NetBSD/lib/libntp/systime.c

581 lines
14 KiB
C

/* $NetBSD: systime.c,v 1.6 1999/10/09 19:42:46 sommerfeld Exp $ */
/*
* systime -- routines to fiddle a UNIX clock.
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <stdio.h>
#include <sys/types.h>
#include <sys/time.h>
#ifdef HAVE_SYS_PARAM_H
# include <sys/param.h>
#endif
#ifdef HAVE_UTMP_H
# include <utmp.h>
#endif /* HAVE_UTMP_H */
#ifdef HAVE_UTMPX_H
# include <utmpx.h>
#endif /* HAVE_UTMPX_H */
#include "ntp_fp.h"
#include "ntp_syslog.h"
#include "ntp_unixtime.h"
#include "ntp_stdlib.h"
#if defined(GDT_SURVEYING)
l_fp gdt_rsadj; /* running sum of adjustments to time */
#endif
#if defined(STEP_SLEW)
# define SLEWALWAYS
#endif
extern int debug;
int allow_set_backward;
/*
* These routines (init_systime, get_systime, step_systime, adj_systime)
* implement an interface between the (more or less) system independent
* bits of NTP and the peculiarities of dealing with the Unix system
* clock. These routines will run with good precision fairly independently
* of your kernel's value of tickadj. I couldn't tell the difference
* between tickadj==40 and tickadj==5 on a microvax, though I prefer
* to set tickadj == 500/hz when in doubt. At your option you
* may compile this so that your system's clock is always slewed to the
* correct time even for large corrections. Of course, all of this takes
* a lot of code which wouldn't be needed with a reasonable tickadj and
* a willingness to let the clock be stepped occasionally. Oh well.
*/
/*
* Clock variables. We round calls to adjtime() to adj_precision
* microseconds, and limit the adjustment to tvu_maxslew microseconds
* (tsf_maxslew fractional sec) in one adjustment interval. As we are
* thus limited in the speed and precision with which we can adjust the
* clock, we compensate by keeping the known "error" in the system time
* in sys_clock_offset. This is added to timestamps returned by get_systime().
* We also remember the clock precision we computed from the kernel in
* case someone asks us.
*/
long sys_clock;
long adj_precision; /* adj precision in usec (tickadj) */
long tvu_maxslew; /* maximum adjust doable in 1 second */
u_long tsf_maxslew; /* same as above, as long format */
l_fp sys_clock_offset; /* correction for current system time */
#ifdef SYS_WINNT
/*
* number of 100 nanosecond units added to the clock at each tick
* determined by GetSystemTimeAdjustment() in clock_parms()
*/
long units_per_tick;
#endif /* SYS_WINNT */
/*
* get_systime - return the system time in timestamp format
* As a side effect, update sys_clock.
*/
void
get_systime(now)
l_fp *now;
{
struct timeval tv;
#ifdef HAVE_GETCLOCK
struct timespec ts;
#endif
/*
* Get the time of day, convert to time stamp format
* and add in the current time offset. Then round
* appropriately.
*/
#ifdef HAVE_GETCLOCK
(void) getclock(TIMEOFDAY, &ts);
tv.tv_sec = ts.tv_sec;
tv.tv_usec = ts.tv_nsec / 1000;
#else /* not HAVE_GETCLOCK */
(void) GETTIMEOFDAY(&tv, (struct timezone *)0);
#endif /* not HAVE_GETCLOCK */
TVTOTS(&tv, now);
L_ADD(now, &sys_clock_offset);
if (now->l_uf & TS_ROUNDBIT)
L_ADDUF(now, TS_ROUNDBIT);
now->l_ui += JAN_1970;
now->l_uf &= TS_MASK;
sys_clock = now->l_ui;
}
/*
* step_systime - do a step adjustment in the system time (at least from
* NTP's point of view.
*/
int
step_systime(now)
l_fp *now;
{
register u_long tmp_ui;
register u_long tmp_uf;
int isneg;
#ifdef STEP_SLEW
int n;
#endif
/*
* Take the absolute value of the offset
*/
tmp_ui = now->l_ui;
tmp_uf = now->l_uf;
if (M_ISNEG(tmp_ui, tmp_uf)) {
M_NEG(tmp_ui, tmp_uf);
isneg = 1;
} else
isneg = 0;
#ifdef SLEWALWAYS
#ifdef STEP_SLEW
if (tmp_ui >= 3) { /* Step it and slew we might win */
n = step_systime_real(now);
if (!n) return n;
if (isneg)
now->l_ui = ~0;
else
now->l_ui = ~0;
}
#endif
/*
* Just add adjustment into the current offset. The update
* routine will take care of bringing the system clock into
* line.
*/
L_ADD(&sys_clock_offset, now);
#if defined(GDT_SURVEYING)
L_ADD(&gdt_rsadj, now);
#endif
return 1;
#else /* SLEWALWAYS */
#ifdef DEBUG
if (debug > 2)
printf ("allow_set_backward=%d\n",allow_set_backward);
#endif
if (isneg && !allow_set_backward) {
L_ADD(&sys_clock_offset, now);
return 1;
}
else {
#ifdef DEBUG
if (debug > 2)
printf ("calling step_systime_real from not slewalways\n");
#endif
return step_systime_real(now);
}
#endif /* SLEWALWAYS */
}
int max_no_complete = 20;
/*
* adj_systime - called once every second to make system time adjustments.
*/
int
adj_systime(now)
l_fp *now;
{
register u_int32 offset_i, offset_f;
register long temp;
register u_long residual;
register int isneg = 0;
struct timeval adjtv;
#ifndef SYS_WINNT
struct timeval oadjtv;
l_fp oadjts;
#endif
long adj = now->l_f;
int rval;
#ifdef SYS_WINNT
DWORD dwTimeAdjustment;
#endif /* SYS_WINNT */
#if defined(GDT_SURVEYING)
/* add to record of increments */
M_ADDF(gdt_rsadj.l_ui, gdt_rsadj.l_uf, adj);
#endif
#ifdef DEBUG
if (debug > 4)
printf("systime: offset %s\n", lfptoa(now, 6));
#endif
/*
* Move the current offset into the registers
*/
offset_i = sys_clock_offset.l_ui;
offset_f = sys_clock_offset.l_uf;
/*
* Add the new adjustment into the system offset. Adjust the
* system clock to minimize this.
*/
M_ADDF(offset_i, offset_f, adj);
if (M_ISNEG(offset_i, offset_f)) {
isneg = 1;
M_NEG(offset_i, offset_f);
}
adjtv.tv_sec = 0;
if (offset_i > 0 || offset_f >= tsf_maxslew) {
/*
* Slew is bigger than we can complete in
* the adjustment interval. Make a maximum
* sized slew and reduce sys_clock_offset by this
* much.
*/
M_SUBUF(offset_i, offset_f, tsf_maxslew);
if (!isneg) {
#ifndef SYS_WINNT
adjtv.tv_usec = tvu_maxslew;
#else
dwTimeAdjustment = units_per_tick + tvu_maxslew / adj_precision;
#endif /* SYS_WINNT */
} else {
#ifndef SYS_WINNT
adjtv.tv_usec = -tvu_maxslew;
#else
dwTimeAdjustment = units_per_tick - tvu_maxslew / adj_precision;
#endif /* SYS_WINNT */
M_NEG(offset_i, offset_f);
}
#ifdef DEBUG
if (debug > 4)
printf("systime: maximum slew: %s%s, remainder = %s\n",
isneg?"-":"", umfptoa(0, tsf_maxslew, 9),
mfptoa(offset_i, offset_f, 9));
#endif
} else {
/*
* We can do this slew in the time period. Do our
* best approximation (rounded), save residual for
* next adjustment.
*
* Note that offset_i is guaranteed to be 0 here.
*/
TSFTOTVU(offset_f, temp);
#ifndef ADJTIME_IS_ACCURATE
/*
* Round value to be an even multiple of adj_precision
*/
residual = temp % adj_precision;
temp -= residual;
if ( (long) (residual << 1) >= adj_precision)
temp += adj_precision;
#endif /* ADJTIME_IS_ACCURATE */
TVUTOTSF(temp, residual);
M_SUBUF(offset_i, offset_f, residual);
if (isneg) {
#ifndef SYS_WINNT
adjtv.tv_usec = -temp;
#else
dwTimeAdjustment = units_per_tick - temp / adj_precision;
#endif /* SYS_WINNT */
M_NEG(offset_i, offset_f);
} else {
#ifndef SYS_WINNT
adjtv.tv_usec = temp;
#else
dwTimeAdjustment = units_per_tick + temp / adj_precision;
#endif /* SYS_WINNT */
}
#ifdef DEBUG
if (debug > 4)
#ifndef SYS_WINNT
printf(
"systime: adjtv = %s sec, adjts = %s sec, sys_clock_offset = %s sec\n",
tvtoa(&adjtv), umfptoa(0, residual, 6),
mfptoa(offset_i, offset_f, 6));
#else
printf(
"systime: dwTimeAdjustment = %d, sys_clock_offset = %s sec\n",
dwTimeAdjustment, mfptoa(offset_i, offset_f, 6));
#endif /* SYS_WINNT */
#endif /* DEBUG */
}
/*
* Here we do the actual adjustment. If for some reason the adjtime()
* call fails, like it is not implemented or something like that,
* we honk to the log. If the previous adjustment did not complete,
* we correct the residual offset and honk to the log, but only for
* a little while.
*/
if (
#ifndef SYS_WINNT
/* casey - we need a posix type thang here */
(adjtime(&adjtv, &oadjtv) < 0)
#else
(!SetSystemTimeAdjustment(dwTimeAdjustment, FALSE))
#endif /* SYS_WINNT */
) {
msyslog(LOG_ERR, "Can't adjust time: %m");
rval = 0;
} else {
sys_clock_offset.l_ui = offset_i;
sys_clock_offset.l_uf = offset_f;
rval = 1;
#ifndef SYS_WINNT
if (oadjtv.tv_sec != 0 || oadjtv.tv_usec != 0) {
sTVTOTS(&oadjtv, &oadjts);
L_ADD(&sys_clock_offset, &oadjts);
#if defined(GDT_SURVEYING)
L_ADD(&gdt_rsadj, &oadjts);
#endif
if (max_no_complete > 0) {
max_no_complete--;
NLOG(NLOG_SYSSTATUS|NLOG_SYNCSTATUS)
msyslog(LOG_WARNING,
"Previous time adjustment incomplete; residual %s sec\n",
lfptoa(&oadjts, 6));
}
}
#endif /* SYS_WINNT */
}
return(rval);
}
/*
* This is used by ntpdate even when xntpd does not use it! WLJ
*/
int
step_systime_real(now)
l_fp *now;
{
struct timeval timetv, adjtv, oldtimetv;
int isneg = 0;
#if defined(HAVE_GETCLOCK) || defined(HAVE_CLOCK_SETTIME)
struct timespec ts;
#endif
#if DEBUG
if (debug)
printf("step_systime: offset %s sys_offset %s\n",
lfptoa(now, 6), lfptoa(&sys_clock_offset, 6));
#endif
/*
* We can afford to be sloppy here since if this is called
* the time is really screwed and everything is being reset.
*/
L_ADD(&sys_clock_offset, now);
#if defined(GDT_SURVEYING)
L_ADD(&gdt_rsadj, now);
#endif
if (L_ISNEG(&sys_clock_offset)) {
isneg = 1;
L_NEG(&sys_clock_offset);
}
TSTOTV(&sys_clock_offset, &adjtv);
#ifdef HAVE_GETCLOCK
(void) getclock(TIMEOFDAY, &ts);
timetv.tv_sec = ts.tv_sec;
timetv.tv_usec = ts.tv_nsec / 1000;
#else /* not HAVE_GETCLOCK */
(void) GETTIMEOFDAY(&timetv, (struct timezone *)0);
#endif /* not HAVE_GETCLOCK */
oldtimetv = timetv;
#ifdef DEBUG
if (debug)
printf("step: %s sec, sys_clock_offset = %s sec, adjtv = %s sec, timetv = %s sec\n",
lfptoa(now, 6), lfptoa(&sys_clock_offset, 6), tvtoa(&adjtv),
utvtoa(&timetv));
#endif
if (isneg) {
timetv.tv_sec -= adjtv.tv_sec;
timetv.tv_usec -= adjtv.tv_usec;
if (timetv.tv_usec < 0) {
timetv.tv_sec--;
timetv.tv_usec += 1000000;
}
} else {
timetv.tv_sec += adjtv.tv_sec;
timetv.tv_usec += adjtv.tv_usec;
if (timetv.tv_usec >= 1000000) {
timetv.tv_sec++;
timetv.tv_usec -= 1000000;
}
}
#ifdef DEBUG
if (debug)
printf("step: old timetv = %s sec\n", utvtoa(&timetv));
#endif
#if HAVE_CLOCK_SETTIME
ts.tv_sec = timetv.tv_sec;
ts.tv_nsec = timetv.tv_usec * 1000;
#endif /* HAVE_CLOCK_SETTIME */
if (
#if HAVE_CLOCK_SETTIME
(clock_settime(CLOCK_REALTIME, &ts) != 0)
#else /* HAVE_CLOCK_SETTIME */
(SETTIMEOFDAY(&timetv, (struct timezone *)0) != 0)
#endif /* HAVE_CLOCK_SETTIME */
) {
msyslog(LOG_ERR, "Can't set time of day: %m");
return (0);
}
#if DEBUG
if (debug) {
#ifdef HAVE_GETCLOCK
(void) getclock(TIMEOFDAY, &ts);
timetv.tv_sec = ts.tv_sec;
timetv.tv_usec = ts.tv_nsec / 1000;
#else /* not HAVE_GETCLOCK */
(void) GETTIMEOFDAY(&timetv, (struct timezone *)0);
#endif /* not HAVE_GETCLOCK */
printf("step: new timetv = %s sec\n", utvtoa(&timetv));
}
#endif
L_CLR(&sys_clock_offset);
#ifdef NEED_HPUX_ADJTIME
/*
* CHECKME: is this correct when called by ntpdate?????
*/
_clear_adjtime();
#endif
/*
* FreeBSD, for example, has:
* struct utmp {
* char ut_line[UT_LINESIZE];
* char ut_name[UT_NAMESIZE];
* char ut_host[UT_HOSTSIZE];
* long ut_time;
* };
* and appends line="|", name="date", host="", time for the OLD
* and appends line="{", name="date", host="", time for the NEW
* to _PATH_WTMP .
*
* Some OSes have utmp, some have utmpx.
*/
/*
* Write old and new time entries in utmp and wtmp if step adjustment
* is greater than one second.
*
* This might become even Uglier...
*/
if (oldtimetv.tv_sec != timetv.tv_sec)
{
#ifdef HAVE_UTMP_H
struct utmp ut;
#endif
#ifdef HAVE_UTMPX_H
struct utmpx utx;
#endif
#ifdef HAVE_UTMP_H
memset((char *)&ut, 0, sizeof(ut));
#endif
#ifdef HAVE_UTMPX_H
memset((char *)&utx, 0, sizeof(utx));
#endif
/* UTMP */
#ifdef UPDATE_UTMP
# ifdef HAVE_PUTUTLINE
ut.ut_type = OLD_TIME;
(void)strcpy(ut.ut_line, OTIME_MSG);
ut.ut_time = oldtimetv.tv_sec;
pututline(&ut);
setutent();
ut.ut_type = NEW_TIME;
(void)strcpy(ut.ut_line, NTIME_MSG);
ut.ut_time = timetv.tv_sec;
pututline(&ut);
endutent();
# else /* not HAVE_PUTUTLINE */
# endif /* not HAVE_PUTUTLINE */
#endif /* UPDATE_UTMP */
/* UTMPX */
#ifdef UPDATE_UTMPX
# ifdef HAVE_PUTUTXLINE
utx.ut_type = OLD_TIME;
(void)strcpy(utx.ut_line, OTIME_MSG);
utx.ut_tv = oldtimetv;
pututxline(&utx);
setutxent();
utx.ut_type = NEW_TIME;
(void)strcpy(utx.ut_line, NTIME_MSG);
utx.ut_tv = timetv;
pututxline(&utx);
endutxent();
# else /* not HAVE_PUTUTXLINE */
# endif /* not HAVE_PUTUTXLINE */
#endif /* UPDATE_UTMPX */
/* WTMP */
#ifdef UPDATE_WTMP
# ifdef HAVE_PUTUTLINE
utmpname(WTMP_FILE);
ut.ut_type = OLD_TIME;
(void)strcpy(ut.ut_line, OTIME_MSG);
ut.ut_time = oldtimetv.tv_sec;
pututline(&ut);
ut.ut_type = NEW_TIME;
(void)strcpy(ut.ut_line, NTIME_MSG);
ut.ut_time = timetv.tv_sec;
pututline(&ut);
endutent();
# else /* not HAVE_PUTUTLINE */
# endif /* not HAVE_PUTUTLINE */
#endif /* UPDATE_WTMP */
/* WTMPX */
#ifdef UPDATE_WTMPX
# ifdef HAVE_PUTUTXLINE
utx.ut_type = OLD_TIME;
utx.ut_tv = oldtimetv;
(void)strcpy(utx.ut_line, OTIME_MSG);
# ifdef HAVE_UPDWTMPX
updwtmpx(WTMPX_FILE, &utx);
# else /* not HAVE_UPDWTMPX */
# endif /* not HAVE_UPDWTMPX */
# else /* not HAVE_PUTUTXLINE */
# endif /* not HAVE_PUTUTXLINE */
# ifdef HAVE_PUTUTXLINE
utx.ut_type = NEW_TIME;
utx.ut_tv = timetv;
(void)strcpy(utx.ut_line, NTIME_MSG);
# ifdef HAVE_UPDWTMPX
updwtmpx(WTMPX_FILE, &utx);
# else /* not HAVE_UPDWTMPX */
# endif /* not HAVE_UPDWTMPX */
# else /* not HAVE_PUTUTXLINE */
# endif /* not HAVE_PUTUTXLINE */
#endif /* UPDATE_WTMPX */
}
return (1);
}