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = FTDI_SIO_RESET;
USETW(req.wValue, FTDI_SIO_RESET_SIO);
USETW(req.wIndex, portno);
USETW(req.wLength, 0);
err = usbd_do_request(sc->sc_udev, &req, NULL);
if (err)
return EIO;
/* Set 9600 baud, 2 stop bits, no parity, 8 bits */
t.c_ospeed = 9600;
t.c_cflag = CSTOPB | CS8;
(void)uftdi_param(sc, portno, &t);
/* Turn on RTS/CTS flow control */
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = FTDI_SIO_SET_FLOW_CTRL;
USETW(req.wValue, 0);
USETW2(req.wIndex, FTDI_SIO_RTS_CTS_HS, portno);
USETW(req.wLength, 0);
err = usbd_do_request(sc->sc_udev, &req, NULL);
if (err)
return EIO;
return 0;
}
static void
uftdi_read(void *vsc, int portno, u_char **ptr, uint32_t *count)
{
struct uftdi_softc *sc = vsc;
u_char msr, lsr;
DPRINTFN(15,("uftdi_read: sc=%p, port=%d count=%d\n", sc, portno,
*count));
msr = FTDI_GET_MSR(*ptr);
lsr = FTDI_GET_LSR(*ptr);
#ifdef UFTDI_DEBUG
if (*count != 2)
DPRINTFN(10,("uftdi_read: sc=%p, port=%d count=%d data[0]="
"0x%02x\n", sc, portno, *count, (*ptr)[2]));
#endif
if (sc->sc_msr != msr ||
(sc->sc_lsr & FTDI_LSR_MASK) != (lsr & FTDI_LSR_MASK)) {
DPRINTF(("uftdi_read: status change msr=0x%02x(0x%02x) "
"lsr=0x%02x(0x%02x)\n", msr, sc->sc_msr,
lsr, sc->sc_lsr));
sc->sc_msr = msr;
sc->sc_lsr = lsr;
ucom_status_change(device_private(sc->sc_subdev));
}
/* Adjust buffer pointer to skip status prefix */
*ptr += 2;
}
static void
uftdi_write(void *vsc, int portno, u_char *to, u_char *from, uint32_t *count)
{
struct uftdi_softc *sc = vsc;
DPRINTFN(10,("uftdi_write: sc=%p, port=%d count=%u data[0]=0x%02x\n",
vsc, portno, *count, from[0]));
/* Make length tag and copy data */
if (sc->sc_hdrlen > 0)
*to = FTDI_OUT_TAG(*count, portno);
memcpy(to + sc->sc_hdrlen, from, *count);
*count += sc->sc_hdrlen;
}
static void
uftdi_set(void *vsc, int portno, int reg, int onoff)
{
struct uftdi_softc *sc = vsc;
usb_device_request_t req;
int ctl;
DPRINTF(("uftdi_set: sc=%p, port=%d reg=%d onoff=%d\n", vsc, portno,
reg, onoff));
if (sc->sc_dying)
return;
switch (reg) {
case UCOM_SET_DTR:
ctl = onoff ? FTDI_SIO_SET_DTR_HIGH : FTDI_SIO_SET_DTR_LOW;
break;
case UCOM_SET_RTS:
ctl = onoff ? FTDI_SIO_SET_RTS_HIGH : FTDI_SIO_SET_RTS_LOW;
break;
case UCOM_SET_BREAK:
uftdi_break(sc, portno, onoff);
return;
default:
return;
}
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = FTDI_SIO_MODEM_CTRL;
USETW(req.wValue, ctl);
USETW(req.wIndex, portno);
USETW(req.wLength, 0);
DPRINTFN(2,("uftdi_set: reqtype=0x%02x req=0x%02x value=0x%04x "
"index=0x%04x len=%d\n", req.bmRequestType, req.bRequest,
UGETW(req.wValue), UGETW(req.wIndex), UGETW(req.wLength)));
(void)usbd_do_request(sc->sc_udev, &req, NULL);
}
/*
* Return true if the given speed is within operational tolerance of the target
* speed. FTDI recommends that the hardware speed be within 3% of nominal.
*/
static inline bool
uftdi_baud_within_tolerance(uint64_t speed, uint64_t target)
{
return ((speed >= (target * 100) / 103) &&
(speed <= (target * 100) / 97));
}
static int
uftdi_encode_baudrate(struct uftdi_softc *sc, int speed, int *rate, int *ratehi)
{
static const uint8_t encoded_fraction[8] = {
0, 3, 2, 4, 1, 5, 6, 7
};
static const uint8_t roundoff_232a[16] = {
0, 1, 0, 1, 0, -1, 2, 1,
0, -1, -2, -3, 4, 3, 2, 1,
};
uint32_t clk, divisor, fastclk_flag, frac, hwspeed;
/*
* If this chip has the fast clock capability and the speed is within
* range, use the 12MHz clock, otherwise the standard clock is 3MHz.
*/
if ((sc->sc_flags & FLAGS_BAUDCLK_12M) && speed >= 1200) {
clk = 12000000;
fastclk_flag = (1 << 17);
} else {
clk = 3000000;
fastclk_flag = 0;
}
/*
* Make sure the requested speed is reachable with the available clock
* and a 14-bit divisor.
*/
if (speed < (clk >> 14) || speed > clk)
return -1;
/*
* Calculate the divisor, initially yielding a fixed point number with a
* 4-bit (1/16ths) fraction, then round it to the nearest fraction the
* hardware can handle. When the integral part of the divisor is
* greater than one, the fractional part is in 1/8ths of the base clock.
* The FT8U232AM chips can handle only 0.125, 0.250, and 0.5 fractions.
* Later chips can handle all 1/8th fractions.
*
* If the integral part of the divisor is 1, a special rule applies: the
* fractional part can only be .0 or .5 (this is a limitation of the
* hardware). We handle this by truncating the fraction rather than
* rounding, because this only applies to the two fastest speeds the
* chip can achieve and rounding doesn't matter, either you've asked for
* that exact speed or you've asked for something the chip can't do.
*
* For the FT8U232AM chips, use a roundoff table to adjust the result
* to the nearest 1/8th fraction that is supported by the hardware,
* leaving a fixed-point number with a 3-bit fraction which exactly
* represents the math the hardware divider will do. For later-series
* chips that support all 8 fractional divisors, just round 16ths to
* 8ths by adding 1 and dividing by 2.
*/
divisor = (clk << 4) / speed;
if ((divisor & 0xf) == 1)
divisor &= 0xfffffff8;
else if (sc->sc_flags & FLAGS_ROUNDOFF_232A)
divisor += roundoff_232a[divisor & 0x0f];
else
divisor += 1; /* Rounds odd 16ths up to next 8th. */
divisor >>= 1;
/*
* Ensure the resulting hardware speed will be within operational
* tolerance (within 3% of nominal).
*/
hwspeed = (clk << 3) / divisor;
if (!uftdi_baud_within_tolerance(hwspeed, speed))
return -1;
/*
* Re-pack the divisor into hardware format. The lower 14-bits hold the
* integral part, while the upper bits specify the fraction by indexing
* a table of fractions within the hardware which is laid out as:
* {0.0, 0.5, 0.25, 0.125, 0.325, 0.625, 0.725, 0.875}
* The A-series chips only have the first four table entries; the
* roundoff table logic above ensures that the fractional part for those
* chips will be one of the first four values.
*
* When the divisor is 1 a special encoding applies: 1.0 is encoded as
* 0.0, and 1.5 is encoded as 1.0. The rounding logic above has already
* ensured that the fraction is either .0 or .5 if the integral is 1.
*/
frac = divisor & 0x07;
divisor >>= 3;
if (divisor == 1) {
if (frac == 0)
divisor = 0; /* 1.0 becomes 0.0 */
else
frac = 0; /* 1.5 becomes 1.0 */
}
divisor |= (encoded_fraction[frac] << 14) | fastclk_flag;
*rate = (uint16_t)divisor;
*ratehi = (uint16_t)(divisor >> 16);
/*
* If this chip requires the baud bits to be in the high byte of the
* index word, move the bits up to that location.
*/
if (sc->sc_flags & FLAGS_BAUDBITS_HINDEX)
*ratehi <<= 8;
return 0;
}
static int
uftdi_param(void *vsc, int portno, struct termios *t)
{
struct uftdi_softc *sc = vsc;
usb_device_request_t req;
usbd_status err;
int rate, ratehi, rerr, data, flow;
DPRINTF(("uftdi_param: sc=%p\n", sc));
if (sc->sc_dying)
return EIO;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = FTDI_SIO_SET_BITMODE;
USETW(req.wValue, FTDI_BITMODE_RESET << 8 | 0x00);
USETW(req.wIndex, portno);
USETW(req.wLength, 0);
err = usbd_do_request(sc->sc_udev, &req, NULL);
if (err)
return EIO;
switch (sc->sc_type) {
case UFTDI_TYPE_SIO:
switch (t->c_ospeed) {
case 300: rate = ftdi_sio_b300; break;
case 600: rate = ftdi_sio_b600; break;
case 1200: rate = ftdi_sio_b1200; break;
case 2400: rate = ftdi_sio_b2400; break;
case 4800: rate = ftdi_sio_b4800; break;
case 9600: rate = ftdi_sio_b9600; break;
case 19200: rate = ftdi_sio_b19200; break;
case 38400: rate = ftdi_sio_b38400; break;
case 57600: rate = ftdi_sio_b57600; break;
case 115200: rate = ftdi_sio_b115200; break;
default:
return EINVAL;
}
ratehi = 0;
break;
case UFTDI_TYPE_8U232AM:
rerr = uftdi_encode_baudrate(sc, t->c_ospeed, &rate, &ratehi);
if (rerr != 0)
return EINVAL;
break;
default:
return EINVAL;
}
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = FTDI_SIO_SET_BAUD_RATE;
USETW(req.wValue, rate);
USETW(req.wIndex, portno | ratehi);
USETW(req.wLength, 0);
DPRINTFN(2,("uftdi_param: reqtype=0x%02x req=0x%02x value=0x%04x "
"index=0x%04x len=%d\n", req.bmRequestType, req.bRequest,
UGETW(req.wValue), UGETW(req.wIndex), UGETW(req.wLength)));
err = usbd_do_request(sc->sc_udev, &req, NULL);
if (err)
return EIO;
if (ISSET(t->c_cflag, CSTOPB))
data = FTDI_SIO_SET_DATA_STOP_BITS_2;
else
data = FTDI_SIO_SET_DATA_STOP_BITS_1;
if (ISSET(t->c_cflag, PARENB)) {
if (ISSET(t->c_cflag, PARODD))
data |= FTDI_SIO_SET_DATA_PARITY_ODD;
else
data |= FTDI_SIO_SET_DATA_PARITY_EVEN;
} else
data |= FTDI_SIO_SET_DATA_PARITY_NONE;
switch (ISSET(t->c_cflag, CSIZE)) {
case CS5:
data |= FTDI_SIO_SET_DATA_BITS(5);
break;
case CS6:
data |= FTDI_SIO_SET_DATA_BITS(6);
break;
case CS7:
data |= FTDI_SIO_SET_DATA_BITS(7);
break;
case CS8:
data |= FTDI_SIO_SET_DATA_BITS(8);
break;
}
sc->last_lcr = data;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = FTDI_SIO_SET_DATA;
USETW(req.wValue, data);
USETW(req.wIndex, portno);
USETW(req.wLength, 0);
DPRINTFN(2,("uftdi_param: reqtype=0x%02x req=0x%02x value=0x%04x "
"index=0x%04x len=%d\n", req.bmRequestType, req.bRequest,
UGETW(req.wValue), UGETW(req.wIndex), UGETW(req.wLength)));
err = usbd_do_request(sc->sc_udev, &req, NULL);
if (err)
return EIO;
if (ISSET(t->c_cflag, CRTSCTS)) {
flow = FTDI_SIO_RTS_CTS_HS;
USETW(req.wValue, 0);
} else if (ISSET(t->c_iflag, IXON) && ISSET(t->c_iflag, IXOFF)) {
flow = FTDI_SIO_XON_XOFF_HS;
USETW2(req.wValue, t->c_cc[VSTOP], t->c_cc[VSTART]);
} else {
flow = FTDI_SIO_DISABLE_FLOW_CTRL;
USETW(req.wValue, 0);
}
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = FTDI_SIO_SET_FLOW_CTRL;
USETW2(req.wIndex, flow, portno);
USETW(req.wLength, 0);
err = usbd_do_request(sc->sc_udev, &req, NULL);
if (err)
return EIO;
return 0;
}
static void
uftdi_get_status(void *vsc, int portno, u_char *lsr, u_char *msr)
{
struct uftdi_softc *sc = vsc;
DPRINTF(("uftdi_status: msr=0x%02x lsr=0x%02x\n",
sc->sc_msr, sc->sc_lsr));
if (sc->sc_dying)
return;
*msr = sc->sc_msr;
*lsr = sc->sc_lsr;
}
static void
uftdi_break(void *vsc, int portno, int onoff)
{
struct uftdi_softc *sc = vsc;
usb_device_request_t req;
int data;
DPRINTF(("uftdi_break: sc=%p, port=%d onoff=%d\n", vsc, portno,
onoff));
if (onoff) {
data = sc->last_lcr | FTDI_SIO_SET_BREAK;
} else {
data = sc->last_lcr;
}
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = FTDI_SIO_SET_DATA;
USETW(req.wValue, data);
USETW(req.wIndex, portno);
USETW(req.wLength, 0);
(void)usbd_do_request(sc->sc_udev, &req, NULL);
}