1017 lines
26 KiB
C
1017 lines
26 KiB
C
/*-
|
|
* Copyright (c) 2014-2020 Mindaugas Rasiukevicius <rmind at noxt eu>
|
|
* Copyright (c) 2010-2013 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This material is based upon work partially supported by The
|
|
* NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* NPF network address port translation (NAPT) and other forms of NAT.
|
|
* Described in RFC 2663, RFC 3022, etc.
|
|
*
|
|
* Overview
|
|
*
|
|
* There are a few mechanisms: NAT policy, port map and translation.
|
|
* The NAT module has a separate ruleset where rules always have an
|
|
* associated NAT policy.
|
|
*
|
|
* Translation types
|
|
*
|
|
* There are two types of translation: outbound (NPF_NATOUT) and
|
|
* inbound (NPF_NATIN). It should not be confused with connection
|
|
* direction. See npf_nat_which() for the description of how the
|
|
* addresses are rewritten. The bi-directional NAT is a combined
|
|
* outbound and inbound translation, therefore is constructed as
|
|
* two policies.
|
|
*
|
|
* NAT policies and port maps
|
|
*
|
|
* The NAT (translation) policy is applied when packet matches the
|
|
* rule. Apart from the filter criteria, the NAT policy always has
|
|
* a translation IP address or a table. If port translation is set,
|
|
* then NAT mechanism relies on port map mechanism.
|
|
*
|
|
* Connections, translation entries and their life-cycle
|
|
*
|
|
* NAT relies on the connection tracking module. Each translated
|
|
* connection has an associated translation entry (npf_nat_t) which
|
|
* contains information used for backwards stream translation, i.e.
|
|
* the original IP address with port and translation port, allocated
|
|
* from the port map. Each NAT entry is associated with the policy,
|
|
* which contains translation IP address. Allocated port is returned
|
|
* to the port map and NAT entry is destroyed when connection expires.
|
|
*/
|
|
|
|
#ifdef _KERNEL
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: npf_nat.c,v 1.50 2020/05/30 14:16:56 rmind Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/atomic.h>
|
|
#include <sys/condvar.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/proc.h>
|
|
#endif
|
|
|
|
#include "npf_impl.h"
|
|
#include "npf_conn.h"
|
|
|
|
/*
|
|
* NAT policy structure.
|
|
*/
|
|
struct npf_natpolicy {
|
|
npf_t * n_npfctx;
|
|
kmutex_t n_lock;
|
|
LIST_HEAD(, npf_nat) n_nat_list;
|
|
unsigned n_refcnt;
|
|
uint64_t n_id;
|
|
|
|
/*
|
|
* Translation type, flags, address or table and the port.
|
|
* Additionally, there may be translation algorithm and any
|
|
* auxiliary data, e.g. NPTv6 adjustment value.
|
|
*
|
|
* NPF_NP_CMP_START mark starts here.
|
|
*/
|
|
unsigned n_type;
|
|
unsigned n_flags;
|
|
unsigned n_alen;
|
|
|
|
npf_addr_t n_taddr;
|
|
npf_netmask_t n_tmask;
|
|
in_port_t n_tport;
|
|
unsigned n_tid;
|
|
|
|
unsigned n_algo;
|
|
union {
|
|
unsigned n_rr_idx;
|
|
uint16_t n_npt66_adj;
|
|
};
|
|
};
|
|
|
|
/*
|
|
* Private flags - must be in the NPF_NAT_PRIVMASK range.
|
|
*/
|
|
#define NPF_NAT_USETABLE (0x01000000 & NPF_NAT_PRIVMASK)
|
|
|
|
#define NPF_NP_CMP_START offsetof(npf_natpolicy_t, n_type)
|
|
#define NPF_NP_CMP_SIZE (sizeof(npf_natpolicy_t) - NPF_NP_CMP_START)
|
|
|
|
/*
|
|
* NAT entry for a connection.
|
|
*/
|
|
struct npf_nat {
|
|
/* Associated NAT policy. */
|
|
npf_natpolicy_t * nt_natpolicy;
|
|
|
|
uint16_t nt_ifid;
|
|
uint16_t nt_alen;
|
|
|
|
/*
|
|
* Translation address as well as the original address which is
|
|
* used for backwards translation. The same for ports.
|
|
*/
|
|
npf_addr_t nt_taddr;
|
|
npf_addr_t nt_oaddr;
|
|
|
|
in_port_t nt_oport;
|
|
in_port_t nt_tport;
|
|
|
|
/* ALG (if any) associated with this NAT entry. */
|
|
npf_alg_t * nt_alg;
|
|
uintptr_t nt_alg_arg;
|
|
|
|
LIST_ENTRY(npf_nat) nt_entry;
|
|
npf_conn_t * nt_conn;
|
|
};
|
|
|
|
static pool_cache_t nat_cache __read_mostly;
|
|
|
|
/*
|
|
* npf_nat_sys{init,fini}: initialize/destroy NAT subsystem structures.
|
|
*/
|
|
|
|
void
|
|
npf_nat_sysinit(void)
|
|
{
|
|
nat_cache = pool_cache_init(sizeof(npf_nat_t), 0,
|
|
0, 0, "npfnatpl", NULL, IPL_NET, NULL, NULL, NULL);
|
|
KASSERT(nat_cache != NULL);
|
|
}
|
|
|
|
void
|
|
npf_nat_sysfini(void)
|
|
{
|
|
/* All NAT policies should already be destroyed. */
|
|
pool_cache_destroy(nat_cache);
|
|
}
|
|
|
|
/*
|
|
* npf_natpolicy_create: create a new NAT policy.
|
|
*/
|
|
npf_natpolicy_t *
|
|
npf_natpolicy_create(npf_t *npf, const nvlist_t *nat, npf_ruleset_t *rset)
|
|
{
|
|
npf_natpolicy_t *np;
|
|
const void *addr;
|
|
size_t len;
|
|
|
|
np = kmem_zalloc(sizeof(npf_natpolicy_t), KM_SLEEP);
|
|
atomic_store_relaxed(&np->n_refcnt, 1);
|
|
np->n_npfctx = npf;
|
|
|
|
/* The translation type, flags and policy ID. */
|
|
np->n_type = dnvlist_get_number(nat, "type", 0);
|
|
np->n_flags = dnvlist_get_number(nat, "flags", 0) & ~NPF_NAT_PRIVMASK;
|
|
np->n_id = dnvlist_get_number(nat, "nat-policy", 0);
|
|
|
|
/* Should be exclusively either inbound or outbound NAT. */
|
|
if (((np->n_type == NPF_NATIN) ^ (np->n_type == NPF_NATOUT)) == 0) {
|
|
goto err;
|
|
}
|
|
mutex_init(&np->n_lock, MUTEX_DEFAULT, IPL_SOFTNET);
|
|
LIST_INIT(&np->n_nat_list);
|
|
|
|
/*
|
|
* Translation IP, mask and port (if applicable). If using the
|
|
* the table, specified by the ID, then the nat-addr/nat-mask will
|
|
* be used as a filter for the addresses selected from table.
|
|
*/
|
|
if (nvlist_exists_number(nat, "nat-table-id")) {
|
|
if (np->n_flags & NPF_NAT_STATIC) {
|
|
goto err;
|
|
}
|
|
np->n_tid = nvlist_get_number(nat, "nat-table-id");
|
|
np->n_tmask = NPF_NO_NETMASK;
|
|
np->n_flags |= NPF_NAT_USETABLE;
|
|
} else {
|
|
addr = dnvlist_get_binary(nat, "nat-addr", &len, NULL, 0);
|
|
if (!addr || len == 0 || len > sizeof(npf_addr_t)) {
|
|
goto err;
|
|
}
|
|
memcpy(&np->n_taddr, addr, len);
|
|
np->n_alen = len;
|
|
np->n_tmask = dnvlist_get_number(nat, "nat-mask", NPF_NO_NETMASK);
|
|
if (npf_netmask_check(np->n_alen, np->n_tmask)) {
|
|
goto err;
|
|
}
|
|
}
|
|
np->n_tport = dnvlist_get_number(nat, "nat-port", 0);
|
|
|
|
/*
|
|
* NAT algorithm.
|
|
*/
|
|
np->n_algo = dnvlist_get_number(nat, "nat-algo", 0);
|
|
switch (np->n_algo) {
|
|
case NPF_ALGO_NPT66:
|
|
np->n_npt66_adj = dnvlist_get_number(nat, "npt66-adj", 0);
|
|
break;
|
|
case NPF_ALGO_NETMAP:
|
|
break;
|
|
case NPF_ALGO_IPHASH:
|
|
case NPF_ALGO_RR:
|
|
default:
|
|
if (np->n_tmask != NPF_NO_NETMASK) {
|
|
goto err;
|
|
}
|
|
break;
|
|
}
|
|
return np;
|
|
err:
|
|
mutex_destroy(&np->n_lock);
|
|
kmem_free(np, sizeof(npf_natpolicy_t));
|
|
return NULL;
|
|
}
|
|
|
|
int
|
|
npf_natpolicy_export(const npf_natpolicy_t *np, nvlist_t *nat)
|
|
{
|
|
nvlist_add_number(nat, "nat-policy", np->n_id);
|
|
nvlist_add_number(nat, "type", np->n_type);
|
|
nvlist_add_number(nat, "flags", np->n_flags);
|
|
|
|
if (np->n_flags & NPF_NAT_USETABLE) {
|
|
nvlist_add_number(nat, "nat-table-id", np->n_tid);
|
|
} else {
|
|
nvlist_add_binary(nat, "nat-addr", &np->n_taddr, np->n_alen);
|
|
nvlist_add_number(nat, "nat-mask", np->n_tmask);
|
|
}
|
|
nvlist_add_number(nat, "nat-port", np->n_tport);
|
|
nvlist_add_number(nat, "nat-algo", np->n_algo);
|
|
|
|
switch (np->n_algo) {
|
|
case NPF_ALGO_NPT66:
|
|
nvlist_add_number(nat, "npt66-adj", np->n_npt66_adj);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
npf_natpolicy_release(npf_natpolicy_t *np)
|
|
{
|
|
KASSERT(atomic_load_relaxed(&np->n_refcnt) > 0);
|
|
|
|
if (atomic_dec_uint_nv(&np->n_refcnt) != 0) {
|
|
return;
|
|
}
|
|
KASSERT(LIST_EMPTY(&np->n_nat_list));
|
|
mutex_destroy(&np->n_lock);
|
|
kmem_free(np, sizeof(npf_natpolicy_t));
|
|
}
|
|
|
|
/*
|
|
* npf_natpolicy_destroy: free the NAT policy.
|
|
*
|
|
* => Called from npf_rule_free() during the reload via npf_ruleset_destroy().
|
|
* => At this point, NAT policy cannot acquire new references.
|
|
*/
|
|
void
|
|
npf_natpolicy_destroy(npf_natpolicy_t *np)
|
|
{
|
|
/*
|
|
* Drain the references. If there are active NAT connections,
|
|
* then expire them and kick the worker.
|
|
*/
|
|
if (atomic_load_relaxed(&np->n_refcnt) > 1) {
|
|
npf_nat_t *nt;
|
|
|
|
mutex_enter(&np->n_lock);
|
|
LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
|
|
npf_conn_t *con = nt->nt_conn;
|
|
KASSERT(con != NULL);
|
|
npf_conn_expire(con);
|
|
}
|
|
mutex_exit(&np->n_lock);
|
|
npf_worker_signal(np->n_npfctx);
|
|
}
|
|
KASSERT(atomic_load_relaxed(&np->n_refcnt) >= 1);
|
|
|
|
/*
|
|
* Drop the initial reference, but it might not be the last one.
|
|
* If so, the last reference will be triggered via:
|
|
*
|
|
* npf_conn_destroy() -> npf_nat_destroy() -> npf_natpolicy_release()
|
|
*/
|
|
npf_natpolicy_release(np);
|
|
}
|
|
|
|
void
|
|
npf_nat_freealg(npf_natpolicy_t *np, npf_alg_t *alg)
|
|
{
|
|
npf_nat_t *nt;
|
|
|
|
mutex_enter(&np->n_lock);
|
|
LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
|
|
if (nt->nt_alg == alg) {
|
|
npf_alg_destroy(np->n_npfctx, alg, nt, nt->nt_conn);
|
|
nt->nt_alg = NULL;
|
|
}
|
|
}
|
|
mutex_exit(&np->n_lock);
|
|
}
|
|
|
|
/*
|
|
* npf_natpolicy_cmp: compare two NAT policies.
|
|
*
|
|
* => Return 0 on match, and non-zero otherwise.
|
|
*/
|
|
bool
|
|
npf_natpolicy_cmp(npf_natpolicy_t *np, npf_natpolicy_t *mnp)
|
|
{
|
|
const void *np_raw, *mnp_raw;
|
|
|
|
/*
|
|
* Compare the relevant NAT policy information (in its raw form)
|
|
* that is enough as a matching criteria.
|
|
*/
|
|
KASSERT(np && mnp && np != mnp);
|
|
np_raw = (const uint8_t *)np + NPF_NP_CMP_START;
|
|
mnp_raw = (const uint8_t *)mnp + NPF_NP_CMP_START;
|
|
return memcmp(np_raw, mnp_raw, NPF_NP_CMP_SIZE) == 0;
|
|
}
|
|
|
|
void
|
|
npf_nat_setid(npf_natpolicy_t *np, uint64_t id)
|
|
{
|
|
np->n_id = id;
|
|
}
|
|
|
|
uint64_t
|
|
npf_nat_getid(const npf_natpolicy_t *np)
|
|
{
|
|
return np->n_id;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_which: tell which address (source or destination) should be
|
|
* rewritten given the combination of the NAT type and flow direction.
|
|
*
|
|
* => Returns NPF_SRC or NPF_DST constant.
|
|
*/
|
|
static inline unsigned
|
|
npf_nat_which(const unsigned type, const npf_flow_t flow)
|
|
{
|
|
unsigned which;
|
|
|
|
/* The logic below relies on these values being 0 or 1. */
|
|
CTASSERT(NPF_SRC == 0 && NPF_DST == 1);
|
|
CTASSERT(NPF_FLOW_FORW == NPF_SRC && NPF_FLOW_BACK == NPF_DST);
|
|
|
|
KASSERT(type == NPF_NATIN || type == NPF_NATOUT);
|
|
KASSERT(flow == NPF_FLOW_FORW || flow == NPF_FLOW_BACK);
|
|
|
|
/*
|
|
* Outbound NAT rewrites:
|
|
*
|
|
* - Source (NPF_SRC) on "forwards" stream.
|
|
* - Destination (NPF_DST) on "backwards" stream.
|
|
*
|
|
* Inbound NAT is other way round.
|
|
*/
|
|
which = (type == NPF_NATOUT) ? flow : !flow;
|
|
KASSERT(which == NPF_SRC || which == NPF_DST);
|
|
return which;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_inspect: inspect packet against NAT ruleset and return a policy.
|
|
*
|
|
* => Acquire a reference on the policy, if found.
|
|
* => NAT lookup is protected by EBR.
|
|
*/
|
|
static npf_natpolicy_t *
|
|
npf_nat_inspect(npf_cache_t *npc, const unsigned di)
|
|
{
|
|
npf_t *npf = npc->npc_ctx;
|
|
int slock = npf_config_read_enter(npf);
|
|
npf_ruleset_t *rlset = npf_config_natset(npf);
|
|
npf_natpolicy_t *np;
|
|
npf_rule_t *rl;
|
|
|
|
rl = npf_ruleset_inspect(npc, rlset, di, NPF_LAYER_3);
|
|
if (rl == NULL) {
|
|
npf_config_read_exit(npf, slock);
|
|
return NULL;
|
|
}
|
|
np = npf_rule_getnat(rl);
|
|
atomic_inc_uint(&np->n_refcnt);
|
|
npf_config_read_exit(npf, slock);
|
|
return np;
|
|
}
|
|
|
|
static void
|
|
npf_nat_algo_netmap(const npf_cache_t *npc, const npf_natpolicy_t *np,
|
|
const unsigned which, npf_addr_t *addr)
|
|
{
|
|
const npf_addr_t *orig_addr = npc->npc_ips[which];
|
|
|
|
/*
|
|
* NETMAP:
|
|
*
|
|
* addr = net-addr | (orig-addr & ~mask)
|
|
*/
|
|
npf_addr_mask(&np->n_taddr, np->n_tmask, npc->npc_alen, addr);
|
|
npf_addr_bitor(orig_addr, np->n_tmask, npc->npc_alen, addr);
|
|
}
|
|
|
|
static inline npf_addr_t *
|
|
npf_nat_getaddr(npf_cache_t *npc, npf_natpolicy_t *np, const unsigned alen)
|
|
{
|
|
npf_tableset_t *ts = npf_config_tableset(np->n_npfctx);
|
|
npf_table_t *t = npf_tableset_getbyid(ts, np->n_tid);
|
|
unsigned idx;
|
|
|
|
/*
|
|
* Dynamically select the translation IP address.
|
|
*/
|
|
switch (np->n_algo) {
|
|
case NPF_ALGO_RR:
|
|
idx = atomic_inc_uint_nv(&np->n_rr_idx);
|
|
break;
|
|
case NPF_ALGO_IPHASH:
|
|
default:
|
|
idx = npf_addr_mix(alen,
|
|
npc->npc_ips[NPF_SRC],
|
|
npc->npc_ips[NPF_DST]);
|
|
break;
|
|
}
|
|
return npf_table_getsome(t, alen, idx);
|
|
}
|
|
|
|
/*
|
|
* npf_nat_create: create a new NAT translation entry.
|
|
*
|
|
* => The caller must pass the NAT policy with a reference acquired for us.
|
|
*/
|
|
static npf_nat_t *
|
|
npf_nat_create(npf_cache_t *npc, npf_natpolicy_t *np, npf_conn_t *con)
|
|
{
|
|
const unsigned proto = npc->npc_proto;
|
|
const unsigned alen = npc->npc_alen;
|
|
const nbuf_t *nbuf = npc->npc_nbuf;
|
|
npf_t *npf = npc->npc_ctx;
|
|
npf_addr_t *taddr;
|
|
npf_nat_t *nt;
|
|
|
|
KASSERT(npf_iscached(npc, NPC_IP46));
|
|
KASSERT(npf_iscached(npc, NPC_LAYER4));
|
|
|
|
/* Construct a new NAT entry and associate it with the connection. */
|
|
nt = pool_cache_get(nat_cache, PR_NOWAIT);
|
|
if (__predict_false(!nt)) {
|
|
return NULL;
|
|
}
|
|
npf_stats_inc(npf, NPF_STAT_NAT_CREATE);
|
|
nt->nt_natpolicy = np;
|
|
nt->nt_conn = con;
|
|
nt->nt_alg = NULL;
|
|
|
|
/*
|
|
* Save the interface ID.
|
|
*
|
|
* Note: this can be different from the given connection if it
|
|
* was established on a different interface, using the global state
|
|
* mode (state.key.interface = 0).
|
|
*/
|
|
KASSERT(nbuf->nb_ifid != 0);
|
|
nt->nt_ifid = nbuf->nb_ifid;
|
|
|
|
/*
|
|
* Select the translation address.
|
|
*/
|
|
if (np->n_flags & NPF_NAT_USETABLE) {
|
|
int slock = npf_config_read_enter(npf);
|
|
taddr = npf_nat_getaddr(npc, np, alen);
|
|
if (__predict_false(!taddr)) {
|
|
npf_config_read_exit(npf, slock);
|
|
pool_cache_put(nat_cache, nt);
|
|
return NULL;
|
|
}
|
|
memcpy(&nt->nt_taddr, taddr, alen);
|
|
npf_config_read_exit(npf, slock);
|
|
|
|
} else if (np->n_algo == NPF_ALGO_NETMAP) {
|
|
const unsigned which = npf_nat_which(np->n_type, NPF_FLOW_FORW);
|
|
npf_nat_algo_netmap(npc, np, which, &nt->nt_taddr);
|
|
taddr = &nt->nt_taddr;
|
|
} else {
|
|
/* Static IP address. */
|
|
taddr = &np->n_taddr;
|
|
memcpy(&nt->nt_taddr, taddr, alen);
|
|
}
|
|
nt->nt_alen = alen;
|
|
|
|
/* Save the original address which may be rewritten. */
|
|
if (np->n_type == NPF_NATOUT) {
|
|
/* Outbound NAT: source (think internal) address. */
|
|
memcpy(&nt->nt_oaddr, npc->npc_ips[NPF_SRC], alen);
|
|
} else {
|
|
/* Inbound NAT: destination (think external) address. */
|
|
KASSERT(np->n_type == NPF_NATIN);
|
|
memcpy(&nt->nt_oaddr, npc->npc_ips[NPF_DST], alen);
|
|
}
|
|
|
|
/*
|
|
* Port translation, if required, and if it is TCP/UDP.
|
|
*/
|
|
if ((np->n_flags & NPF_NAT_PORTS) == 0 ||
|
|
(proto != IPPROTO_TCP && proto != IPPROTO_UDP)) {
|
|
nt->nt_oport = 0;
|
|
nt->nt_tport = 0;
|
|
goto out;
|
|
}
|
|
|
|
/* Save the relevant TCP/UDP port. */
|
|
if (proto == IPPROTO_TCP) {
|
|
const struct tcphdr *th = npc->npc_l4.tcp;
|
|
nt->nt_oport = (np->n_type == NPF_NATOUT) ?
|
|
th->th_sport : th->th_dport;
|
|
} else {
|
|
const struct udphdr *uh = npc->npc_l4.udp;
|
|
nt->nt_oport = (np->n_type == NPF_NATOUT) ?
|
|
uh->uh_sport : uh->uh_dport;
|
|
}
|
|
|
|
/* Get a new port for translation. */
|
|
if ((np->n_flags & NPF_NAT_PORTMAP) != 0) {
|
|
npf_portmap_t *pm = np->n_npfctx->portmap;
|
|
nt->nt_tport = npf_portmap_get(pm, alen, taddr);
|
|
} else {
|
|
nt->nt_tport = np->n_tport;
|
|
}
|
|
out:
|
|
mutex_enter(&np->n_lock);
|
|
LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
|
|
/* Note: we also consume the reference on policy. */
|
|
mutex_exit(&np->n_lock);
|
|
return nt;
|
|
}
|
|
|
|
/*
|
|
* npf_dnat_translate: perform translation given the state data.
|
|
*/
|
|
static inline int
|
|
npf_dnat_translate(npf_cache_t *npc, npf_nat_t *nt, npf_flow_t flow)
|
|
{
|
|
const npf_natpolicy_t *np = nt->nt_natpolicy;
|
|
const unsigned which = npf_nat_which(np->n_type, flow);
|
|
const npf_addr_t *addr;
|
|
in_port_t port;
|
|
|
|
KASSERT(npf_iscached(npc, NPC_IP46));
|
|
KASSERT(npf_iscached(npc, NPC_LAYER4));
|
|
|
|
if (flow == NPF_FLOW_FORW) {
|
|
/* "Forwards" stream: use translation address/port. */
|
|
addr = &nt->nt_taddr;
|
|
port = nt->nt_tport;
|
|
} else {
|
|
/* "Backwards" stream: use original address/port. */
|
|
addr = &nt->nt_oaddr;
|
|
port = nt->nt_oport;
|
|
}
|
|
KASSERT((np->n_flags & NPF_NAT_PORTS) != 0 || port == 0);
|
|
|
|
/* Execute ALG translation first. */
|
|
if ((npc->npc_info & NPC_ALG_EXEC) == 0) {
|
|
npc->npc_info |= NPC_ALG_EXEC;
|
|
npf_alg_exec(npc, nt, flow);
|
|
npf_recache(npc);
|
|
}
|
|
KASSERT(!nbuf_flag_p(npc->npc_nbuf, NBUF_DATAREF_RESET));
|
|
|
|
/* Finally, perform the translation. */
|
|
return npf_napt_rwr(npc, which, addr, port);
|
|
}
|
|
|
|
/*
|
|
* npf_snat_translate: perform translation given the algorithm.
|
|
*/
|
|
static inline int
|
|
npf_snat_translate(npf_cache_t *npc, const npf_natpolicy_t *np, npf_flow_t flow)
|
|
{
|
|
const unsigned which = npf_nat_which(np->n_type, flow);
|
|
const npf_addr_t *taddr;
|
|
npf_addr_t addr;
|
|
|
|
KASSERT(np->n_flags & NPF_NAT_STATIC);
|
|
|
|
switch (np->n_algo) {
|
|
case NPF_ALGO_NETMAP:
|
|
npf_nat_algo_netmap(npc, np, which, &addr);
|
|
taddr = &addr;
|
|
break;
|
|
case NPF_ALGO_NPT66:
|
|
return npf_npt66_rwr(npc, which, &np->n_taddr,
|
|
np->n_tmask, np->n_npt66_adj);
|
|
default:
|
|
taddr = &np->n_taddr;
|
|
break;
|
|
}
|
|
return npf_napt_rwr(npc, which, taddr, np->n_tport);
|
|
}
|
|
|
|
/*
|
|
* Associate NAT policy with an existing connection state.
|
|
*/
|
|
npf_nat_t *
|
|
npf_nat_share_policy(npf_cache_t *npc, npf_conn_t *con, npf_nat_t *src_nt)
|
|
{
|
|
npf_natpolicy_t *np = src_nt->nt_natpolicy;
|
|
npf_nat_t *nt;
|
|
int ret;
|
|
|
|
/* Create a new NAT entry. */
|
|
nt = npf_nat_create(npc, np, con);
|
|
if (__predict_false(nt == NULL)) {
|
|
return NULL;
|
|
}
|
|
atomic_inc_uint(&np->n_refcnt);
|
|
|
|
/* Associate the NAT translation entry with the connection. */
|
|
ret = npf_conn_setnat(npc, con, nt, np->n_type);
|
|
if (__predict_false(ret)) {
|
|
/* Will release the reference. */
|
|
npf_nat_destroy(con, nt);
|
|
return NULL;
|
|
}
|
|
return nt;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_lookup: lookup the (dynamic) NAT state and return its entry,
|
|
*
|
|
* => Checks that the packet is on the interface where NAT policy is applied.
|
|
* => Determines the flow direction in the context of the NAT policy.
|
|
*/
|
|
static npf_nat_t *
|
|
npf_nat_lookup(const npf_cache_t *npc, npf_conn_t *con,
|
|
const unsigned di, npf_flow_t *flow)
|
|
{
|
|
const nbuf_t *nbuf = npc->npc_nbuf;
|
|
const npf_natpolicy_t *np;
|
|
npf_nat_t *nt;
|
|
|
|
if ((nt = npf_conn_getnat(con)) == NULL) {
|
|
return NULL;
|
|
}
|
|
if (nt->nt_ifid != nbuf->nb_ifid) {
|
|
return NULL;
|
|
}
|
|
|
|
np = nt->nt_natpolicy;
|
|
KASSERT(atomic_load_relaxed(&np->n_refcnt) > 0);
|
|
|
|
/*
|
|
* We rely on NPF_NAT{IN,OUT} being equal to PFIL_{IN,OUT}.
|
|
*/
|
|
CTASSERT(NPF_NATIN == PFIL_IN && NPF_NATOUT == PFIL_OUT);
|
|
*flow = (np->n_type == di) ? NPF_FLOW_FORW : NPF_FLOW_BACK;
|
|
return nt;
|
|
}
|
|
|
|
/*
|
|
* npf_do_nat:
|
|
*
|
|
* - Inspect packet for a NAT policy, unless a connection with a NAT
|
|
* association already exists. In such case, determine whether it
|
|
* is a "forwards" or "backwards" stream.
|
|
*
|
|
* - Perform translation: rewrite source or destination fields,
|
|
* depending on translation type and direction.
|
|
*
|
|
* - Associate a NAT policy with a connection (may establish a new).
|
|
*/
|
|
int
|
|
npf_do_nat(npf_cache_t *npc, npf_conn_t *con, const unsigned di)
|
|
{
|
|
nbuf_t *nbuf = npc->npc_nbuf;
|
|
npf_conn_t *ncon = NULL;
|
|
npf_natpolicy_t *np;
|
|
npf_flow_t flow;
|
|
npf_nat_t *nt;
|
|
int error;
|
|
|
|
/* All relevant data should be already cached. */
|
|
if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
|
|
return 0;
|
|
}
|
|
KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
|
|
|
|
/*
|
|
* Return the NAT entry associated with the connection, if any.
|
|
* Determines whether the stream is "forwards" or "backwards".
|
|
* Note: no need to lock, since reference on connection is held.
|
|
*/
|
|
if (con && (nt = npf_nat_lookup(npc, con, di, &flow)) != NULL) {
|
|
np = nt->nt_natpolicy;
|
|
goto translate;
|
|
}
|
|
|
|
/*
|
|
* Inspect the packet for a NAT policy, if there is no connection.
|
|
* Note: acquires a reference if found.
|
|
*/
|
|
np = npf_nat_inspect(npc, di);
|
|
if (np == NULL) {
|
|
/* If packet does not match - done. */
|
|
return 0;
|
|
}
|
|
flow = NPF_FLOW_FORW;
|
|
|
|
/* Static NAT - just perform the translation. */
|
|
if (np->n_flags & NPF_NAT_STATIC) {
|
|
if (nbuf_cksum_barrier(nbuf, di)) {
|
|
npf_recache(npc);
|
|
}
|
|
error = npf_snat_translate(npc, np, flow);
|
|
npf_natpolicy_release(np);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* If there is no local connection (no "stateful" rule - unusual,
|
|
* but possible configuration), establish one before translation.
|
|
* Note that it is not a "pass" connection, therefore passing of
|
|
* "backwards" stream depends on other, stateless filtering rules.
|
|
*/
|
|
if (con == NULL) {
|
|
ncon = npf_conn_establish(npc, di, true);
|
|
if (ncon == NULL) {
|
|
npf_natpolicy_release(np);
|
|
return ENOMEM;
|
|
}
|
|
con = ncon;
|
|
}
|
|
|
|
/*
|
|
* Create a new NAT entry and associate with the connection.
|
|
* We will consume the reference on success (release on error).
|
|
*/
|
|
nt = npf_nat_create(npc, np, con);
|
|
if (nt == NULL) {
|
|
npf_natpolicy_release(np);
|
|
error = ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/* Determine whether any ALG matches. */
|
|
if (npf_alg_match(npc, nt, di)) {
|
|
KASSERT(nt->nt_alg != NULL);
|
|
}
|
|
|
|
/* Associate the NAT translation entry with the connection. */
|
|
error = npf_conn_setnat(npc, con, nt, np->n_type);
|
|
if (error) {
|
|
/* Will release the reference. */
|
|
npf_nat_destroy(con, nt);
|
|
goto out;
|
|
}
|
|
|
|
translate:
|
|
/* May need to process the delayed checksums first (XXX: NetBSD). */
|
|
if (nbuf_cksum_barrier(nbuf, di)) {
|
|
npf_recache(npc);
|
|
}
|
|
|
|
/* Perform the translation. */
|
|
error = npf_dnat_translate(npc, nt, flow);
|
|
out:
|
|
if (__predict_false(ncon)) {
|
|
if (error) {
|
|
/* It was created for NAT - just expire. */
|
|
npf_conn_expire(ncon);
|
|
}
|
|
npf_conn_release(ncon);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_gettrans: return translation IP address and port.
|
|
*/
|
|
void
|
|
npf_nat_gettrans(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
|
|
{
|
|
*addr = &nt->nt_taddr;
|
|
*port = nt->nt_tport;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_getorig: return original IP address and port from translation entry.
|
|
*/
|
|
void
|
|
npf_nat_getorig(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
|
|
{
|
|
*addr = &nt->nt_oaddr;
|
|
*port = nt->nt_oport;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_setalg: associate an ALG with the NAT entry.
|
|
*/
|
|
void
|
|
npf_nat_setalg(npf_nat_t *nt, npf_alg_t *alg, uintptr_t arg)
|
|
{
|
|
nt->nt_alg = alg;
|
|
nt->nt_alg_arg = arg;
|
|
}
|
|
|
|
npf_alg_t *
|
|
npf_nat_getalg(const npf_nat_t *nt)
|
|
{
|
|
return nt->nt_alg;
|
|
}
|
|
|
|
uintptr_t
|
|
npf_nat_getalgarg(const npf_nat_t *nt)
|
|
{
|
|
return nt->nt_alg_arg;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_destroy: destroy NAT structure (performed on connection expiration).
|
|
*/
|
|
void
|
|
npf_nat_destroy(npf_conn_t *con, npf_nat_t *nt)
|
|
{
|
|
npf_natpolicy_t *np = nt->nt_natpolicy;
|
|
npf_t *npf = np->n_npfctx;
|
|
npf_alg_t *alg;
|
|
|
|
/* Execute the ALG destroy callback, if any. */
|
|
if ((alg = npf_nat_getalg(nt)) != NULL) {
|
|
npf_alg_destroy(npf, alg, nt, con);
|
|
nt->nt_alg = NULL;
|
|
}
|
|
|
|
/* Return taken port to the portmap. */
|
|
if ((np->n_flags & NPF_NAT_PORTMAP) != 0 && nt->nt_tport) {
|
|
npf_portmap_t *pm = npf->portmap;
|
|
npf_portmap_put(pm, nt->nt_alen, &nt->nt_taddr, nt->nt_tport);
|
|
}
|
|
npf_stats_inc(np->n_npfctx, NPF_STAT_NAT_DESTROY);
|
|
|
|
/*
|
|
* Remove the connection from the list and drop the reference on
|
|
* the NAT policy. Note: this might trigger its destruction.
|
|
*/
|
|
mutex_enter(&np->n_lock);
|
|
LIST_REMOVE(nt, nt_entry);
|
|
mutex_exit(&np->n_lock);
|
|
npf_natpolicy_release(np);
|
|
|
|
pool_cache_put(nat_cache, nt);
|
|
}
|
|
|
|
/*
|
|
* npf_nat_export: serialize the NAT entry with a NAT policy ID.
|
|
*/
|
|
void
|
|
npf_nat_export(npf_t *npf, const npf_nat_t *nt, nvlist_t *con_nv)
|
|
{
|
|
npf_natpolicy_t *np = nt->nt_natpolicy;
|
|
unsigned alen = nt->nt_alen;
|
|
nvlist_t *nat_nv;
|
|
|
|
nat_nv = nvlist_create(0);
|
|
if (nt->nt_ifid) {
|
|
char ifname[IFNAMSIZ];
|
|
npf_ifmap_copyname(npf, nt->nt_ifid, ifname, sizeof(ifname));
|
|
nvlist_add_string(nat_nv, "ifname", ifname);
|
|
}
|
|
nvlist_add_number(nat_nv, "alen", alen);
|
|
|
|
nvlist_add_binary(nat_nv, "oaddr", &nt->nt_oaddr, alen);
|
|
nvlist_add_number(nat_nv, "oport", nt->nt_oport);
|
|
|
|
nvlist_add_binary(nat_nv, "taddr", &nt->nt_taddr, alen);
|
|
nvlist_add_number(nat_nv, "tport", nt->nt_tport);
|
|
|
|
nvlist_add_number(nat_nv, "nat-policy", np->n_id);
|
|
nvlist_move_nvlist(con_nv, "nat", nat_nv);
|
|
}
|
|
|
|
/*
|
|
* npf_nat_import: find the NAT policy and unserialize the NAT entry.
|
|
*/
|
|
npf_nat_t *
|
|
npf_nat_import(npf_t *npf, const nvlist_t *nat,
|
|
npf_ruleset_t *natlist, npf_conn_t *con)
|
|
{
|
|
npf_natpolicy_t *np;
|
|
npf_nat_t *nt;
|
|
const char *ifname;
|
|
const void *taddr, *oaddr;
|
|
size_t alen, len;
|
|
uint64_t np_id;
|
|
|
|
np_id = dnvlist_get_number(nat, "nat-policy", UINT64_MAX);
|
|
if ((np = npf_ruleset_findnat(natlist, np_id)) == NULL) {
|
|
return NULL;
|
|
}
|
|
nt = pool_cache_get(nat_cache, PR_WAITOK);
|
|
memset(nt, 0, sizeof(npf_nat_t));
|
|
|
|
ifname = dnvlist_get_string(nat, "ifname", NULL);
|
|
if (ifname && (nt->nt_ifid = npf_ifmap_register(npf, ifname)) == 0) {
|
|
goto err;
|
|
}
|
|
|
|
alen = dnvlist_get_number(nat, "alen", 0);
|
|
if (alen == 0 || alen > sizeof(npf_addr_t)) {
|
|
goto err;
|
|
}
|
|
|
|
taddr = dnvlist_get_binary(nat, "taddr", &len, NULL, 0);
|
|
if (!taddr || len != alen) {
|
|
goto err;
|
|
}
|
|
memcpy(&nt->nt_taddr, taddr, sizeof(npf_addr_t));
|
|
|
|
oaddr = dnvlist_get_binary(nat, "oaddr", &len, NULL, 0);
|
|
if (!oaddr || len != alen) {
|
|
goto err;
|
|
}
|
|
memcpy(&nt->nt_oaddr, oaddr, sizeof(npf_addr_t));
|
|
|
|
nt->nt_oport = dnvlist_get_number(nat, "oport", 0);
|
|
nt->nt_tport = dnvlist_get_number(nat, "tport", 0);
|
|
|
|
/* Take a specific port from port-map. */
|
|
if ((np->n_flags & NPF_NAT_PORTMAP) != 0 && nt->nt_tport) {
|
|
npf_portmap_t *pm = npf->portmap;
|
|
|
|
if (!npf_portmap_take(pm, nt->nt_alen,
|
|
&nt->nt_taddr, nt->nt_tport)) {
|
|
goto err;
|
|
}
|
|
}
|
|
npf_stats_inc(npf, NPF_STAT_NAT_CREATE);
|
|
|
|
/*
|
|
* Associate, take a reference and insert. Unlocked/non-atomic
|
|
* since the policy is not yet globally visible.
|
|
*/
|
|
nt->nt_natpolicy = np;
|
|
nt->nt_conn = con;
|
|
atomic_store_relaxed(&np->n_refcnt,
|
|
atomic_load_relaxed(&np->n_refcnt) + 1);
|
|
LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
|
|
return nt;
|
|
err:
|
|
pool_cache_put(nat_cache, nt);
|
|
return NULL;
|
|
}
|
|
|
|
#if defined(DDB) || defined(_NPF_TESTING)
|
|
|
|
void
|
|
npf_nat_dump(const npf_nat_t *nt)
|
|
{
|
|
const npf_natpolicy_t *np;
|
|
struct in_addr ip;
|
|
|
|
np = nt->nt_natpolicy;
|
|
memcpy(&ip, &nt->nt_taddr, sizeof(ip));
|
|
printf("\tNATP(%p): type %u flags 0x%x taddr %s tport %d\n", np,
|
|
np->n_type, np->n_flags, inet_ntoa(ip), ntohs(np->n_tport));
|
|
memcpy(&ip, &nt->nt_oaddr, sizeof(ip));
|
|
printf("\tNAT: original address %s oport %d tport %d\n",
|
|
inet_ntoa(ip), ntohs(nt->nt_oport), ntohs(nt->nt_tport));
|
|
if (nt->nt_alg) {
|
|
printf("\tNAT ALG = %p, ARG = %p\n",
|
|
nt->nt_alg, (void *)nt->nt_alg_arg);
|
|
}
|
|
}
|
|
|
|
#endif
|