NetBSD/sys/net/if_spppsubr.c

6584 lines
155 KiB
C

/* $NetBSD: if_spppsubr.c,v 1.215 2020/11/27 03:37:11 yamaguchi Exp $ */
/*
* Synchronous PPP/Cisco link level subroutines.
* Keepalive protocol implemented in both Cisco and PPP modes.
*
* Copyright (C) 1994-1996 Cronyx Engineering Ltd.
* Author: Serge Vakulenko, <vak@cronyx.ru>
*
* Heavily revamped to conform to RFC 1661.
* Copyright (C) 1997, Joerg Wunsch.
*
* RFC2472 IPv6CP support.
* Copyright (C) 2000, Jun-ichiro itojun Hagino <itojun@iijlab.net>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE FREEBSD PROJECT ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE FREEBSD PROJECT OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* From: Version 2.4, Thu Apr 30 17:17:21 MSD 1997
*
* From: if_spppsubr.c,v 1.39 1998/04/04 13:26:03 phk Exp
*
* From: Id: if_spppsubr.c,v 1.23 1999/02/23 14:47:50 hm Exp
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_spppsubr.c,v 1.215 2020/11/27 03:37:11 yamaguchi Exp $");
#if defined(_KERNEL_OPT)
#include "opt_inet.h"
#include "opt_modular.h"
#include "opt_compat_netbsd.h"
#include "opt_net_mpsafe.h"
#endif
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/sockio.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/callout.h>
#include <sys/md5.h>
#include <sys/inttypes.h>
#include <sys/kauth.h>
#include <sys/cprng.h>
#include <sys/module.h>
#include <sys/workqueue.h>
#include <sys/atomic.h>
#include <sys/compat_stub.h>
#include <sys/cpu.h>
#include <net/if.h>
#include <net/netisr.h>
#include <net/if_types.h>
#include <net/route.h>
#include <net/ppp_defs.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#ifdef INET
#include <netinet/ip.h>
#include <netinet/tcp.h>
#endif
#include <net/ethertypes.h>
#ifdef INET6
#include <netinet6/scope6_var.h>
#endif
#include <net/if_sppp.h>
#include <net/if_spppvar.h>
#ifdef NET_MPSAFE
#define SPPPSUBR_MPSAFE 1
#endif
#define LCP_KEEPALIVE_INTERVAL 10 /* seconds between checks */
#define LOOPALIVECNT 3 /* loopback detection tries */
#define DEFAULT_MAXALIVECNT 3 /* max. missed alive packets */
#define DEFAULT_NORECV_TIME 15 /* before we get worried */
#define DEFAULT_MAX_AUTH_FAILURES 5 /* max. auth. failures */
/*
* Interface flags that can be set in an ifconfig command.
*
* Setting link0 will make the link passive, i.e. it will be marked
* as being administrative openable, but won't be opened to begin
* with. Incoming calls will be answered, or subsequent calls with
* -link1 will cause the administrative open of the LCP layer.
*
* Setting link1 will cause the link to auto-dial only as packets
* arrive to be sent.
*
* Setting IFF_DEBUG will syslog the option negotiation and state
* transitions at level kern.debug. Note: all logs consistently look
* like
*
* <if-name><unit>: <proto-name> <additional info...>
*
* with <if-name><unit> being something like "bppp0", and <proto-name>
* being one of "lcp", "ipcp", "cisco", "chap", "pap", etc.
*/
#define IFF_PASSIVE IFF_LINK0 /* wait passively for connection */
#define IFF_AUTO IFF_LINK1 /* auto-dial on output */
#define CONF_REQ 1 /* PPP configure request */
#define CONF_ACK 2 /* PPP configure acknowledge */
#define CONF_NAK 3 /* PPP configure negative ack */
#define CONF_REJ 4 /* PPP configure reject */
#define TERM_REQ 5 /* PPP terminate request */
#define TERM_ACK 6 /* PPP terminate acknowledge */
#define CODE_REJ 7 /* PPP code reject */
#define PROTO_REJ 8 /* PPP protocol reject */
#define ECHO_REQ 9 /* PPP echo request */
#define ECHO_REPLY 10 /* PPP echo reply */
#define DISC_REQ 11 /* PPP discard request */
#define LCP_OPT_MRU 1 /* maximum receive unit */
#define LCP_OPT_ASYNC_MAP 2 /* async control character map */
#define LCP_OPT_AUTH_PROTO 3 /* authentication protocol */
#define LCP_OPT_QUAL_PROTO 4 /* quality protocol */
#define LCP_OPT_MAGIC 5 /* magic number */
#define LCP_OPT_RESERVED 6 /* reserved */
#define LCP_OPT_PROTO_COMP 7 /* protocol field compression */
#define LCP_OPT_ADDR_COMP 8 /* address/control field compression */
#define LCP_OPT_FCS_ALTS 9 /* FCS alternatives */
#define LCP_OPT_SELF_DESC_PAD 10 /* self-describing padding */
#define LCP_OPT_CALL_BACK 13 /* callback */
#define LCP_OPT_COMPOUND_FRMS 15 /* compound frames */
#define LCP_OPT_MP_MRRU 17 /* multilink MRRU */
#define LCP_OPT_MP_SSNHF 18 /* multilink short seq. numbers */
#define LCP_OPT_MP_EID 19 /* multilink endpoint discriminator */
#define IPCP_OPT_ADDRESSES 1 /* both IP addresses; deprecated */
#define IPCP_OPT_COMPRESSION 2 /* IP compression protocol */
#define IPCP_OPT_ADDRESS 3 /* local IP address */
#define IPCP_OPT_PRIMDNS 129 /* primary remote dns address */
#define IPCP_OPT_SECDNS 131 /* secondary remote dns address */
#define IPCP_UPDATE_LIMIT 8 /* limit of pending IP updating job */
#define IPCP_SET_ADDRS 1 /* marker for IP address setting job */
#define IPCP_CLEAR_ADDRS 2 /* marker for IP address clearing job */
#define IPV6CP_OPT_IFID 1 /* interface identifier */
#define IPV6CP_OPT_COMPRESSION 2 /* IPv6 compression protocol */
#define PAP_REQ 1 /* PAP name/password request */
#define PAP_ACK 2 /* PAP acknowledge */
#define PAP_NAK 3 /* PAP fail */
#define CHAP_CHALLENGE 1 /* CHAP challenge request */
#define CHAP_RESPONSE 2 /* CHAP challenge response */
#define CHAP_SUCCESS 3 /* CHAP response ok */
#define CHAP_FAILURE 4 /* CHAP response failed */
#define CHAP_MD5 5 /* hash algorithm - MD5 */
#define CISCO_MULTICAST 0x8f /* Cisco multicast address */
#define CISCO_UNICAST 0x0f /* Cisco unicast address */
#define CISCO_KEEPALIVE 0x8035 /* Cisco keepalive protocol */
#define CISCO_ADDR_REQ 0 /* Cisco address request */
#define CISCO_ADDR_REPLY 1 /* Cisco address reply */
#define CISCO_KEEPALIVE_REQ 2 /* Cisco keepalive request */
enum {
STATE_INITIAL = SPPP_STATE_INITIAL,
STATE_STARTING = SPPP_STATE_STARTING,
STATE_CLOSED = SPPP_STATE_CLOSED,
STATE_STOPPED = SPPP_STATE_STOPPED,
STATE_CLOSING = SPPP_STATE_CLOSING,
STATE_STOPPING = SPPP_STATE_STOPPING,
STATE_REQ_SENT = SPPP_STATE_REQ_SENT,
STATE_ACK_RCVD = SPPP_STATE_ACK_RCVD,
STATE_ACK_SENT = SPPP_STATE_ACK_SENT,
STATE_OPENED = SPPP_STATE_OPENED,
};
enum cp_rcr_type {
CP_RCR_NONE = 0, /* initial value */
CP_RCR_ACK, /* RCR+ */
CP_RCR_NAK, /* RCR- */
CP_RCR_REJ, /* RCR- */
CP_RCR_DROP, /* DROP message */
CP_RCR_ERR, /* internal error */
};
struct ppp_header {
uint8_t address;
uint8_t control;
uint16_t protocol;
} __packed;
#define PPP_HEADER_LEN sizeof (struct ppp_header)
struct lcp_header {
uint8_t type;
uint8_t ident;
uint16_t len;
} __packed;
#define LCP_HEADER_LEN sizeof (struct lcp_header)
struct cisco_packet {
uint32_t type;
uint32_t par1;
uint32_t par2;
uint16_t rel;
uint16_t time0;
uint16_t time1;
} __packed;
#define CISCO_PACKET_LEN 18
/*
* We follow the spelling and capitalization of RFC 1661 here, to make
* it easier comparing with the standard. Please refer to this RFC in
* case you can't make sense out of these abbreviation; it will also
* explain the semantics related to the various events and actions.
*/
struct cp {
u_short proto; /* PPP control protocol number */
u_char protoidx; /* index into state table in struct sppp */
u_char flags;
#define CP_LCP 0x01 /* this is the LCP */
#define CP_AUTH 0x02 /* this is an authentication protocol */
#define CP_NCP 0x04 /* this is a NCP */
#define CP_QUAL 0x08 /* this is a quality reporting protocol */
const char *name; /* name of this control protocol */
/* event handlers */
void (*Up)(struct sppp *, void *);
void (*Down)(struct sppp *, void *);
void (*Open)(struct sppp *, void *);
void (*Close)(struct sppp *, void *);
void (*TO)(struct sppp *, void *);
/* actions */
void (*tlu)(struct sppp *);
void (*tld)(struct sppp *);
void (*tls)(const struct cp *, struct sppp *);
void (*tlf)(const struct cp *, struct sppp *);
void (*scr)(struct sppp *);
void (*scan)(const struct cp *, struct sppp *);
/* message parser */
enum cp_rcr_type
(*parse_confreq)(struct sppp *, struct lcp_header *, int,
uint8_t **, size_t *, size_t *);
void (*parse_confrej)(struct sppp *, struct lcp_header *, int);
void (*parse_confnak)(struct sppp *, struct lcp_header *, int);
};
enum auth_role {
SPPP_AUTH_NOROLE = 0,
SPPP_AUTH_SERV = __BIT(0),
SPPP_AUTH_PEER = __BIT(1),
};
static struct sppp *spppq;
static kmutex_t *spppq_lock = NULL;
static callout_t keepalive_ch;
#define SPPPQ_LOCK() if (spppq_lock) \
mutex_enter(spppq_lock);
#define SPPPQ_UNLOCK() if (spppq_lock) \
mutex_exit(spppq_lock);
#define SPPP_LOCK(_sp, _op) rw_enter(&(_sp)->pp_lock, (_op))
#define SPPP_UNLOCK(_sp) rw_exit(&(_sp)->pp_lock)
#define SPPP_WLOCKED(_sp) rw_write_held(&(_sp)->pp_lock)
#define SPPP_UPGRADE(_sp) do{ \
SPPP_UNLOCK(_sp); \
SPPP_LOCK(_sp, RW_WRITER); \
}while (0)
#define SPPP_DOWNGRADE(_sp) rw_downgrade(&(_sp)->pp_lock)
#define SPPP_WQ_SET(_wk, _func, _arg) \
sppp_wq_set((_wk), (_func), __UNCONST((_arg)))
#ifdef INET
#ifndef SPPPSUBR_MPSAFE
/*
* The following disgusting hack gets around the problem that IP TOS
* can't be set yet. We want to put "interactive" traffic on a high
* priority queue. To decide if traffic is interactive, we check that
* a) it is TCP and b) one of its ports is telnet, rlogin or ftp control.
*
* XXX is this really still necessary? - joerg -
*/
static u_short interactive_ports[8] = {
0, 513, 0, 0,
0, 21, 0, 23,
};
#define INTERACTIVE(p) (interactive_ports[(p) & 7] == (p))
#endif /* SPPPSUBR_MPSAFE */
#endif
/* almost every function needs these */
#define STDDCL \
struct ifnet *ifp = &sp->pp_if; \
int debug = ifp->if_flags & IFF_DEBUG
static int sppp_output(struct ifnet *, struct mbuf *,
const struct sockaddr *, const struct rtentry *);
static void sppp_cisco_send(struct sppp *, int, int32_t, int32_t);
static void sppp_cisco_input(struct sppp *, struct mbuf *);
static void sppp_cp_init(const struct cp *, struct sppp *);
static void sppp_cp_fini(const struct cp *, struct sppp *);
static void sppp_cp_input(const struct cp *, struct sppp *,
struct mbuf *);
static void sppp_cp_input(const struct cp *, struct sppp *,
struct mbuf *);
static void sppp_cp_send(struct sppp *, u_short, u_char,
u_char, u_short, void *);
/* static void sppp_cp_timeout(void *arg); */
static void sppp_cp_change_state(const struct cp *, struct sppp *, int);
static struct workqueue *
sppp_wq_create(struct sppp *, const char *, pri_t, int, int);
static void sppp_wq_destroy(struct sppp *, struct workqueue *);
static void sppp_wq_set(struct sppp_work *,
void (*)(struct sppp *, void *), void *);
static void sppp_wq_add(struct workqueue *, struct sppp_work *);
static void sppp_wq_wait(struct workqueue *, struct sppp_work *);
static void sppp_cp_to_lcp(void *);
static void sppp_cp_to_ipcp(void *);
static void sppp_cp_to_ipv6cp(void *);
static void sppp_auth_send(const struct cp *, struct sppp *,
unsigned int, unsigned int, ...);
static int sppp_auth_role(const struct cp *, struct sppp *);
static void sppp_auth_to_event(struct sppp *, void *);
static void sppp_auth_sca_scn(const struct cp *, struct sppp *);
static void sppp_up_event(struct sppp *, void *);
static void sppp_down_event(struct sppp *, void *);
static void sppp_open_event(struct sppp *, void *);
static void sppp_close_event(struct sppp *, void *);
static void sppp_to_event(struct sppp *, void *);
static void sppp_rcr_event(struct sppp *, void *);
static void sppp_rca_event(struct sppp *, void *);
static void sppp_rcn_event(struct sppp *, void *);
static void sppp_rtr_event(struct sppp *, void *);
static void sppp_rta_event(struct sppp *, void *);
static void sppp_rxj_event(struct sppp *, void *);
static void sppp_null(struct sppp *);
static void sppp_tls(const struct cp *, struct sppp *);
static void sppp_tlf(const struct cp *, struct sppp *);
static void sppp_sca_scn(const struct cp *, struct sppp *);
static void sppp_ifdown(struct sppp *, void *);
static void sppp_lcp_init(struct sppp *);
static void sppp_lcp_up(struct sppp *, void *);
static void sppp_lcp_down(struct sppp *, void *);
static void sppp_lcp_open(struct sppp *, void *);
static enum cp_rcr_type
sppp_lcp_confreq(struct sppp *, struct lcp_header *, int,
uint8_t **, size_t *, size_t *);
static void sppp_lcp_confrej(struct sppp *, struct lcp_header *, int);
static void sppp_lcp_confnak(struct sppp *, struct lcp_header *, int);
static void sppp_lcp_tlu(struct sppp *);
static void sppp_lcp_tld(struct sppp *);
static void sppp_lcp_tls(const struct cp *, struct sppp *);
static void sppp_lcp_tlf(const struct cp *, struct sppp *);
static void sppp_lcp_scr(struct sppp *);
static void sppp_lcp_check_and_close(struct sppp *);
static int sppp_cp_check(struct sppp *, u_char);
static void sppp_ipcp_init(struct sppp *);
static void sppp_ipcp_open(struct sppp *, void *);
static void sppp_ipcp_close(struct sppp *, void *);
static enum cp_rcr_type
sppp_ipcp_confreq(struct sppp *, struct lcp_header *, int,
uint8_t **, size_t *, size_t *);
static void sppp_ipcp_confrej(struct sppp *, struct lcp_header *, int);
static void sppp_ipcp_confnak(struct sppp *, struct lcp_header *, int);
static void sppp_ipcp_tlu(struct sppp *);
static void sppp_ipcp_scr(struct sppp *);
static void sppp_ipv6cp_init(struct sppp *);
static void sppp_ipv6cp_open(struct sppp *, void *);
static enum cp_rcr_type
sppp_ipv6cp_confreq(struct sppp *, struct lcp_header *, int,
uint8_t **, size_t *, size_t *);
static void sppp_ipv6cp_confrej(struct sppp *, struct lcp_header *, int);
static void sppp_ipv6cp_confnak(struct sppp *, struct lcp_header *, int);
static void sppp_ipv6cp_tlu(struct sppp *);
static void sppp_ipv6cp_scr(struct sppp *);
static void sppp_pap_input(struct sppp *, struct mbuf *);
static void sppp_pap_init(struct sppp *);
static void sppp_pap_tlu(struct sppp *);
static void sppp_pap_scr(struct sppp *);
static void sppp_pap_scr(struct sppp *);
static void sppp_chap_input(struct sppp *, struct mbuf *);
static void sppp_chap_init(struct sppp *);
static void sppp_chap_open(struct sppp *, void *);
static void sppp_chap_tlu(struct sppp *);
static void sppp_chap_scr(struct sppp *);
static void sppp_chap_rcv_challenge_event(struct sppp *, void *);
static const char *sppp_auth_type_name(u_short, u_char);
static const char *sppp_cp_type_name(u_char);
static const char *sppp_dotted_quad(uint32_t);
static const char *sppp_ipcp_opt_name(u_char);
#ifdef INET6
static const char *sppp_ipv6cp_opt_name(u_char);
#endif
static const char *sppp_lcp_opt_name(u_char);
static const char *sppp_phase_name(int);
static const char *sppp_proto_name(u_short);
static const char *sppp_state_name(int);
static int sppp_params(struct sppp *, u_long, void *);
#ifdef INET
static void sppp_get_ip_addrs(struct sppp *, uint32_t *, uint32_t *, uint32_t *);
static void sppp_set_ip_addrs(struct sppp *);
static void sppp_clear_ip_addrs(struct sppp *);
#endif
static void sppp_keepalive(void *);
static void sppp_phase_network(struct sppp *);
static void sppp_print_bytes(const u_char *, u_short);
static void sppp_print_string(const char *, u_short);
#ifdef INET6
static void sppp_get_ip6_addrs(struct sppp *, struct in6_addr *,
struct in6_addr *, struct in6_addr *);
#ifdef IPV6CP_MYIFID_DYN
static void sppp_set_ip6_addr(struct sppp *, const struct in6_addr *);
static void sppp_gen_ip6_addr(struct sppp *, const struct in6_addr *);
#endif
static void sppp_suggest_ip6_addr(struct sppp *, struct in6_addr *);
#endif
static void sppp_notify_up(struct sppp *);
static void sppp_notify_down(struct sppp *);
static void sppp_notify_tls_wlocked(struct sppp *);
static void sppp_notify_tlf_wlocked(struct sppp *);
#ifdef INET6
static void sppp_notify_con_wlocked(struct sppp *);
#endif
static void sppp_notify_con(struct sppp *);
static void sppp_notify_chg_wlocked(struct sppp *);
/* our control protocol descriptors */
static const struct cp lcp = {
PPP_LCP, IDX_LCP, CP_LCP, "lcp",
sppp_lcp_up, sppp_lcp_down, sppp_lcp_open,
sppp_close_event, sppp_to_event,
sppp_lcp_tlu, sppp_lcp_tld, sppp_lcp_tls,
sppp_lcp_tlf, sppp_lcp_scr, sppp_sca_scn,
sppp_lcp_confreq, sppp_lcp_confrej, sppp_lcp_confnak
};
static const struct cp ipcp = {
PPP_IPCP, IDX_IPCP,
#ifdef INET
CP_NCP, /*don't run IPCP if there's no IPv4 support*/
#else
0,
#endif
"ipcp",
sppp_up_event, sppp_down_event, sppp_ipcp_open,
sppp_ipcp_close, sppp_to_event,
sppp_ipcp_tlu, sppp_null, sppp_tls,
sppp_tlf, sppp_ipcp_scr, sppp_sca_scn,
sppp_ipcp_confreq, sppp_ipcp_confrej, sppp_ipcp_confnak,
};
static const struct cp ipv6cp = {
PPP_IPV6CP, IDX_IPV6CP,
#ifdef INET6 /*don't run IPv6CP if there's no IPv6 support*/
CP_NCP,
#else
0,
#endif
"ipv6cp",
sppp_up_event, sppp_down_event, sppp_ipv6cp_open,
sppp_close_event, sppp_to_event,
sppp_ipv6cp_tlu, sppp_null, sppp_tls,
sppp_tlf, sppp_ipv6cp_scr, sppp_sca_scn,
sppp_ipv6cp_confreq, sppp_ipv6cp_confrej, sppp_ipv6cp_confnak,
};
static const struct cp pap = {
PPP_PAP, IDX_PAP, CP_AUTH, "pap",
sppp_up_event, sppp_down_event, sppp_open_event,
sppp_close_event, sppp_to_event,
sppp_pap_tlu, sppp_null, sppp_tls, sppp_tlf,
sppp_pap_scr, sppp_auth_sca_scn,
NULL, NULL, NULL
};
static const struct cp chap = {
PPP_CHAP, IDX_CHAP, CP_AUTH, "chap",
sppp_up_event, sppp_down_event, sppp_chap_open,
sppp_close_event, sppp_auth_to_event,
sppp_chap_tlu, sppp_null, sppp_tls, sppp_tlf,
sppp_chap_scr, sppp_auth_sca_scn,
NULL, NULL, NULL
};
static const struct cp *cps[IDX_COUNT] = {
&lcp, /* IDX_LCP */
&ipcp, /* IDX_IPCP */
&ipv6cp, /* IDX_IPV6CP */
&pap, /* IDX_PAP */
&chap, /* IDX_CHAP */
};
static void
sppp_change_phase(struct sppp *sp, int phase)
{
STDDCL;
KASSERT(SPPP_WLOCKED(sp));
if (sp->pp_phase == phase)
return;
sp->pp_phase = phase;
if (phase == SPPP_PHASE_NETWORK)
if_link_state_change(ifp, LINK_STATE_UP);
else
if_link_state_change(ifp, LINK_STATE_DOWN);
if (debug)
{
log(LOG_INFO, "%s: phase %s\n", ifp->if_xname,
sppp_phase_name(sp->pp_phase));
}
}
/*
* Exported functions, comprising our interface to the lower layer.
*/
/*
* Process the received packet.
*/
void
sppp_input(struct ifnet *ifp, struct mbuf *m)
{
struct ppp_header *h = NULL;
pktqueue_t *pktq = NULL;
struct ifqueue *inq = NULL;
uint16_t protocol;
struct sppp *sp = (struct sppp *)ifp;
int debug = ifp->if_flags & IFF_DEBUG;
int isr = 0;
SPPP_LOCK(sp, RW_READER);
if (ifp->if_flags & IFF_UP) {
/* Count received bytes, add hardware framing */
if_statadd(ifp, if_ibytes, m->m_pkthdr.len + sp->pp_framebytes);
/* Note time of last receive */
sp->pp_last_receive = time_uptime;
}
if (m->m_pkthdr.len <= PPP_HEADER_LEN) {
/* Too small packet, drop it. */
if (debug)
log(LOG_DEBUG,
"%s: input packet is too small, %d bytes\n",
ifp->if_xname, m->m_pkthdr.len);
drop:
if_statadd2(ifp, if_ierrors, 1, if_iqdrops, 1);
m_freem(m);
SPPP_UNLOCK(sp);
return;
}
if (sp->pp_flags & PP_NOFRAMING) {
memcpy(&protocol, mtod(m, void *), 2);
protocol = ntohs(protocol);
m_adj(m, 2);
} else {
/* Get PPP header. */
h = mtod(m, struct ppp_header *);
m_adj(m, PPP_HEADER_LEN);
switch (h->address) {
case PPP_ALLSTATIONS:
if (h->control != PPP_UI)
goto invalid;
if (sp->pp_flags & PP_CISCO) {
if (debug)
log(LOG_DEBUG,
"%s: PPP packet in Cisco mode "
"<addr=0x%x ctrl=0x%x proto=0x%x>\n",
ifp->if_xname,
h->address, h->control, ntohs(h->protocol));
goto drop;
}
break;
case CISCO_MULTICAST:
case CISCO_UNICAST:
/* Don't check the control field here (RFC 1547). */
if (! (sp->pp_flags & PP_CISCO)) {
if (debug)
log(LOG_DEBUG,
"%s: Cisco packet in PPP mode "
"<addr=0x%x ctrl=0x%x proto=0x%x>\n",
ifp->if_xname,
h->address, h->control, ntohs(h->protocol));
goto drop;
}
switch (ntohs(h->protocol)) {
default:
if_statinc(ifp, if_noproto);
goto invalid;
case CISCO_KEEPALIVE:
SPPP_UNLOCK(sp);
sppp_cisco_input((struct sppp *) ifp, m);
m_freem(m);
return;
#ifdef INET
case ETHERTYPE_IP:
pktq = ip_pktq;
break;
#endif
#ifdef INET6
case ETHERTYPE_IPV6:
pktq = ip6_pktq;
break;
#endif
}
goto queue_pkt;
default: /* Invalid PPP packet. */
invalid:
if (debug)
log(LOG_DEBUG,
"%s: invalid input packet "
"<addr=0x%x ctrl=0x%x proto=0x%x>\n",
ifp->if_xname,
h->address, h->control, ntohs(h->protocol));
goto drop;
}
protocol = ntohs(h->protocol);
}
switch (protocol) {
default:
if (sp->scp[IDX_LCP].state == STATE_OPENED) {
uint16_t prot = htons(protocol);
SPPP_UPGRADE(sp);
sppp_cp_send(sp, PPP_LCP, PROTO_REJ,
++sp->scp[IDX_LCP].seq, m->m_pkthdr.len + 2,
&prot);
SPPP_DOWNGRADE(sp);
}
if (debug)
log(LOG_DEBUG,
"%s: invalid input protocol "
"<proto=0x%x>\n", ifp->if_xname, ntohs(protocol));
if_statinc(ifp, if_noproto);
goto drop;
case PPP_LCP:
SPPP_UNLOCK(sp);
sppp_cp_input(&lcp, sp, m);
m_freem(m);
return;
case PPP_PAP:
SPPP_UNLOCK(sp);
if (sp->pp_phase >= SPPP_PHASE_AUTHENTICATE) {
sppp_pap_input(sp, m);
}
m_freem(m);
return;
case PPP_CHAP:
SPPP_UNLOCK(sp);
if (sp->pp_phase >= SPPP_PHASE_AUTHENTICATE) {
sppp_chap_input(sp, m);
}
m_freem(m);
return;
#ifdef INET
case PPP_IPCP:
SPPP_UNLOCK(sp);
if (sp->pp_phase == SPPP_PHASE_NETWORK) {
sppp_cp_input(&ipcp, sp, m);
}
m_freem(m);
return;
case PPP_IP:
if (sp->scp[IDX_IPCP].state == STATE_OPENED) {
sp->pp_last_activity = time_uptime;
pktq = ip_pktq;
}
break;
#endif
#ifdef INET6
case PPP_IPV6CP:
SPPP_UNLOCK(sp);
if (sp->pp_phase == SPPP_PHASE_NETWORK) {
sppp_cp_input(&ipv6cp, sp, m);
}
m_freem(m);
return;
case PPP_IPV6:
if (sp->scp[IDX_IPV6CP].state == STATE_OPENED) {
sp->pp_last_activity = time_uptime;
pktq = ip6_pktq;
}
break;
#endif
}
queue_pkt:
if ((ifp->if_flags & IFF_UP) == 0 || (!inq && !pktq)) {
goto drop;
}
/* Check queue. */
if (__predict_true(pktq)) {
if (__predict_false(!pktq_enqueue(pktq, m, 0))) {
goto drop;
}
SPPP_UNLOCK(sp);
return;
}
SPPP_UNLOCK(sp);
IFQ_LOCK(inq);
if (IF_QFULL(inq)) {
/* Queue overflow. */
IF_DROP(inq);
IFQ_UNLOCK(inq);
if (debug)
log(LOG_DEBUG, "%s: protocol queue overflow\n",
ifp->if_xname);
SPPP_LOCK(sp, RW_READER);
goto drop;
}
IF_ENQUEUE(inq, m);
IFQ_UNLOCK(inq);
schednetisr(isr);
}
/*
* Enqueue transmit packet.
*/
static int
sppp_output(struct ifnet *ifp, struct mbuf *m,
const struct sockaddr *dst, const struct rtentry *rt)
{
struct sppp *sp = (struct sppp *) ifp;
struct ppp_header *h = NULL;
#ifndef SPPPSUBR_MPSAFE
struct ifqueue *ifq = NULL; /* XXX */
#endif
int s, error = 0;
uint16_t protocol;
size_t pktlen;
s = splnet();
SPPP_LOCK(sp, RW_READER);
sp->pp_last_activity = time_uptime;
if ((ifp->if_flags & IFF_UP) == 0 ||
(ifp->if_flags & (IFF_RUNNING | IFF_AUTO)) == 0) {
SPPP_UNLOCK(sp);
splx(s);
m_freem(m);
return (ENETDOWN);
}
if ((ifp->if_flags & (IFF_RUNNING | IFF_AUTO)) == IFF_AUTO) {
/*
* Interface is not yet running, but auto-dial. Need
* to start LCP for it.
*/
ifp->if_flags |= IFF_RUNNING;
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_LCP].work_open);
}
/*
* If the queueing discipline needs packet classification,
* do it before prepending link headers.
*/
IFQ_CLASSIFY(&ifp->if_snd, m, dst->sa_family);
#ifdef INET
if (dst->sa_family == AF_INET) {
struct ip *ip = NULL;
#ifndef SPPPSUBR_MPSAFE
struct tcphdr *th = NULL;
#endif
if (m->m_len >= sizeof(struct ip)) {
ip = mtod(m, struct ip *);
#ifndef SPPPSUBR_MPSAFE
if (ip->ip_p == IPPROTO_TCP &&
m->m_len >= sizeof(struct ip) + (ip->ip_hl << 2) +
sizeof(struct tcphdr)) {
th = (struct tcphdr *)
((char *)ip + (ip->ip_hl << 2));
}
#endif
} else
ip = NULL;
/*
* When using dynamic local IP address assignment by using
* 0.0.0.0 as a local address, the first TCP session will
* not connect because the local TCP checksum is computed
* using 0.0.0.0 which will later become our real IP address
* so the TCP checksum computed at the remote end will
* become invalid. So we
* - don't let packets with src ip addr 0 thru
* - we flag TCP packets with src ip 0 as an error
*/
if (ip && ip->ip_src.s_addr == INADDR_ANY) {
uint8_t proto = ip->ip_p;
SPPP_UNLOCK(sp);
splx(s);
m_freem(m);
if (proto == IPPROTO_TCP)
return (EADDRNOTAVAIL);
else
return (0);
}
#ifndef SPPPSUBR_MPSAFE
/*
* Put low delay, telnet, rlogin and ftp control packets
* in front of the queue.
*/
if (!IF_QFULL(&sp->pp_fastq) &&
((ip && (ip->ip_tos & IPTOS_LOWDELAY)) ||
(th && (INTERACTIVE(ntohs(th->th_sport)) ||
INTERACTIVE(ntohs(th->th_dport))))))
ifq = &sp->pp_fastq;
#endif /* !SPPPSUBR_MPSAFE */
}
#endif
#ifdef INET6
if (dst->sa_family == AF_INET6) {
/* XXX do something tricky here? */
}
#endif
if ((sp->pp_flags & PP_NOFRAMING) == 0) {
/*
* Prepend general data packet PPP header. For now, IP only.
*/
M_PREPEND(m, PPP_HEADER_LEN, M_DONTWAIT);
if (! m) {
if (ifp->if_flags & IFF_DEBUG)
log(LOG_DEBUG, "%s: no memory for transmit header\n",
ifp->if_xname);
if_statinc(ifp, if_oerrors);
SPPP_UNLOCK(sp);
splx(s);
return (ENOBUFS);
}
/*
* May want to check size of packet
* (albeit due to the implementation it's always enough)
*/
h = mtod(m, struct ppp_header *);
if (sp->pp_flags & PP_CISCO) {
h->address = CISCO_UNICAST; /* unicast address */
h->control = 0;
} else {
h->address = PPP_ALLSTATIONS; /* broadcast address */
h->control = PPP_UI; /* Unnumbered Info */
}
}
switch (dst->sa_family) {
#ifdef INET
case AF_INET: /* Internet Protocol */
if (sp->pp_flags & PP_CISCO)
protocol = htons(ETHERTYPE_IP);
else {
/*
* Don't choke with an ENETDOWN early. It's
* possible that we just started dialing out,
* so don't drop the packet immediately. If
* we notice that we run out of buffer space
* below, we will however remember that we are
* not ready to carry IP packets, and return
* ENETDOWN, as opposed to ENOBUFS.
*/
protocol = htons(PPP_IP);
if (sp->scp[IDX_IPCP].state != STATE_OPENED)
error = ENETDOWN;
}
break;
#endif
#ifdef INET6
case AF_INET6: /* Internet Protocol version 6 */
if (sp->pp_flags & PP_CISCO)
protocol = htons(ETHERTYPE_IPV6);
else {
/*
* Don't choke with an ENETDOWN early. It's
* possible that we just started dialing out,
* so don't drop the packet immediately. If
* we notice that we run out of buffer space
* below, we will however remember that we are
* not ready to carry IP packets, and return
* ENETDOWN, as opposed to ENOBUFS.
*/
protocol = htons(PPP_IPV6);
if (sp->scp[IDX_IPV6CP].state != STATE_OPENED)
error = ENETDOWN;
}
break;
#endif
default:
m_freem(m);
if_statinc(ifp, if_oerrors);
SPPP_UNLOCK(sp);
splx(s);
return (EAFNOSUPPORT);
}
if (sp->pp_flags & PP_NOFRAMING) {
M_PREPEND(m, 2, M_DONTWAIT);
if (m == NULL) {
if (ifp->if_flags & IFF_DEBUG)
log(LOG_DEBUG, "%s: no memory for transmit header\n",
ifp->if_xname);
if_statinc(ifp, if_oerrors);
SPPP_UNLOCK(sp);
splx(s);
return (ENOBUFS);
}
*mtod(m, uint16_t *) = protocol;
} else {
h->protocol = protocol;
}
pktlen = m->m_pkthdr.len;
#ifdef SPPPSUBR_MPSAFE
SPPP_UNLOCK(sp);
error = if_transmit_lock(ifp, m);
SPPP_LOCK(sp, RW_READER);
if (error == 0)
if_statadd(ifp, if_obytes, pktlen + sp->pp_framebytes);
#else /* !SPPPSUBR_MPSAFE */
error = ifq_enqueue2(ifp, ifq, m);
if (error == 0) {
/*
* Count output packets and bytes.
* The packet length includes header + additional hardware
* framing according to RFC 1333.
*/
if (!(ifp->if_flags & IFF_OACTIVE)) {
SPPP_UNLOCK(sp);
if_start_lock(ifp);
SPPP_LOCK(sp, RW_READER);
}
if_statadd(ifp, if_obytes, pktlen + sp->pp_framebytes);
}
#endif /* !SPPPSUBR_MPSAFE */
SPPP_UNLOCK(sp);
splx(s);
return error;
}
void
sppp_attach(struct ifnet *ifp)
{
struct sppp *sp = (struct sppp *) ifp;
char xnamebuf[MAXCOMLEN];
/* Initialize keepalive handler. */
if (! spppq) {
callout_init(&keepalive_ch, CALLOUT_MPSAFE);
callout_reset(&keepalive_ch, hz * LCP_KEEPALIVE_INTERVAL, sppp_keepalive, NULL);
}
if (! spppq_lock)
spppq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
sp->pp_if.if_type = IFT_PPP;
sp->pp_if.if_output = sppp_output;
sp->pp_fastq.ifq_maxlen = 32;
sp->pp_cpq.ifq_maxlen = 20;
sp->pp_loopcnt = 0;
sp->pp_alivecnt = 0;
sp->pp_last_activity = 0;
sp->pp_last_receive = 0;
sp->pp_maxalive = DEFAULT_MAXALIVECNT;
sp->pp_max_noreceive = DEFAULT_NORECV_TIME;
sp->pp_idle_timeout = 0;
sp->pp_max_auth_fail = DEFAULT_MAX_AUTH_FAILURES;
sp->pp_phase = SPPP_PHASE_DEAD;
sp->pp_up = sppp_notify_up;
sp->pp_down = sppp_notify_down;
sppp_wq_set(&sp->work_ifdown, sppp_ifdown, NULL);
memset(sp->scp, 0, sizeof(sp->scp));
rw_init(&sp->pp_lock);
if_alloc_sadl(ifp);
/* Lets not beat about the bush, we know we're down. */
ifp->if_link_state = LINK_STATE_DOWN;
snprintf(xnamebuf, sizeof(xnamebuf), "%s.wq_cp", ifp->if_xname);
sp->wq_cp = sppp_wq_create(sp, xnamebuf,
PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
memset(&sp->myauth, 0, sizeof sp->myauth);
memset(&sp->hisauth, 0, sizeof sp->hisauth);
SPPP_LOCK(sp, RW_WRITER);
sppp_lcp_init(sp);
sppp_ipcp_init(sp);
sppp_ipv6cp_init(sp);
sppp_pap_init(sp);
sppp_chap_init(sp);
SPPP_UNLOCK(sp);
SPPPQ_LOCK();
/* Insert new entry into the keepalive list. */
sp->pp_next = spppq;
spppq = sp;
SPPPQ_UNLOCK();
}
void
sppp_detach(struct ifnet *ifp)
{
struct sppp **q, *p, *sp = (struct sppp *) ifp;
/* Remove the entry from the keepalive list. */
SPPPQ_LOCK();
for (q = &spppq; (p = *q); q = &p->pp_next)
if (p == sp) {
*q = p->pp_next;
break;
}
SPPPQ_UNLOCK();
if (! spppq) {
/* Stop keepalive handler. */
callout_stop(&keepalive_ch);
mutex_obj_free(spppq_lock);
spppq_lock = NULL;
}
SPPP_LOCK(sp, RW_WRITER);
sppp_cp_fini(&lcp, sp);
sppp_cp_fini(&ipcp, sp);
sppp_cp_fini(&pap, sp);
sppp_cp_fini(&chap, sp);
#ifdef INET6
sppp_cp_fini(&ipv6cp, sp);
#endif
sppp_wq_destroy(sp, sp->wq_cp);
/* free authentication info */
if (sp->myauth.name) free(sp->myauth.name, M_DEVBUF);
if (sp->myauth.secret) free(sp->myauth.secret, M_DEVBUF);
if (sp->hisauth.name) free(sp->hisauth.name, M_DEVBUF);
if (sp->hisauth.secret) free(sp->hisauth.secret, M_DEVBUF);
SPPP_UNLOCK(sp);
rw_destroy(&sp->pp_lock);
}
/*
* Flush the interface output queue.
*/
void
sppp_flush(struct ifnet *ifp)
{
struct sppp *sp = (struct sppp *) ifp;
SPPP_LOCK(sp, RW_WRITER);
IFQ_PURGE(&sp->pp_if.if_snd);
IF_PURGE(&sp->pp_fastq);
IF_PURGE(&sp->pp_cpq);
SPPP_UNLOCK(sp);
}
/*
* Check if the output queue is empty.
*/
int
sppp_isempty(struct ifnet *ifp)
{
struct sppp *sp = (struct sppp *) ifp;
int empty, s;
s = splnet();
SPPP_LOCK(sp, RW_READER);
empty = IF_IS_EMPTY(&sp->pp_fastq) && IF_IS_EMPTY(&sp->pp_cpq) &&
IFQ_IS_EMPTY(&sp->pp_if.if_snd);
SPPP_UNLOCK(sp);
splx(s);
return (empty);
}
/*
* Get next packet to send.
*/
struct mbuf *
sppp_dequeue(struct ifnet *ifp)
{
struct sppp *sp = (struct sppp *) ifp;
struct mbuf *m;
int s;
s = splnet();
SPPP_LOCK(sp, RW_WRITER);
/*
* Process only the control protocol queue until we have at
* least one NCP open.
*
* Do always serve all three queues in Cisco mode.
*/
IF_DEQUEUE(&sp->pp_cpq, m);
if (m == NULL &&
(sppp_cp_check(sp, CP_NCP) || (sp->pp_flags & PP_CISCO) != 0)) {
IF_DEQUEUE(&sp->pp_fastq, m);
if (m == NULL)
IFQ_DEQUEUE(&sp->pp_if.if_snd, m);
}
SPPP_UNLOCK(sp);
splx(s);
return m;
}
/*
* Process an ioctl request. Called on low priority level.
*/
int
sppp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct lwp *l = curlwp; /* XXX */
struct ifreq *ifr = (struct ifreq *) data;
struct ifaddr *ifa = (struct ifaddr *) data;
struct sppp *sp = (struct sppp *) ifp;
int s, error=0, going_up, going_down;
u_short newmode;
s = splnet();
switch (cmd) {
case SIOCINITIFADDR:
ifa->ifa_rtrequest = p2p_rtrequest;
break;
case SIOCSIFFLAGS:
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
SPPP_LOCK(sp, RW_WRITER);
going_up = ifp->if_flags & IFF_UP &&
(ifp->if_flags & IFF_RUNNING) == 0;
going_down = (ifp->if_flags & IFF_UP) == 0 &&
ifp->if_flags & IFF_RUNNING;
newmode = ifp->if_flags & (IFF_AUTO | IFF_PASSIVE);
if (newmode == (IFF_AUTO | IFF_PASSIVE)) {
/* sanity */
newmode = IFF_PASSIVE;
ifp->if_flags &= ~IFF_AUTO;
}
if (going_up || going_down) {
sp->lcp.reestablish = false;
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_LCP].work_close);
}
if (going_up && newmode == 0) {
/* neither auto-dial nor passive */
ifp->if_flags |= IFF_RUNNING;
if (!(sp->pp_flags & PP_CISCO)) {
sppp_wq_add(sp->wq_cp,
&sp->scp[IDX_LCP].work_open);
}
} else if (going_down) {
SPPP_UNLOCK(sp);
sppp_flush(ifp);
SPPP_LOCK(sp, RW_WRITER);
ifp->if_flags &= ~IFF_RUNNING;
}
SPPP_UNLOCK(sp);
break;
case SIOCSIFMTU:
if (ifr->ifr_mtu < PPP_MINMRU ||
ifr->ifr_mtu > sp->lcp.their_mru) {
error = EINVAL;
break;
}
/*FALLTHROUGH*/
case SIOCGIFMTU:
if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
break;
case SPPPSETAUTHCFG:
case SPPPSETLCPCFG:
case SPPPSETIDLETO:
case SPPPSETAUTHFAILURE:
case SPPPSETDNSOPTS:
case SPPPSETKEEPALIVE:
#if defined(COMPAT_50) || defined(MODULAR)
case __SPPPSETIDLETO50:
case __SPPPSETKEEPALIVE50:
#endif /* COMPAT_50 || MODULAR */
error = kauth_authorize_network(l->l_cred,
KAUTH_NETWORK_INTERFACE,
KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
NULL);
if (error)
break;
error = sppp_params(sp, cmd, data);
break;
case SPPPGETAUTHCFG:
case SPPPGETLCPCFG:
case SPPPGETAUTHFAILURES:
error = kauth_authorize_network(l->l_cred,
KAUTH_NETWORK_INTERFACE,
KAUTH_REQ_NETWORK_INTERFACE_GETPRIV, ifp, (void *)cmd,
NULL);
if (error)
break;
error = sppp_params(sp, cmd, data);
break;
case SPPPGETSTATUS:
case SPPPGETSTATUSNCP:
case SPPPGETIDLETO:
case SPPPGETDNSOPTS:
case SPPPGETDNSADDRS:
case SPPPGETKEEPALIVE:
#if defined(COMPAT_50) || defined(MODULAR)
case __SPPPGETIDLETO50:
case __SPPPGETKEEPALIVE50:
#endif /* COMPAT_50 || MODULAR */
case SPPPGETLCPSTATUS:
case SPPPGETIPCPSTATUS:
case SPPPGETIPV6CPSTATUS:
error = sppp_params(sp, cmd, data);
break;
default:
error = ifioctl_common(ifp, cmd, data);
break;
}
splx(s);
return (error);
}
/*
* Cisco framing implementation.
*/
/*
* Handle incoming Cisco keepalive protocol packets.
*/
static void
sppp_cisco_input(struct sppp *sp, struct mbuf *m)
{
STDDCL;
struct cisco_packet *h;
#ifdef INET
uint32_t me, mymask = 0; /* XXX: GCC */
#endif
SPPP_LOCK(sp, RW_WRITER);
if (m->m_pkthdr.len < CISCO_PACKET_LEN) {
if (debug)
log(LOG_DEBUG,
"%s: cisco invalid packet length: %d bytes\n",
ifp->if_xname, m->m_pkthdr.len);
SPPP_UNLOCK(sp);
return;
}
h = mtod(m, struct cisco_packet *);
if (debug)
log(LOG_DEBUG,
"%s: cisco input: %d bytes "
"<0x%x 0x%x 0x%x 0x%x 0x%x-0x%x>\n",
ifp->if_xname, m->m_pkthdr.len,
ntohl(h->type), h->par1, h->par2, (u_int)h->rel,
(u_int)h->time0, (u_int)h->time1);
switch (ntohl(h->type)) {
default:
if (debug)
addlog("%s: cisco unknown packet type: 0x%x\n",
ifp->if_xname, ntohl(h->type));
break;
case CISCO_ADDR_REPLY:
/* Reply on address request, ignore */
break;
case CISCO_KEEPALIVE_REQ:
sp->pp_alivecnt = 0;
sp->scp[IDX_LCP].rseq = ntohl(h->par1);
if (sp->scp[IDX_LCP].seq == sp->scp[IDX_LCP].rseq) {
/* Local and remote sequence numbers are equal.
* Probably, the line is in loopback mode. */
if (sp->pp_loopcnt >= LOOPALIVECNT) {
printf ("%s: loopback\n",
ifp->if_xname);
sp->pp_loopcnt = 0;
if (ifp->if_flags & IFF_UP) {
SPPP_UNLOCK(sp);
if_down(ifp);
SPPP_LOCK(sp, RW_WRITER);
IF_PURGE(&sp->pp_cpq);
}
}
++sp->pp_loopcnt;
/* Generate new local sequence number */
sp->scp[IDX_LCP].seq = cprng_fast32();
break;
}
sp->pp_loopcnt = 0;
if (! (ifp->if_flags & IFF_UP) &&
(ifp->if_flags & IFF_RUNNING)) {
SPPP_UNLOCK(sp);
if_up(ifp);
SPPP_LOCK(sp, RW_WRITER);
}
break;
case CISCO_ADDR_REQ:
#ifdef INET
sppp_get_ip_addrs(sp, &me, 0, &mymask);
if (me != 0L)
sppp_cisco_send(sp, CISCO_ADDR_REPLY, me, mymask);
#endif
break;
}
SPPP_UNLOCK(sp);
}
/*
* Send Cisco keepalive packet.
*/
static void
sppp_cisco_send(struct sppp *sp, int type, int32_t par1, int32_t par2)
{
STDDCL;
struct ppp_header *h;
struct cisco_packet *ch;
struct mbuf *m;
uint32_t t;
KASSERT(SPPP_WLOCKED(sp));
t = time_uptime * 1000;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (! m)
return;
m->m_pkthdr.len = m->m_len = PPP_HEADER_LEN + CISCO_PACKET_LEN;
m_reset_rcvif(m);
h = mtod(m, struct ppp_header *);
h->address = CISCO_MULTICAST;
h->control = 0;
h->protocol = htons(CISCO_KEEPALIVE);
ch = (struct cisco_packet *)(h + 1);
ch->type = htonl(type);
ch->par1 = htonl(par1);
ch->par2 = htonl(par2);
ch->rel = -1;
ch->time0 = htons((u_short)(t >> 16));
ch->time1 = htons((u_short) t);
if (debug)
log(LOG_DEBUG,
"%s: cisco output: <0x%x 0x%x 0x%x 0x%x 0x%x-0x%x>\n",
ifp->if_xname, ntohl(ch->type), ch->par1,
ch->par2, (u_int)ch->rel, (u_int)ch->time0,
(u_int)ch->time1);
if (IF_QFULL(&sp->pp_cpq)) {
IF_DROP(&sp->pp_fastq);
IF_DROP(&ifp->if_snd);
m_freem(m);
if_statinc(ifp, if_oerrors);
return;
}
if_statadd(ifp, if_obytes, m->m_pkthdr.len + sp->pp_framebytes);
IF_ENQUEUE(&sp->pp_cpq, m);
if (! (ifp->if_flags & IFF_OACTIVE)) {
SPPP_UNLOCK(sp);
if_start_lock(ifp);
SPPP_LOCK(sp, RW_WRITER);
}
}
/*
* PPP protocol implementation.
*/
/*
* Send PPP control protocol packet.
*/
static void
sppp_cp_send(struct sppp *sp, u_short proto, u_char type,
u_char ident, u_short len, void *data)
{
STDDCL;
struct lcp_header *lh;
struct mbuf *m;
size_t pkthdrlen;
KASSERT(SPPP_WLOCKED(sp));
pkthdrlen = (sp->pp_flags & PP_NOFRAMING) ? 2 : PPP_HEADER_LEN;
if (len > MHLEN - pkthdrlen - LCP_HEADER_LEN)
len = MHLEN - pkthdrlen - LCP_HEADER_LEN;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (! m) {
return;
}
m->m_pkthdr.len = m->m_len = pkthdrlen + LCP_HEADER_LEN + len;
m_reset_rcvif(m);
if (sp->pp_flags & PP_NOFRAMING) {
*mtod(m, uint16_t *) = htons(proto);
lh = (struct lcp_header *)(mtod(m, uint8_t *) + 2);
} else {
struct ppp_header *h;
h = mtod(m, struct ppp_header *);
h->address = PPP_ALLSTATIONS; /* broadcast address */
h->control = PPP_UI; /* Unnumbered Info */
h->protocol = htons(proto); /* Link Control Protocol */
lh = (struct lcp_header *)(h + 1);
}
lh->type = type;
lh->ident = ident;
lh->len = htons(LCP_HEADER_LEN + len);
if (len)
memcpy(lh + 1, data, len);
if (debug) {
log(LOG_DEBUG, "%s: %s output <%s id=0x%x len=%d",
ifp->if_xname,
sppp_proto_name(proto),
sppp_cp_type_name(lh->type), lh->ident, ntohs(lh->len));
if (len)
sppp_print_bytes((u_char *)(lh + 1), len);
addlog(">\n");
}
if (IF_QFULL(&sp->pp_cpq)) {
IF_DROP(&sp->pp_fastq);
IF_DROP(&ifp->if_snd);
m_freem(m);
if_statinc(ifp, if_oerrors);
return;
}
if_statadd(ifp, if_obytes, m->m_pkthdr.len + sp->pp_framebytes);
IF_ENQUEUE(&sp->pp_cpq, m);
if (! (ifp->if_flags & IFF_OACTIVE)) {
SPPP_UNLOCK(sp);
if_start_lock(ifp);
SPPP_LOCK(sp, RW_WRITER);
}
}
static void
sppp_cp_to_lcp(void *xsp)
{
struct sppp *sp = xsp;
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_LCP].work_to);
}
static void
sppp_cp_to_ipcp(void *xsp)
{
struct sppp *sp = xsp;
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_IPCP].work_to);
}
static void
sppp_cp_to_ipv6cp(void *xsp)
{
struct sppp *sp = xsp;
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_IPV6CP].work_to);
}
static void
sppp_cp_to_pap(void *xsp)
{
struct sppp *sp = xsp;
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_PAP].work_to);
}
static void
sppp_cp_to_chap(void *xsp)
{
struct sppp *sp = xsp;
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_CHAP].work_to);
}
static void
sppp_cp_init(const struct cp *cp, struct sppp *sp)
{
struct sppp_cp *scp;
typedef void (*sppp_co_cb_t)(void *);
static const sppp_co_cb_t to_cb[IDX_COUNT] = {
[IDX_LCP] = sppp_cp_to_lcp,
[IDX_IPCP] = sppp_cp_to_ipcp,
[IDX_IPV6CP] = sppp_cp_to_ipv6cp,
[IDX_PAP] = sppp_cp_to_pap,
[IDX_CHAP] = sppp_cp_to_chap,
};
scp = &sp->scp[cp->protoidx];
scp->state = STATE_INITIAL;
scp->fail_counter = 0;
scp->seq = 0;
scp->rseq = 0;
SPPP_WQ_SET(&scp->work_up, cp->Up, cp);
SPPP_WQ_SET(&scp->work_down, cp->Down, cp);
SPPP_WQ_SET(&scp->work_open, cp->Open, cp);
SPPP_WQ_SET(&scp->work_close, cp->Close, cp);
SPPP_WQ_SET(&scp->work_to, cp->TO, cp);
SPPP_WQ_SET(&scp->work_rcr, sppp_rcr_event, cp);
SPPP_WQ_SET(&scp->work_rca, sppp_rca_event, cp);
SPPP_WQ_SET(&scp->work_rcn, sppp_rcn_event, cp);
SPPP_WQ_SET(&scp->work_rtr, sppp_rtr_event, cp);
SPPP_WQ_SET(&scp->work_rta, sppp_rta_event, cp);
SPPP_WQ_SET(&scp->work_rxj, sppp_rxj_event, cp);
callout_init(&scp->ch, CALLOUT_MPSAFE);
callout_setfunc(&scp->ch, to_cb[cp->protoidx], sp);
}
static void
sppp_cp_fini(const struct cp *cp, struct sppp *sp)
{
struct sppp_cp *scp;
scp = &sp->scp[cp->protoidx];
sppp_wq_wait(sp->wq_cp, &scp->work_up);
sppp_wq_wait(sp->wq_cp, &scp->work_down);
sppp_wq_wait(sp->wq_cp, &scp->work_open);
sppp_wq_wait(sp->wq_cp, &scp->work_close);
sppp_wq_wait(sp->wq_cp, &scp->work_to);
sppp_wq_wait(sp->wq_cp, &scp->work_rcr);
sppp_wq_wait(sp->wq_cp, &scp->work_rca);
sppp_wq_wait(sp->wq_cp, &scp->work_rcn);
sppp_wq_wait(sp->wq_cp, &scp->work_rtr);
sppp_wq_wait(sp->wq_cp, &scp->work_rta);
sppp_wq_wait(sp->wq_cp, &scp->work_rxj);
callout_halt(&scp->ch, NULL);
callout_destroy(&scp->ch);
}
/*
* Handle incoming PPP control protocol packets.
*/
static void
sppp_cp_input(const struct cp *cp, struct sppp *sp, struct mbuf *m)
{
STDDCL;
struct lcp_header *h;
int printlen, len = m->m_pkthdr.len;
enum cp_rcr_type type;
size_t blen, rlen;
u_char *p;
uint32_t u32;
uint8_t *buf;
SPPP_LOCK(sp, RW_WRITER);
if (len < 4) {
if (debug)
log(LOG_DEBUG,
"%s: %s invalid packet length: %d bytes\n",
ifp->if_xname, cp->name, len);
SPPP_UNLOCK(sp);
return;
}
h = mtod(m, struct lcp_header *);
if (debug) {
printlen = ntohs(h->len);
log(LOG_DEBUG,
"%s: %s input(%s): <%s id=0x%x len=%d",
ifp->if_xname, cp->name,
sppp_state_name(sp->scp[cp->protoidx].state),
sppp_cp_type_name(h->type), h->ident, printlen);
if (len < printlen)
printlen = len;
if (printlen > 4)
sppp_print_bytes((u_char *)(h + 1), printlen - 4);
addlog(">\n");
}
if (len > ntohs(h->len))
len = ntohs(h->len);
p = (u_char *)(h + 1);
switch (h->type) {
case CONF_REQ:
if (len < 4) {
if (debug)
addlog("%s: %s invalid conf-req length %d\n",
ifp->if_xname, cp->name,
len);
if_statinc(ifp, if_ierrors);
break;
}
buf = NULL;
blen = 0;
rlen = 0;
type = (cp->parse_confreq)(sp, h, len,
&buf, &blen, &rlen);
if (type == CP_RCR_ERR) {
/* fatal error, shut down */
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_LCP].work_close);
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_LCP].work_open);
} else if (buf != NULL) {
if (sp->scp[cp->protoidx].rcr_buf != NULL) {
kmem_intr_free(sp->scp[cp->protoidx].rcr_buf,
sp->scp[cp->protoidx].rcr_blen);
}
sp->scp[cp->protoidx].rcr_buf = (void *)buf;
buf = NULL;
sp->scp[cp->protoidx].rcr_blen = blen;
sp->scp[cp->protoidx].rcr_rlen = rlen;
sp->scp[cp->protoidx].rcr_type = type;
sp->scp[cp->protoidx].rconfid = h->ident;
sppp_wq_add(sp->wq_cp, &sp->scp[cp->protoidx].work_rcr);
}
break;
case CONF_ACK:
if (h->ident != sp->scp[cp->protoidx].confid) {
if (debug)
addlog("%s: %s id mismatch 0x%x != 0x%x\n",
ifp->if_xname, cp->name,
h->ident, sp->scp[cp->protoidx].confid);
if_statinc(ifp, if_ierrors);
break;
}
sppp_wq_add(sp->wq_cp, &sp->scp[cp->protoidx].work_rca);
break;
case CONF_NAK:
case CONF_REJ:
if (h->ident != sp->scp[cp->protoidx].confid) {
if (debug)
addlog("%s: %s id mismatch 0x%x != 0x%x\n",
ifp->if_xname, cp->name,
h->ident, sp->scp[cp->protoidx].confid);
if_statinc(ifp, if_ierrors);
break;
}
if (h->type == CONF_NAK)
(cp->parse_confnak)(sp, h, len);
else /* CONF_REJ */
(cp->parse_confrej)(sp, h, len);
sppp_wq_add(sp->wq_cp, &sp->scp[cp->protoidx].work_rcn);
break;
case TERM_REQ:
sp->scp[cp->protoidx].rseq = h->ident;
sppp_wq_add(sp->wq_cp, &sp->scp[cp->protoidx].work_rtr);
break;
case TERM_ACK:
if (h->ident != sp->scp[cp->protoidx].confid &&
h->ident != sp->scp[cp->protoidx].seq) {
if (debug)
addlog("%s: %s id mismatch "
"0x%x != 0x%x and 0x%x != %0lx\n",
ifp->if_xname, cp->name,
h->ident, sp->scp[cp->protoidx].confid,
h->ident, sp->scp[cp->protoidx].seq);
if_statinc(ifp, if_ierrors);
break;
}
sppp_wq_add(sp->wq_cp, &sp->scp[cp->protoidx].work_rta);
break;
case CODE_REJ:
/* XXX catastrophic rejects (RXJ-) aren't handled yet. */
log(LOG_INFO,
"%s: %s: ignoring RXJ (%s) for code ?, "
"danger will robinson\n",
ifp->if_xname, cp->name,
sppp_cp_type_name(h->type));
sppp_wq_add(sp->wq_cp, &sp->scp[cp->protoidx].work_rxj);
break;
case PROTO_REJ:
{
int catastrophic;
const struct cp *upper;
int i;
uint16_t proto;
catastrophic = 0;
upper = NULL;
proto = p[0] << 8 | p[1];
for (i = 0; i < IDX_COUNT; i++) {
if (cps[i]->proto == proto) {
upper = cps[i];
break;
}
}
if (upper == NULL)
catastrophic++;
if (debug)
log(LOG_INFO,
"%s: %s: RXJ%c (%s) for proto 0x%x (%s/%s)\n",
ifp->if_xname, cp->name, catastrophic ? '-' : '+',
sppp_cp_type_name(h->type), proto,
upper ? upper->name : "unknown",
upper ? sppp_state_name(sp->scp[upper->protoidx].state) : "?");
/*
* if we got RXJ+ against conf-req, the peer does not implement
* this particular protocol type. terminate the protocol.
*/
if (upper && !catastrophic) {
if (sp->scp[upper->protoidx].state == STATE_REQ_SENT) {
sppp_wq_add(sp->wq_cp,
&sp->scp[upper->protoidx].work_close);
break;
}
}
sppp_wq_add(sp->wq_cp, &sp->scp[cp->protoidx].work_rxj);
break;
}
case DISC_REQ:
if (cp->proto != PPP_LCP)
goto illegal;
/* Discard the packet. */
break;
case ECHO_REQ:
if (cp->proto != PPP_LCP)
goto illegal;
if (sp->scp[cp->protoidx].state != STATE_OPENED) {
if (debug)
addlog("%s: lcp echo req but lcp closed\n",
ifp->if_xname);
if_statinc(ifp, if_ierrors);
break;
}
if (len < 8) {
if (debug)
addlog("%s: invalid lcp echo request "
"packet length: %d bytes\n",
ifp->if_xname, len);
break;
}
memcpy(&u32, h + 1, sizeof u32);
if (ntohl(u32) == sp->lcp.magic) {
/* Line loopback mode detected. */
printf("%s: loopback\n", ifp->if_xname);
SPPP_UNLOCK(sp);
if_down(ifp);
SPPP_LOCK(sp, RW_WRITER);
IF_PURGE(&sp->pp_cpq);
/* Shut down the PPP link. */
/* XXX */
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_LCP].work_down);
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_LCP].work_up);
break;
}
u32 = htonl(sp->lcp.magic);
memcpy(h + 1, &u32, sizeof u32);
if (debug)
addlog("%s: got lcp echo req, sending echo rep\n",
ifp->if_xname);
sppp_cp_send(sp, PPP_LCP, ECHO_REPLY, h->ident, len - 4,
h + 1);
break;
case ECHO_REPLY:
if (cp->proto != PPP_LCP)
goto illegal;
if (h->ident != sp->lcp.echoid) {
if_statinc(ifp, if_ierrors);
break;
}
if (len < 8) {
if (debug)
addlog("%s: lcp invalid echo reply "
"packet length: %d bytes\n",
ifp->if_xname, len);
break;
}
if (debug)
addlog("%s: lcp got echo rep\n",
ifp->if_xname);
memcpy(&u32, h + 1, sizeof u32);
if (ntohl(u32) != sp->lcp.magic)
sp->pp_alivecnt = 0;
break;
default:
/* Unknown packet type -- send Code-Reject packet. */
illegal:
if (debug)
addlog("%s: %s send code-rej for 0x%x\n",
ifp->if_xname, cp->name, h->type);
sppp_cp_send(sp, cp->proto, CODE_REJ,
++sp->scp[cp->protoidx].seq, m->m_pkthdr.len, h);
if_statinc(ifp, if_ierrors);
}
SPPP_UNLOCK(sp);
}
/*
* The generic part of all Up/Down/Open/Close/TO event handlers.
* Basically, the state transition handling in the automaton.
*/
static void
sppp_up_event(struct sppp *sp, void *xcp)
{
const struct cp *cp = xcp;
STDDCL;
KASSERT(SPPP_WLOCKED(sp));
KASSERT(!cpu_softintr_p());
if ((cp->flags & CP_AUTH) != 0 &&
sppp_auth_role(cp, sp) == SPPP_AUTH_NOROLE)
return;
if (debug)
log(LOG_DEBUG, "%s: %s up(%s)\n",
ifp->if_xname, cp->name,
sppp_state_name(sp->scp[cp->protoidx].state));
switch (sp->scp[cp->protoidx].state) {
case STATE_INITIAL:
sppp_cp_change_state(cp, sp, STATE_CLOSED);
break;
case STATE_STARTING:
sp->scp[cp->protoidx].rst_counter = sp->lcp.max_configure;
(cp->scr)(sp);
sppp_cp_change_state(cp, sp, STATE_REQ_SENT);
break;
default:
printf("%s: %s illegal up in state %s\n",
ifp->if_xname, cp->name,
sppp_state_name(sp->scp[cp->protoidx].state));
}
}
static void
sppp_down_event(struct sppp *sp, void *xcp)
{
const struct cp *cp = xcp;
STDDCL;
KASSERT(SPPP_WLOCKED(sp));
KASSERT(!cpu_softintr_p());
if ((cp->flags & CP_AUTH) != 0 &&
sppp_auth_role(cp, sp) == SPPP_AUTH_NOROLE)
return;
if (debug)
log(LOG_DEBUG, "%s: %s down(%s)\n",
ifp->if_xname, cp->name,
sppp_state_name(sp->scp[cp->protoidx].state));
switch (sp->scp[cp->protoidx].state) {
case STATE_CLOSED:
case STATE_CLOSING:
sppp_cp_change_state(cp, sp, STATE_INITIAL);
break;
case STATE_STOPPED:
(cp->tls)(cp, sp);
/* fall through */
case STATE_STOPPING:
case STATE_REQ_SENT:
case STATE_ACK_RCVD:
case STATE_ACK_SENT:
sppp_cp_change_state(cp, sp, STATE_STARTING);
break;
case STATE_OPENED:
(cp->tld)(sp);
sppp_cp_change_state(cp, sp, STATE_STARTING);
break;
default:
printf("%s: %s illegal down in state %s\n",
ifp->if_xname, cp->name,
sppp_state_name(sp->scp[cp->protoidx].state));
}
}
static void
sppp_open_event(struct sppp *sp, void *xcp)
{
const struct cp *cp = xcp;
STDDCL;
KASSERT(SPPP_WLOCKED(sp));
KASSERT(!cpu_softintr_p());
if ((cp->flags & CP_AUTH) != 0 &&
sppp_auth_role(cp, sp) == SPPP_AUTH_NOROLE)
return;
if (debug)
log(LOG_DEBUG, "%s: %s open(%s)\n",
ifp->if_xname, cp->name,
sppp_state_name(sp->scp[cp->protoidx].state));
switch (sp->scp[cp->protoidx].state) {
case STATE_INITIAL:
sppp_cp_change_state(cp, sp, STATE_STARTING);
(cp->tls)(cp, sp);
break;
case STATE_STARTING:
break;
case STATE_CLOSED:
sp->scp[cp->protoidx].rst_counter = sp->lcp.max_configure;
(cp->scr)(sp);
sppp_cp_change_state(cp, sp, STATE_REQ_SENT);
break;
case STATE_STOPPED:
case STATE_STOPPING:
case STATE_REQ_SENT:
case STATE_ACK_RCVD:
case STATE_ACK_SENT:
case STATE_OPENED:
break;
case STATE_CLOSING:
sppp_cp_change_state(cp, sp, STATE_STOPPING);
break;
}
}
static void
sppp_close_event(struct sppp *sp, void *xcp)
{
const struct cp *cp = xcp;
STDDCL;
KASSERT(SPPP_WLOCKED(sp));
KASSERT(!cpu_softintr_p());
if ((cp->flags & CP_AUTH) != 0 &&
sppp_auth_role(cp, sp) == SPPP_AUTH_NOROLE)
return;
if (debug)
log(LOG_DEBUG, "%s: %s close(%s)\n",
ifp->if_xname, cp->name,
sppp_state_name(sp->scp[cp->protoidx].state));
switch (sp->scp[cp->protoidx].state) {
case STATE_INITIAL:
case STATE_CLOSED:
case STATE_CLOSING:
break;
case STATE_STARTING:
sppp_cp_change_state(cp, sp, STATE_INITIAL);
(cp->tlf)(cp, sp);
break;
case STATE_STOPPED:
sppp_cp_change_state(cp, sp, STATE_CLOSED);
break;
case STATE_STOPPING:
sppp_cp_change_state(cp, sp, STATE_CLOSING);
break;
case STATE_OPENED:
(cp->tld)(sp);
/* fall through */
case STATE_REQ_SENT:
case STATE_ACK_RCVD:
case STATE_ACK_SENT:
sp->scp[cp->protoidx].rst_counter = sp->lcp.max_terminate;
if ((cp->flags & CP_AUTH) == 0) {
sppp_cp_send(sp, cp->proto, TERM_REQ,
++sp->scp[cp->protoidx].seq, 0, 0);
}
sppp_cp_change_state(cp, sp, STATE_CLOSING);
break;
}
}
static void
sppp_to_event(struct sppp *sp, void *xcp)
{
const struct cp *cp = xcp;
int s;
STDDCL;
KASSERT(SPPP_WLOCKED(sp));
KASSERT(!cpu_softintr_p());
s = splnet();
if (debug)
log(LOG_DEBUG, "%s: %s TO(%s) rst_counter = %d\n",
ifp->if_xname, cp->name,
sppp_state_name(sp->scp[cp->protoidx].state),
sp->scp[cp->protoidx].rst_counter);
if (--sp->scp[cp->protoidx].rst_counter < 0)
/* TO- event */
switch (sp->scp[cp->protoidx].state) {
case STATE_CLOSING:
sppp_cp_change_state(cp, sp, STATE_CLOSED);
(cp->tlf)(cp, sp);
break;
case STATE_STOPPING:
sppp_cp_change_state(cp, sp, STATE_STOPPED);
(cp->tlf)(cp, sp);
break;
case STATE_REQ_SENT:
case STATE_ACK_RCVD:
case STATE_ACK_SENT:
sppp_cp_change_state(cp, sp, STATE_STOPPED);
(cp->tlf)(cp, sp);
break;
}
else
/* TO+ event */
switch (sp->scp[cp->protoidx].state) {
case STATE_CLOSING:
case STATE_STOPPING:
if ((cp->flags & CP_AUTH) == 0) {
sppp_cp_send(sp, cp->proto, TERM_REQ,
++sp->scp[cp->protoidx].seq, 0, 0);
}
callout_schedule(&sp->scp[cp->protoidx].ch, sp->lcp.timeout);
break;
case STATE_REQ_SENT:
case STATE_ACK_RCVD:
(cp->scr)(sp);
/* sppp_cp_change_state() will restart the timer */
sppp_cp_change_state(cp, sp, STATE_REQ_SENT);
break;
case STATE_ACK_SENT:
(cp->scr)(sp);
callout_schedule(&sp->scp[cp->protoidx].ch, sp->lcp.timeout);
break;
}
splx(s);
}
static void
sppp_rcr_event(struct sppp *sp, void *xcp)
{
const struct cp *cp = xcp;
enum cp_rcr_type type;
void *buf;
size_t blen;
STDDCL;
KASSERT(!cpu_softintr_p());
type = sp->scp[cp->protoidx].rcr_type;
buf = sp->scp[cp->protoidx].rcr_buf;
blen = sp->scp[cp->protoidx].rcr_blen;
if (type == CP_RCR_ACK) {
/* RCR+ event */
switch (sp->scp[cp->protoidx].state) {
case STATE_OPENED:
sppp_cp_change_state(cp, sp, STATE_ACK_SENT);
cp->tld(sp);
cp->scr(sp);
cp->scan(cp, sp);
break;
case STATE_ACK_SENT:
case STATE_REQ_SENT:
sppp_cp_change_state(cp, sp, STATE_ACK_SENT);
cp->scan(cp, sp);
break;
case STATE_STOPPED:
sppp_cp_change_state(cp, sp, STATE_ACK_SENT);
cp->scr(sp);
cp->scan(cp, sp);
break;
case STATE_ACK_RCVD:
sppp_cp_change_state(cp, sp, STATE_OPENED);
if (debug)
log(LOG_DEBUG, "%s: %s tlu\n",
ifp->if_xname,
cp->name);
cp->tlu(sp);
cp->scan(cp, sp);
break;
case STATE_CLOSING:
case STATE_STOPPING:
if (buf != NULL) {
sp->scp[cp->protoidx].rcr_buf = NULL;
sp->scp[cp->protoidx].rcr_blen = 0;
kmem_free(buf, blen);
}
break;
case STATE_CLOSED:
if ((cp->flags & CP_AUTH) == 0) {
sppp_cp_send(sp, cp->proto, TERM_ACK,
sp->scp[cp->protoidx].rconfid, 0, 0);
}
break;
default:
printf("%s: %s illegal RCR+ in state %s\n",
ifp->if_xname, cp->name,
sppp_state_name(sp->scp[cp->protoidx].state));
if_statinc(ifp, if_ierrors);
}
} else {
/* RCR- event */
switch (sp->scp[cp->protoidx].state) {
case STATE_OPENED:
sppp_cp_change_state(cp, sp, STATE_REQ_SENT);
cp->tld(sp);
cp->scr(sp);
cp->scan(cp, sp);
break;
case STATE_ACK_SENT:
case STATE_REQ_SENT:
sppp_cp_change_state(cp, sp, STATE_REQ_SENT);
cp->scan(cp, sp);
break;
case STATE_STOPPED:
sppp_cp_change_state(cp, sp, STATE_REQ_SENT);
cp->scr(sp);
cp->scan(cp, sp);
break;
case STATE_ACK_RCVD:
sppp_cp_change_state(cp, sp, STATE_ACK_RCVD);
cp->scan(cp, sp);
break;
case STATE_CLOSING:
case STATE_STOPPING:
if (buf != NULL) {
sp->scp[cp->protoidx].rcr_buf = NULL;
sp->scp[cp->protoidx].rcr_blen = 0;
kmem_free(buf, blen);
}
break;
case STATE_CLOSED:
sppp_cp_change_state(cp, sp, STATE_CLOSED);
if ((cp->flags & CP_AUTH) == 0) {
sppp_cp_send(sp, cp->proto, TERM_ACK,
sp->scp[cp->protoidx].rconfid, 0, 0);
}
break;
default:
printf("%s: %s illegal RCR- in state %s\n",
ifp->if_xname, cp->name,
sppp_state_name(sp->scp[cp->protoidx].state));
if_statinc(ifp, if_ierrors);
}
}
}
static void
sppp_rca_event(struct sppp *sp, void *xcp)
{
const struct cp *cp = xcp;
STDDCL;
KASSERT(!cpu_softintr_p());
switch (sp->scp[cp->protoidx].state) {
case STATE_CLOSED:
case STATE_STOPPED:
if ((cp->flags & CP_AUTH) == 0) {
sppp_cp_send(sp, cp->proto, TERM_ACK,
sp->scp[cp->protoidx].rconfid, 0, 0);
}
break;
case STATE_CLOSING:
case STATE_STOPPING:
break;
case STATE_REQ_SENT:
sp->scp[cp->protoidx].rst_counter = sp->lcp.max_configure;
sppp_cp_change_state(cp, sp, STATE_ACK_RCVD);
break;
case STATE_OPENED:
(cp->tld)(sp);
/* fall through */
case STATE_ACK_RCVD:
(cp->scr)(sp);
sppp_cp_change_state(cp, sp, STATE_REQ_SENT);
break;
case STATE_ACK_SENT:
sppp_cp_change_state(cp, sp, STATE_OPENED);
sp->scp[cp->protoidx].rst_counter = sp->lcp.max_configure;
if (debug)
log(LOG_DEBUG, "%s: %s tlu\n",
ifp->if_xname, cp->name);
(cp->tlu)(sp);
break;
default:
printf("%s: %s illegal RCA in state %s\n",
ifp->if_xname, cp->name,
sppp_state_name(sp->scp[cp->protoidx].state));
if_statinc(ifp, if_ierrors);
}
}
static void
sppp_rcn_event(struct sppp *sp, void *xcp)
{
const struct cp *cp = xcp;
struct ifnet *ifp = &sp->pp_if;
KASSERT(!cpu_softintr_p());
switch (sp->scp[cp->protoidx].state) {
case STATE_CLOSED:
case STATE_STOPPED:
if ((cp->flags & CP_AUTH) == 0) {
sppp_cp_send(sp, cp->proto, TERM_ACK,
sp->scp[cp->protoidx].rconfid, 0, 0);
}
break;
case STATE_REQ_SENT:
case STATE_ACK_SENT:
sp->scp[cp->protoidx].rst_counter = sp->lcp.max_configure;
(cp->scr)(sp);
break;
case STATE_OPENED:
(cp->tld)(sp);
/* fall through */
case STATE_ACK_RCVD:
sppp_cp_change_state(cp, sp, STATE_ACK_SENT);
(cp->scr)(sp);
break;
case STATE_CLOSING:
case STATE_STOPPING:
break;
default:
printf("%s: %s illegal RCN in state %s\n",
ifp->if_xname, cp->name,
sppp_state_name(sp->scp[cp->protoidx].state));
if_statinc(ifp, if_ierrors);
}
}
static void
sppp_rtr_event(struct sppp *sp, void *xcp)
{
const struct cp *cp = xcp;
STDDCL;
KASSERT(!cpu_softintr_p());
switch (sp->scp[cp->protoidx].state) {
case STATE_ACK_RCVD:
case STATE_ACK_SENT:
sppp_cp_change_state(cp, sp, STATE_REQ_SENT);
break;
case STATE_CLOSED:
case STATE_STOPPED:
case STATE_CLOSING:
case STATE_STOPPING:
case STATE_REQ_SENT:
break;
case STATE_OPENED:
(cp->tld)(sp);
sp->scp[cp->protoidx].rst_counter = 0;
sppp_cp_change_state(cp, sp, STATE_STOPPING);
break;
default:
printf("%s: %s illegal RTR in state %s\n",
ifp->if_xname, cp->name,
sppp_state_name(sp->scp[cp->protoidx].state));
if_statinc(ifp, if_ierrors);
return;
}
/* Send Terminate-Ack packet. */
if (debug)
log(LOG_DEBUG, "%s: %s send terminate-ack\n",
ifp->if_xname, cp->name);
if ((cp->flags & CP_AUTH) == 0) {
sppp_cp_send(sp, cp->proto, TERM_ACK,
sp->scp[cp->protoidx].rseq, 0, 0);
}
}
static void
sppp_rta_event(struct sppp *sp, void *xcp)
{
const struct cp *cp = xcp;
struct ifnet *ifp = &sp->pp_if;
KASSERT(!cpu_softintr_p());
switch (sp->scp[cp->protoidx].state) {
case STATE_CLOSED:
case STATE_STOPPED:
case STATE_REQ_SENT:
case STATE_ACK_SENT:
break;
case STATE_CLOSING:
sppp_cp_change_state(cp, sp, STATE_CLOSED);
(cp->tlf)(cp, sp);
break;
case STATE_STOPPING:
sppp_cp_change_state(cp, sp, STATE_STOPPED);
(cp->tlf)(cp, sp);
break;
case STATE_ACK_RCVD:
sppp_cp_change_state(cp, sp, STATE_REQ_SENT);
break;
case STATE_OPENED:
(cp->tld)(sp);
(cp->scr)(sp);
sppp_cp_change_state(cp, sp, STATE_ACK_RCVD);
break;
default:
printf("%s: %s illegal RTA in state %s\n",
ifp->if_xname, cp->name,
sppp_state_name(sp->scp[cp->protoidx].state));
if_statinc(ifp, if_ierrors);
}
}
static void
sppp_rxj_event(struct sppp *sp, void *xcp)
{
const struct cp *cp = xcp;
struct ifnet *ifp = &sp->pp_if;
KASSERT(!cpu_softintr_p());
/* XXX catastrophic rejects (RXJ-) aren't handled yet. */
switch (sp->scp[cp->protoidx].state) {
case STATE_CLOSED:
case STATE_STOPPED:
case STATE_REQ_SENT:
case STATE_ACK_SENT:
case STATE_CLOSING:
case STATE_STOPPING:
case STATE_OPENED:
break;
case STATE_ACK_RCVD:
sppp_cp_change_state(cp, sp, STATE_REQ_SENT);
break;
default:
printf("%s: %s illegal RXJ- in state %s\n",
ifp->if_xname, cp->name,
sppp_state_name(sp->scp[cp->protoidx].state));
if_statinc(ifp, if_ierrors);
}
}
/*
* Change the state of a control protocol in the state automaton.
* Takes care of starting/stopping the restart timer.
*/
void
sppp_cp_change_state(const struct cp *cp, struct sppp *sp, int newstate)
{
KASSERT(SPPP_WLOCKED(sp));
sp->scp[cp->protoidx].state = newstate;
callout_stop(&sp->scp[cp->protoidx].ch);
switch (newstate) {
case STATE_INITIAL:
case STATE_STARTING:
case STATE_CLOSED:
case STATE_STOPPED:
case STATE_OPENED:
break;
case STATE_CLOSING:
case STATE_STOPPING:
case STATE_REQ_SENT:
case STATE_ACK_RCVD:
case STATE_ACK_SENT:
callout_schedule(&sp->scp[cp->protoidx].ch, sp->lcp.timeout);
break;
}
}
/*
*--------------------------------------------------------------------------*
* *
* The LCP implementation. *
* *
*--------------------------------------------------------------------------*
*/
static void
sppp_lcp_init(struct sppp *sp)
{
KASSERT(SPPP_WLOCKED(sp));
sppp_cp_init(&lcp, sp);
SET(sp->lcp.opts, SPPP_LCP_OPT_MAGIC);
sp->lcp.magic = 0;
sp->lcp.protos = 0;
sp->lcp.max_terminate = 2;
sp->lcp.max_configure = 10;
sp->lcp.max_failure = 10;
sp->lcp.tlf_sent = false;
/*
* Initialize counters and timeout values. Note that we don't
* use the 3 seconds suggested in RFC 1661 since we are likely
* running on a fast link. XXX We should probably implement
* the exponential backoff option. Note that these values are
* relevant for all control protocols, not just LCP only.
*/
sp->lcp.timeout = 1 * hz;
}
static void
sppp_lcp_up(struct sppp *sp, void *xcp)
{
const struct cp *cp = xcp;
int pidx;
STDDCL;
KASSERT(SPPP_WLOCKED(sp));
pidx = cp->protoidx;
/* Initialize activity timestamp: opening a connection is an activity */
sp->pp_last_receive = sp->pp_last_activity = time_uptime;
/*
* If this interface is passive or dial-on-demand, and we are
* still in Initial state, it means we've got an incoming
* call. Activate the interface.
*/
if ((ifp->if_flags & (IFF_AUTO | IFF_PASSIVE)) != 0) {
if (debug)
log(LOG_DEBUG,
"%s: Up event", ifp->if_xname);
ifp->if_flags |= IFF_RUNNING;
if (sp->scp[pidx].state == STATE_INITIAL) {
if (debug)
addlog("(incoming call)\n");
sp->pp_flags |= PP_CALLIN;
sppp_wq_add(sp->wq_cp, &sp->scp[pidx].work_open);
} else if (debug)
addlog("\n");
}
sppp_up_event(sp, xcp);
}
static void
sppp_lcp_down(struct sppp *sp, void *xcp)
{
const struct cp *cp = xcp;
int pidx;
STDDCL;
KASSERT(SPPP_WLOCKED(sp));
KASSERT(!cpu_softintr_p());
pidx = cp->protoidx;
sppp_down_event(sp, xcp);
/*
* We need to do tls to restart when a down event is caused
* by the last tlf.
*/
if (sp->scp[pidx].state == STATE_STARTING &&
sp->lcp.tlf_sent) {
cp->tls(cp, sp);
sp->lcp.tlf_sent = false;
}
/*
* If this is neither a dial-on-demand nor a passive
* interface, simulate an ``ifconfig down'' action, so the
* administrator can force a redial by another ``ifconfig
* up''. XXX For leased line operation, should we immediately
* try to reopen the connection here?
*/
if ((ifp->if_flags & (IFF_AUTO | IFF_PASSIVE)) == 0) {
if (debug)
log(LOG_INFO,
"%s: Down event (carrier loss), taking interface down.\n",
ifp->if_xname);
SPPP_UNLOCK(sp);
if_down(ifp);
SPPP_LOCK(sp, RW_WRITER);
if (sp->lcp.reestablish)
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_LCP].work_open);
} else {
if (debug)
log(LOG_DEBUG,
"%s: Down event (carrier loss)\n",
ifp->if_xname);
sp->pp_flags &= ~PP_CALLIN;
if (sp->scp[pidx].state != STATE_INITIAL)
sppp_wq_add(sp->wq_cp, &sp->scp[pidx].work_close);
ifp->if_flags &= ~IFF_RUNNING;
}
sp->scp[pidx].fail_counter = 0;
}
static void
sppp_lcp_open(struct sppp *sp, void *xcp)
{
KASSERT(SPPP_WLOCKED(sp));
KASSERT(!cpu_softintr_p());
sp->lcp.reestablish = false;
if (sp->pp_if.if_mtu < PP_MTU) {
sp->lcp.mru = sp->pp_if.if_mtu;
SET(sp->lcp.opts, SPPP_LCP_OPT_MRU);
} else
sp->lcp.mru = PP_MTU;
sp->lcp.their_mru = PP_MTU;
/*
* If we are authenticator, negotiate LCP_AUTH
*/
if (sp->hisauth.proto != 0)
SET(sp->lcp.opts, SPPP_LCP_OPT_AUTH_PROTO);
else
CLR(sp->lcp.opts, SPPP_LCP_OPT_AUTH_PROTO);
sp->pp_flags &= ~PP_NEEDAUTH;
sppp_open_event(sp, xcp);
}
/*
* Analyze a configure request. Return true if it was agreeable, and
* caused action sca, false if it has been rejected or nak'ed, and
* caused action scn. (The return value is used to make the state
* transition decision in the state automaton.)
*/
static enum cp_rcr_type
sppp_lcp_confreq(struct sppp *sp, struct lcp_header *h, int origlen,
uint8_t **msgbuf, size_t *buflen, size_t *msglen)
{
STDDCL;
u_char *buf, *r, *p, l, blen;
enum cp_rcr_type type;
int len, rlen;
uint32_t nmagic;
u_short authproto;
KASSERT(SPPP_WLOCKED(sp));
if (origlen < sizeof(*h))
return CP_RCR_DROP;
origlen -= sizeof(*h);
type = CP_RCR_NONE;
type = 0;
if (origlen <= 0)
return CP_RCR_DROP;
else
blen = origlen;
buf = kmem_intr_alloc(blen, KM_NOSLEEP);
if (buf == NULL)
return CP_RCR_DROP;
if (debug)
log(LOG_DEBUG, "%s: lcp parse opts:",
ifp->if_xname);
/* pass 1: check for things that need to be rejected */
p = (void *)(h + 1);
r = buf;
rlen = 0;
for (len = origlen; len > 1; len-= l, p += l) {
l = p[1];
if (l == 0)
break;
/* Sanity check option length */
if (l > len) {
/*
* Malicious option - drop immediately.
* XXX Maybe we should just RXJ it?
*/
addlog("%s: received malicious LCP option 0x%02x, "
"length 0x%02x, (len: 0x%02x) dropping.\n", ifp->if_xname,
p[0], l, len);
type = CP_RCR_ERR;
goto end;
}
if (debug)
addlog(" %s", sppp_lcp_opt_name(*p));
switch (p[0]) {
case LCP_OPT_MAGIC:
/* Magic number. */
/* fall through, both are same length */
case LCP_OPT_ASYNC_MAP:
/* Async control character map. */
if (len >= 6 || l == 6)
continue;
if (debug)
addlog(" [invalid]");
break;
case LCP_OPT_MP_EID:
if (len >= l && l >= 3) {
switch (p[2]) {
case 0: if (l==3+ 0) continue;break;
case 2: if (l==3+ 4) continue;break;
case 3: if (l==3+ 6) continue;break;
case 6: if (l==3+16) continue;break;
case 1: /* FALLTHROUGH */
case 4: if (l<=3+20) continue;break;
case 5: if (l<=3+15) continue;break;
/* XXX should it be default: continue;? */
}
}
if (debug)
addlog(" [invalid class %d len %d]", p[2], l);
break;
case LCP_OPT_MP_SSNHF:
if (len >= 2 && l == 2) {
if (debug)
addlog(" [rej]");
break;
}
if (debug)
addlog(" [invalid]");
break;
case LCP_OPT_MP_MRRU:
/* Multilink maximum received reconstructed unit */
/* should be fall through, both are same length */
/* FALLTHROUGH */
case LCP_OPT_MRU:
/* Maximum receive unit. */
if (len >= 4 && l == 4)
continue;
if (debug)
addlog(" [invalid]");
break;
case LCP_OPT_AUTH_PROTO:
if (len < 4) {
if (debug)
addlog(" [invalid]");
break;
}
authproto = (p[2] << 8) + p[3];
if (authproto == PPP_CHAP && l != 5) {
if (debug)
addlog(" [invalid chap len]");
break;
}
if (sp->myauth.proto == 0) {
/* we are not configured to do auth */
if (debug)
addlog(" [not configured]");
break;
}
/*
* Remote want us to authenticate, remember this,
* so we stay in SPPP_PHASE_AUTHENTICATE after LCP got
* up.
*/
sp->pp_flags |= PP_NEEDAUTH;
continue;
default:
/* Others not supported. */
if (debug)
addlog(" [rej]");
break;
}
if (rlen + l > blen) {
if (debug)
addlog(" [overflow]");
continue;
}
/* Add the option to rejected list. */
memcpy(r, p, l);
r += l;
rlen += l;
}
if (rlen > 0) {
type = CP_RCR_REJ;
goto end;
}
if (debug)
addlog("\n");
/*
* pass 2: check for option values that are unacceptable and
* thus require to be nak'ed.
*/
if (debug)
log(LOG_DEBUG, "%s: lcp parse opt values: ",
ifp->if_xname);
p = (void *)(h + 1);
r = buf;
rlen = 0;
for (len = origlen; len > 0; len -= l, p += l) {
l = p[1];
if (l == 0)
break;
if (debug)
addlog(" %s", sppp_lcp_opt_name(*p));
switch (p[0]) {
case LCP_OPT_MAGIC:
/* Magic number -- extract. */
nmagic = (uint32_t)p[2] << 24 |
(uint32_t)p[3] << 16 | p[4] << 8 | p[5];
if (nmagic != sp->lcp.magic) {
if (debug)
addlog(" 0x%x", nmagic);
continue;
}
/*
* Local and remote magics equal -- loopback?
*/
if (sp->pp_loopcnt >= LOOPALIVECNT*5) {
printf ("%s: loopback\n",
ifp->if_xname);
sp->pp_loopcnt = 0;
if (ifp->if_flags & IFF_UP) {
SPPP_UNLOCK(sp);
if_down(ifp);
SPPP_LOCK(sp, RW_WRITER);
IF_PURGE(&sp->pp_cpq);
/* XXX ? */
sppp_wq_add(sp->wq_cp,
&sp->scp[IDX_LCP].work_down);
sppp_wq_add(sp->wq_cp,
&sp->scp[IDX_LCP].work_up);
}
} else if (debug)
addlog(" [glitch]");
++sp->pp_loopcnt;
/*
* We negate our magic here, and NAK it. If
* we see it later in an NAK packet, we
* suggest a new one.
*/
nmagic = ~sp->lcp.magic;
/* Gonna NAK it. */
p[2] = nmagic >> 24;
p[3] = nmagic >> 16;
p[4] = nmagic >> 8;
p[5] = nmagic;
break;
case LCP_OPT_ASYNC_MAP:
/*
* Async control character map -- just ignore it.
*
* Quote from RFC 1662, chapter 6:
* To enable this functionality, synchronous PPP
* implementations MUST always respond to the
* Async-Control-Character-Map Configuration
* Option with the LCP Configure-Ack. However,
* acceptance of the Configuration Option does
* not imply that the synchronous implementation
* will do any ACCM mapping. Instead, all such
* octet mapping will be performed by the
* asynchronous-to-synchronous converter.
*/
continue;
case LCP_OPT_MRU:
/*
* Maximum receive unit. Always agreeable,
* but ignored by now.
*/
sp->lcp.their_mru = p[2] * 256 + p[3];
if (debug)
addlog(" %ld", sp->lcp.their_mru);
continue;
case LCP_OPT_AUTH_PROTO:
authproto = (p[2] << 8) + p[3];
if (sp->myauth.proto != authproto) {
/* not agreed, nak */
if (debug)
addlog(" [mine %s != his %s]",
sppp_proto_name(sp->myauth.proto),
sppp_proto_name(authproto));
p[2] = sp->myauth.proto >> 8;
p[3] = sp->myauth.proto;
break;
}
if (authproto == PPP_CHAP && p[4] != CHAP_MD5) {
if (debug)
addlog(" [chap not MD5]");
p[4] = CHAP_MD5;
break;
}
continue;
case LCP_OPT_MP_EID:
/*
* Endpoint identification.
* Always agreeable,
* but ignored by now.
*/
if (debug) {
addlog(" type %d", p[2]);
sppp_print_bytes(p+3, p[1]-3);
}
continue;
case LCP_OPT_MP_MRRU:
/*
* Maximum received reconstructed unit.
* Always agreeable,
* but ignored by now.
*/
sp->lcp.their_mrru = p[2] * 256 + p[3];
if (debug)
addlog(" %ld", sp->lcp.their_mrru);
continue;
}
if (rlen + l > blen) {
if (debug)
addlog(" [overflow]");
continue;
}
/* Add the option to nak'ed list. */
memcpy(r, p, l);
r += l;
rlen += l;
}
if (rlen > 0) {
if (++sp->scp[IDX_LCP].fail_counter >= sp->lcp.max_failure) {
if (debug)
addlog(" max_failure (%d) exceeded, ",
sp->lcp.max_failure);
type = CP_RCR_REJ;
} else {
type = CP_RCR_NAK;
}
} else {
type = CP_RCR_ACK;
rlen = origlen;
memcpy(r, h + 1, rlen);
sp->scp[IDX_LCP].fail_counter = 0;
sp->pp_loopcnt = 0;
}
end:
if (debug)
addlog("\n");
if (type == CP_RCR_ERR || type == CP_RCR_DROP) {
if (buf != NULL)
kmem_intr_free(buf, blen);
} else {
*msgbuf = buf;
*buflen = blen;
*msglen = rlen;
}
return type;
}
/*
* Analyze the LCP Configure-Reject option list, and adjust our
* negotiation.
*/
static void
sppp_lcp_confrej(struct sppp *sp, struct lcp_header *h, int len)
{
STDDCL;
u_char *p, l;
KASSERT(SPPP_WLOCKED(sp));
if (len <= sizeof(*h))
return;
len -= sizeof(*h);
if (debug)
log(LOG_DEBUG, "%s: lcp rej opts:",
ifp->if_xname);
p = (void *)(h + 1);
for (; len > 1 && (l = p[1]) != 0; len -= l, p += l) {
/* Sanity check option length */
if (l > len) {
/*
* Malicious option - drop immediately.
* XXX Maybe we should just RXJ it?
*/
addlog("%s: received malicious LCP option, "
"dropping.\n", ifp->if_xname);
goto end;
}
if (debug)
addlog(" %s", sppp_lcp_opt_name(*p));
switch (p[0]) {
case LCP_OPT_MAGIC:
/* Magic number -- can't use it, use 0 */
CLR(sp->lcp.opts, SPPP_LCP_OPT_MAGIC);
sp->lcp.magic = 0;
break;
case LCP_OPT_MRU:
/*
* We try to negotiate a lower MRU if the underlying
* link's MTU is less than PP_MTU (e.g. PPPoE). If the
* peer rejects this lower rate, fallback to the
* default.
*/
if (debug) {
addlog("%s: warning: peer rejected our MRU of "
"%ld bytes. Defaulting to %d bytes\n",
ifp->if_xname, sp->lcp.mru, PP_MTU);
}
CLR(sp->lcp.opts, SPPP_LCP_OPT_MRU);
sp->lcp.mru = PP_MTU;
break;
case LCP_OPT_AUTH_PROTO:
/*
* Peer doesn't want to authenticate himself,
* deny unless this is a dialout call, and
* SPPP_AUTHFLAG_NOCALLOUT is set.
*/
if ((sp->pp_flags & PP_CALLIN) == 0 &&
(sp->hisauth.flags & SPPP_AUTHFLAG_NOCALLOUT) != 0) {
if (debug)
addlog(" [don't insist on auth "
"for callout]");
CLR(sp->lcp.opts, SPPP_LCP_OPT_AUTH_PROTO);
break;
}
if (debug)
addlog("[access denied]\n");
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_LCP].work_close);
break;
}
}
if (debug)
addlog("\n");
end:
return;
}
/*
* Analyze the LCP Configure-NAK option list, and adjust our
* negotiation.
*/
static void
sppp_lcp_confnak(struct sppp *sp, struct lcp_header *h, int len)
{
STDDCL;
u_char *p, l;
uint32_t magic;
KASSERT(SPPP_WLOCKED(sp));
if (len <= sizeof(*h))
return;
len -= sizeof(*h);
if (debug)
log(LOG_DEBUG, "%s: lcp nak opts:",
ifp->if_xname);
p = (void *)(h + 1);
for (; len > 1 && (l = p[1]) != 0; len -= l, p += l) {
/* Sanity check option length */
if (l > len) {
/*
* Malicious option - drop immediately.
* XXX Maybe we should just RXJ it?
*/
addlog("%s: received malicious LCP option, "
"dropping.\n", ifp->if_xname);
goto end;
}
if (debug)
addlog(" %s", sppp_lcp_opt_name(*p));
switch (p[0]) {
case LCP_OPT_MAGIC:
/* Magic number -- renegotiate */
if (ISSET(sp->lcp.opts, SPPP_LCP_OPT_MAGIC) &&
len >= 6 && l == 6) {
magic = (uint32_t)p[2] << 24 |
(uint32_t)p[3] << 16 | p[4] << 8 | p[5];
/*
* If the remote magic is our negated one,
* this looks like a loopback problem.
* Suggest a new magic to make sure.
*/
if (magic == ~sp->lcp.magic) {
if (debug)
addlog(" magic glitch");
sp->lcp.magic = cprng_fast32();
} else {
sp->lcp.magic = magic;
if (debug)
addlog(" %d", magic);
}
}
break;
case LCP_OPT_MRU:
/*
* Peer wants to advise us to negotiate an MRU.
* Agree on it if it's reasonable, or use
* default otherwise.
*/
if (len >= 4 && l == 4) {
u_int mru = p[2] * 256 + p[3];
if (debug)
addlog(" %d", mru);
if (mru < PPP_MINMRU || mru > sp->pp_if.if_mtu)
mru = sp->pp_if.if_mtu;
sp->lcp.mru = mru;
SET(sp->lcp.opts, SPPP_LCP_OPT_MRU);
}
break;
case LCP_OPT_AUTH_PROTO:
/*
* Peer doesn't like our authentication method,
* deny.
*/
if (debug)
addlog("[access denied]\n");
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_LCP].work_close);
break;
}
}
if (debug)
addlog("\n");
end:
return;
}
static void
sppp_lcp_tlu(struct sppp *sp)
{
struct ifnet *ifp = &sp->pp_if;
int i;
KASSERT(SPPP_WLOCKED(sp));
/* XXX ? */
if (! (ifp->if_flags & IFF_UP) &&
(ifp->if_flags & IFF_RUNNING)) {
/* Coming out of loopback mode. */
SPPP_UNLOCK(sp);
if_up(ifp);
SPPP_LOCK(sp, RW_WRITER);
}
if (ISSET(sp->lcp.opts, SPPP_LCP_OPT_AUTH_PROTO) ||
(sp->pp_flags & PP_NEEDAUTH) != 0)
sppp_change_phase(sp, SPPP_PHASE_AUTHENTICATE);
else
sppp_change_phase(sp, SPPP_PHASE_NETWORK);
/*
* Open all authentication protocols. This is even required
* if we already proceeded to network phase, since it might be
* that remote wants us to authenticate, so we might have to
* send a PAP request. Undesired authentication protocols
* don't do anything when they get an Open event.
*/
for (i = 0; i < IDX_COUNT; i++)
if ((cps[i])->flags & CP_AUTH) {
sppp_wq_add(sp->wq_cp,
&sp->scp[(cps[i])->protoidx].work_open);
}
if (sp->pp_phase == SPPP_PHASE_NETWORK) {
/* Notify all NCPs. */
for (i = 0; i < IDX_COUNT; i++)
if ((cps[i])->flags & CP_NCP) {
sppp_wq_add(sp->wq_cp,
&sp->scp[(cps[i])->protoidx].work_open);
}
}
/* notify low-level driver of state change */
sppp_notify_chg_wlocked(sp);
}
static void
sppp_lcp_tld(struct sppp *sp)
{
int i, pi, phase;
KASSERT(SPPP_WLOCKED(sp));
phase = sp->pp_phase;
sppp_change_phase(sp, SPPP_PHASE_TERMINATE);
/*
* Take upper layers down. We send the Down event first and
* the Close second to prevent the upper layers from sending
* ``a flurry of terminate-request packets'', as the RFC
* describes it.
*/
for (i = 0; i < IDX_COUNT; i++) {
pi = (cps[i])->protoidx;
if (((cps[i])->flags & CP_LCP) == 0) {
/* skip if ncp was not started */
if (phase != SPPP_PHASE_NETWORK &&
((cps[i])->flags & CP_NCP) != 0)
continue;
sppp_wq_add(sp->wq_cp, &sp->scp[pi].work_down);
sppp_wq_add(sp->wq_cp, &sp->scp[pi].work_close);
}
}
}
static void
sppp_lcp_tls(const struct cp *cp __unused, struct sppp *sp)
{
KASSERT(SPPP_WLOCKED(sp));
if (sp->pp_max_auth_fail != 0 && sp->pp_auth_failures >= sp->pp_max_auth_fail) {
printf("%s: authentication failed %d times, not retrying again\n",
sp->pp_if.if_xname, sp->pp_auth_failures);
SPPP_UNLOCK(sp);
if_down(&sp->pp_if);
SPPP_LOCK(sp, RW_WRITER);
return;
}
sppp_change_phase(sp, SPPP_PHASE_ESTABLISH);
/* Notify lower layer if desired. */
sppp_notify_tls_wlocked(sp);
sp->lcp.tlf_sent = false;
}
static void
sppp_lcp_tlf(const struct cp *cp __unused, struct sppp *sp)
{
KASSERT(SPPP_WLOCKED(sp));
sppp_change_phase(sp, SPPP_PHASE_DEAD);
/* Notify lower layer if desired. */
sppp_notify_tlf_wlocked(sp);
switch (sp->scp[IDX_LCP].state) {
case STATE_CLOSED:
case STATE_STOPPED:
sp->lcp.tlf_sent = true;
break;
case STATE_INITIAL:
default:
/* just in case */
sp->lcp.tlf_sent = false;
}
}
static void
sppp_lcp_scr(struct sppp *sp)
{
char opt[6 /* magicnum */ + 4 /* mru */ + 5 /* chap */];
int i = 0;
u_short authproto;
KASSERT(SPPP_WLOCKED(sp));
if (ISSET(sp->lcp.opts, SPPP_LCP_OPT_MAGIC)) {
if (! sp->lcp.magic)
sp->lcp.magic = cprng_fast32();
opt[i++] = LCP_OPT_MAGIC;
opt[i++] = 6;
opt[i++] = sp->lcp.magic >> 24;
opt[i++] = sp->lcp.magic >> 16;
opt[i++] = sp->lcp.magic >> 8;
opt[i++] = sp->lcp.magic;
}
if (ISSET(sp->lcp.opts,SPPP_LCP_OPT_MRU)) {
opt[i++] = LCP_OPT_MRU;
opt[i++] = 4;
opt[i++] = sp->lcp.mru >> 8;
opt[i++] = sp->lcp.mru;
}
if (ISSET(sp->lcp.opts, SPPP_LCP_OPT_AUTH_PROTO)) {
authproto = sp->hisauth.proto;
opt[i++] = LCP_OPT_AUTH_PROTO;
opt[i++] = authproto == PPP_CHAP? 5: 4;
opt[i++] = authproto >> 8;
opt[i++] = authproto;
if (authproto == PPP_CHAP)
opt[i++] = CHAP_MD5;
}
sp->scp[IDX_LCP].confid = ++sp->scp[IDX_LCP].seq;
sppp_cp_send(sp, PPP_LCP, CONF_REQ, sp->scp[IDX_LCP].confid, i, &opt);
}
/*
* Check the open NCPs, return true if at least one NCP is open.
*/
static int
sppp_cp_check(struct sppp *sp, u_char cp_flags)
{
int i, mask;
for (i = 0, mask = 1; i < IDX_COUNT; i++, mask <<= 1)
if ((sp->lcp.protos & mask) && (cps[i])->flags & cp_flags)
return 1;
return 0;
}
/*
* Re-check the open NCPs and see if we should terminate the link.
* Called by the NCPs during their tlf action handling.
*/
static void
sppp_lcp_check_and_close(struct sppp *sp)
{
KASSERT(SPPP_WLOCKED(sp));
if (sp->pp_phase < SPPP_PHASE_AUTHENTICATE) {
/* don't bother, we are already going down */
return;
}
if (sp->pp_phase == SPPP_PHASE_AUTHENTICATE &&
sppp_cp_check(sp, CP_AUTH))
return;
if (sp->pp_phase >= SPPP_PHASE_NETWORK &&
sppp_cp_check(sp, CP_NCP))
return;
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_LCP].work_close);
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_LCP].work_open);
}
/*
*--------------------------------------------------------------------------*
* *
* The IPCP implementation. *
* *
*--------------------------------------------------------------------------*
*/
static void
sppp_ipcp_init(struct sppp *sp)
{
KASSERT(SPPP_WLOCKED(sp));
sppp_cp_init(&ipcp, sp);
sp->ipcp.opts = 0;
sp->ipcp.flags = 0;
}
static void
sppp_ipcp_open(struct sppp *sp, void *xcp)
{
STDDCL;
uint32_t myaddr, hisaddr;
KASSERT(SPPP_WLOCKED(sp));
KASSERT(!cpu_softintr_p());
sp->ipcp.flags &= ~(IPCP_HISADDR_SEEN|IPCP_MYADDR_SEEN|IPCP_MYADDR_DYN|IPCP_HISADDR_DYN);
sp->ipcp.req_myaddr = 0;
sp->ipcp.req_hisaddr = 0;
memset(&sp->dns_addrs, 0, sizeof sp->dns_addrs);
#ifdef INET
kpreempt_disable();
sppp_get_ip_addrs(sp, &myaddr, &hisaddr, 0);
kpreempt_enable();
#else
myaddr = hisaddr = 0;
#endif
/*
* If we don't have his address, this probably means our
* interface doesn't want to talk IP at all. (This could
* be the case if somebody wants to speak only IPX, for
* example.) Don't open IPCP in this case.
*/
if (hisaddr == 0) {
/* XXX this message should go away */
if (debug)
log(LOG_DEBUG, "%s: ipcp_open(): no IP interface\n",
ifp->if_xname);
return;
}
if (myaddr == 0) {
/*
* I don't have an assigned address, so i need to
* negotiate my address.
*/
sp->ipcp.flags |= IPCP_MYADDR_DYN;
SET(sp->ipcp.opts, SPPP_IPCP_OPT_ADDRESS);
}
if (hisaddr == 1) {
/*
* XXX - remove this hack!
* remote has no valid address, we need to get one assigned.
*/
sp->ipcp.flags |= IPCP_HISADDR_DYN;
}
if (sp->query_dns & 1) {
SET(sp->ipcp.opts, SPPP_IPCP_OPT_PRIMDNS);
} else {
CLR(sp->ipcp.opts, SPPP_IPCP_OPT_PRIMDNS);
}
if (sp->query_dns & 2) {
SET(sp->ipcp.opts, SPPP_IPCP_OPT_SECDNS);
} else {
CLR(sp->ipcp.opts, SPPP_IPCP_OPT_SECDNS);
}
sppp_open_event(sp, xcp);
}
static void
sppp_ipcp_close(struct sppp *sp, void *xcp)
{
KASSERT(SPPP_WLOCKED(sp));
KASSERT(!cpu_softintr_p());
sppp_close_event(sp, xcp);
#ifdef INET
if (sp->ipcp.flags & (IPCP_MYADDR_DYN|IPCP_HISADDR_DYN))
/*
* Some address was dynamic, clear it again.
*/
sppp_clear_ip_addrs(sp);
#endif
}
/*
* Analyze a configure request. Return true if it was agreeable, and
* caused action sca, false if it has been rejected or nak'ed, and
* caused action scn. (The return value is used to make the state
* transition decision in the state automaton.)
*/
static enum cp_rcr_type
sppp_ipcp_confreq(struct sppp *sp, struct lcp_header *h, int origlen,
uint8_t **msgbuf, size_t *buflen, size_t *msglen)
{
u_char *buf, *r, *p, l, blen;
enum cp_rcr_type type;
struct ifnet *ifp = &sp->pp_if;
int rlen, len, debug = ifp->if_flags & IFF_DEBUG;
uint32_t hisaddr, desiredaddr;
KASSERT(SPPP_WLOCKED(sp));
type = CP_RCR_NONE;
origlen -= sizeof(*h);
if (origlen < 0)
return CP_RCR_DROP;
/*
* Make sure to allocate a buf that can at least hold a
* conf-nak with an `address' option. We might need it below.
*/
blen = MAX(6, origlen);
buf = kmem_intr_alloc(blen, KM_NOSLEEP);
if (buf == NULL)
return CP_RCR_DROP;
/* pass 1: see if we can recognize them */
if (debug)
log(LOG_DEBUG, "%s: ipcp parse opts:",
ifp->if_xname);
p = (void *)(h + 1);
r = buf;
rlen = 0;
for (len = origlen; len > 1; len -= l, p += l) {
l = p[1];
if (l == 0)
break;
/* Sanity check option length */
if (l > len) {
/* XXX should we just RXJ? */
addlog("%s: malicious IPCP option received, dropping\n",
ifp->if_xname);
type = CP_RCR_ERR;
goto end;
}
if (debug)
addlog(" %s", sppp_ipcp_opt_name(*p));
switch (p[0]) {
#ifdef notyet
case IPCP_OPT_COMPRESSION:
if (len >= 6 && l >= 6) {
/* correctly formed compress option */
continue;
}
if (debug)
addlog(" [invalid]");
break;
#endif
case IPCP_OPT_ADDRESS:
if (len >= 6 && l == 6) {
/* correctly formed address option */
continue;
}
if (debug)
addlog(" [invalid]");
break;
default:
/* Others not supported. */
if (debug)
addlog(" [rej]");
break;
}
/* Add the option to rejected list. */
if (rlen + l > blen) {
if (debug)
addlog(" [overflow]");
continue;
}
memcpy(r, p, l);
r += l;
rlen += l;
}
if (rlen > 0) {
type = CP_RCR_REJ;
goto end;
}
if (debug)
addlog("\n");
/* pass 2: parse option values */
if (sp->ipcp.flags & IPCP_HISADDR_SEEN)
hisaddr = sp->ipcp.req_hisaddr; /* we already aggreed on that */
else
#ifdef INET
sppp_get_ip_addrs(sp, 0, &hisaddr, 0); /* user configuration */
#else
hisaddr = 0;
#endif
if (debug)
log(LOG_DEBUG, "%s: ipcp parse opt values: ",
ifp->if_xname);
p = (void *)(h + 1);
r = buf;
rlen = 0;
for (len = origlen; len > 1; len -= l, p += l) {
l = p[1];
if (l == 0)
break;
if (debug)
addlog(" %s", sppp_ipcp_opt_name(*p));
switch (p[0]) {
#ifdef notyet
case IPCP_OPT_COMPRESSION:
continue;
#endif
case IPCP_OPT_ADDRESS:
desiredaddr = p[2] << 24 | p[3] << 16 |
p[4] << 8 | p[5];
if (desiredaddr == hisaddr ||
((sp->ipcp.flags & IPCP_HISADDR_DYN) && desiredaddr != 0)) {
/*
* Peer's address is same as our value,
* this is agreeable. Gonna conf-ack
* it.
*/
if (debug)
addlog(" %s [ack]",
sppp_dotted_quad(hisaddr));
/* record that we've seen it already */
sp->ipcp.flags |= IPCP_HISADDR_SEEN;
sp->ipcp.req_hisaddr = desiredaddr;
hisaddr = desiredaddr;
continue;
}
/*
* The address wasn't agreeable. This is either
* he sent us 0.0.0.0, asking to assign him an
* address, or he send us another address not
* matching our value. Either case, we gonna
* conf-nak it with our value.
*/
if (debug) {
if (desiredaddr == 0)
addlog(" [addr requested]");
else
addlog(" %s [not agreed]",
sppp_dotted_quad(desiredaddr));
}
p[2] = hisaddr >> 24;
p[3] = hisaddr >> 16;
p[4] = hisaddr >> 8;
p[5] = hisaddr;
break;
}
if (rlen + l > blen) {
if (debug)
addlog(" [overflow]");
continue;
}
/* Add the option to nak'ed list. */
memcpy(r, p, l);
r += l;
rlen += l;
}
if (rlen > 0) {
type = CP_RCR_NAK;
} else {
if ((sp->ipcp.flags & IPCP_HISADDR_SEEN) == 0) {
/*
* If we are about to conf-ack the request, but haven't seen
* his address so far, gonna conf-nak it instead, with the
* `address' option present and our idea of his address being
* filled in there, to request negotiation of both addresses.
*
* XXX This can result in an endless req - nak loop if peer
* doesn't want to send us his address. Q: What should we do
* about it? XXX A: implement the max-failure counter.
*/
buf[0] = IPCP_OPT_ADDRESS;
buf[1] = 6;
buf[2] = hisaddr >> 24;
buf[3] = hisaddr >> 16;
buf[4] = hisaddr >> 8;
buf[5] = hisaddr;
rlen = 6;
if (debug)
addlog(" still need hisaddr");
type = CP_RCR_NAK;
} else {
type = CP_RCR_ACK;
rlen = origlen;
memcpy(r, h + 1, rlen);
}
}
end:
if (debug)
addlog("\n");
if (type == CP_RCR_ERR || type == CP_RCR_DROP) {
if (buf != NULL)
kmem_intr_free(buf, blen);
} else {
*msgbuf = buf;
*buflen = blen;
*msglen = rlen;
}
return type;
}
/*
* Analyze the IPCP Configure-Reject option list, and adjust our
* negotiation.
*/
static void
sppp_ipcp_confrej(struct sppp *sp, struct lcp_header *h, int len)
{
u_char *p, l;
struct ifnet *ifp = &sp->pp_if;
int debug = ifp->if_flags & IFF_DEBUG;
KASSERT(SPPP_WLOCKED(sp));
if (len <= sizeof(*h))
return;
len -= sizeof(*h);
if (debug)
log(LOG_DEBUG, "%s: ipcp rej opts:",
ifp->if_xname);
p = (void *)(h + 1);
for (; len > 1; len -= l, p += l) {
l = p[1];
if (l == 0)
break;
/* Sanity check option length */
if (l > len) {
/* XXX should we just RXJ? */
addlog("%s: malicious IPCP option received, dropping\n",
ifp->if_xname);
goto end;
}
if (debug)
addlog(" %s", sppp_ipcp_opt_name(*p));
switch (p[0]) {
case IPCP_OPT_ADDRESS:
/*
* Peer doesn't grok address option. This is
* bad. XXX Should we better give up here?
*/
CLR(sp->ipcp.opts, SPPP_IPCP_OPT_ADDRESS);
break;
#ifdef notyet
case IPCP_OPT_COMPRESS:
CLR(sp->ipcp.opts, SPPP_IPCP_OPT_COMPRESS);
break;
#endif
case IPCP_OPT_PRIMDNS:
CLR(sp->ipcp.opts, SPPP_IPCP_OPT_PRIMDNS);
break;
case IPCP_OPT_SECDNS:
CLR(sp->ipcp.opts, SPPP_IPCP_OPT_SECDNS);
break;
}
}
if (debug)
addlog("\n");
end:
return;
}
/*
* Analyze the IPCP Configure-NAK option list, and adjust our
* negotiation.
*/
static void
sppp_ipcp_confnak(struct sppp *sp, struct lcp_header *h, int len)
{
u_char *p, l;
struct ifnet *ifp = &sp->pp_if;
int debug = ifp->if_flags & IFF_DEBUG;
uint32_t wantaddr;
KASSERT(SPPP_WLOCKED(sp));
len -= sizeof(*h);
if (debug)
log(LOG_DEBUG, "%s: ipcp nak opts:",
ifp->if_xname);
p = (void *)(h + 1);
for (; len > 1; len -= l, p += l) {
l = p[1];
if (l == 0)
break;
/* Sanity check option length */
if (l > len) {
/* XXX should we just RXJ? */
addlog("%s: malicious IPCP option received, dropping\n",
ifp->if_xname);
return;
}
if (debug)
addlog(" %s", sppp_ipcp_opt_name(*p));
switch (*p) {
case IPCP_OPT_ADDRESS:
/*
* Peer doesn't like our local IP address. See
* if we can do something for him. We'll drop
* him our address then.
*/
if (len >= 6 && l == 6) {
wantaddr = p[2] << 24 | p[3] << 16 |
p[4] << 8 | p[5];
SET(sp->ipcp.opts, SPPP_IPCP_OPT_ADDRESS);
if (debug)
addlog(" [wantaddr %s]",
sppp_dotted_quad(wantaddr));
/*
* When doing dynamic address assignment,
* we accept his offer. Otherwise, we
* ignore it and thus continue to negotiate
* our already existing value.
*/
if (sp->ipcp.flags & IPCP_MYADDR_DYN) {
if (debug)
addlog(" [agree]");
sp->ipcp.flags |= IPCP_MYADDR_SEEN;
sp->ipcp.req_myaddr = wantaddr;
}
}
break;
case IPCP_OPT_PRIMDNS:
if (ISSET(sp->ipcp.opts, SPPP_IPCP_OPT_PRIMDNS) &&
len >= 6 && l == 6) {
sp->dns_addrs[0] = p[2] << 24 | p[3] << 16 |
p[4] << 8 | p[5];
}
break;
case IPCP_OPT_SECDNS:
if (ISSET(sp->ipcp.opts, SPPP_IPCP_OPT_SECDNS) &&
len >= 6 && l == 6) {
sp->dns_addrs[1] = p[2] << 24 | p[3] << 16 |
p[4] << 8 | p[5];
}
break;
#ifdef notyet
case IPCP_OPT_COMPRESS:
/*
* Peer wants different compression parameters.
*/
break;
#endif
}
}
if (debug)
addlog("\n");
}
static void
sppp_ipcp_tlu(struct sppp *sp)
{
#ifdef INET
KASSERT(SPPP_WLOCKED(sp));
/* we are up. Set addresses and notify anyone interested */
sppp_set_ip_addrs(sp);
#endif
}
static void
sppp_ipcp_scr(struct sppp *sp)
{
uint8_t opt[6 /* compression */ + 6 /* address */ + 12 /* dns addresses */];
#ifdef INET
uint32_t ouraddr;
#endif
int i = 0;
KASSERT(SPPP_WLOCKED(sp));
#ifdef notyet
if (ISSET(sp->ipcp.opts,SPPP_IPCP_OPT_COMPRESSION)) {
opt[i++] = IPCP_OPT_COMPRESSION;
opt[i++] = 6;
opt[i++] = 0; /* VJ header compression */
opt[i++] = 0x2d; /* VJ header compression */
opt[i++] = max_slot_id;
opt[i++] = comp_slot_id;
}
#endif
#ifdef INET
if (ISSET(sp->ipcp.opts, SPPP_IPCP_OPT_ADDRESS)) {
if (sp->ipcp.flags & IPCP_MYADDR_SEEN) {
ouraddr = sp->ipcp.req_myaddr; /* not sure if this can ever happen */
} else {
kpreempt_disable();
sppp_get_ip_addrs(sp, &ouraddr, 0, 0);
kpreempt_enable();
}
opt[i++] = IPCP_OPT_ADDRESS;
opt[i++] = 6;
opt[i++] = ouraddr >> 24;
opt[i++] = ouraddr >> 16;
opt[i++] = ouraddr >> 8;
opt[i++] = ouraddr;
}
#endif
if (ISSET(sp->ipcp.opts, SPPP_IPCP_OPT_PRIMDNS)) {
opt[i++] = IPCP_OPT_PRIMDNS;
opt[i++] = 6;
opt[i++] = sp->dns_addrs[0] >> 24;
opt[i++] = sp->dns_addrs[0] >> 16;
opt[i++] = sp->dns_addrs[0] >> 8;
opt[i++] = sp->dns_addrs[0];
}
if (ISSET(sp->ipcp.opts, SPPP_IPCP_OPT_SECDNS)) {
opt[i++] = IPCP_OPT_SECDNS;
opt[i++] = 6;
opt[i++] = sp->dns_addrs[1] >> 24;
opt[i++] = sp->dns_addrs[1] >> 16;
opt[i++] = sp->dns_addrs[1] >> 8;
opt[i++] = sp->dns_addrs[1];
}
sp->scp[IDX_IPCP].confid = ++sp->scp[IDX_IPCP].seq;
sppp_cp_send(sp, PPP_IPCP, CONF_REQ, sp->scp[IDX_IPCP].confid, i, &opt);
}
/*
*--------------------------------------------------------------------------*
* *
* The IPv6CP implementation. *
* *
*--------------------------------------------------------------------------*
*/
#ifdef INET6
static void
sppp_ipv6cp_init(struct sppp *sp)
{
KASSERT(SPPP_WLOCKED(sp));
sppp_cp_init(&ipv6cp, sp);
sp->ipv6cp.opts = 0;
sp->ipv6cp.flags = 0;
}
static void
sppp_ipv6cp_open(struct sppp *sp, void *xcp)
{
STDDCL;
struct in6_addr myaddr, hisaddr;
KASSERT(SPPP_WLOCKED(sp));
KASSERT(!cpu_softintr_p());
#ifdef IPV6CP_MYIFID_DYN
sp->ipv6cp.flags &= ~(IPV6CP_MYIFID_SEEN|IPV6CP_MYIFID_DYN);
#else
sp->ipv6cp.flags &= ~IPV6CP_MYIFID_SEEN;
#endif
kpreempt_disable();
sppp_get_ip6_addrs(sp, &myaddr, &hisaddr, 0);
kpreempt_enable();
/*
* If we don't have our address, this probably means our
* interface doesn't want to talk IPv6 at all. (This could
* be the case if somebody wants to speak only IPX, for
* example.) Don't open IPv6CP in this case.
*/
if (IN6_IS_ADDR_UNSPECIFIED(&myaddr)) {
/* XXX this message should go away */
if (debug)
log(LOG_DEBUG, "%s: ipv6cp_open(): no IPv6 interface\n",
ifp->if_xname);
return;
}
sp->ipv6cp.flags |= IPV6CP_MYIFID_SEEN;
SET(sp->ipv6cp.opts, SPPP_IPV6CP_OPT_IFID);
sppp_open_event(sp, xcp);
}
/*
* Analyze a configure request. Return true if it was agreeable, and
* caused action sca, false if it has been rejected or nak'ed, and
* caused action scn. (The return value is used to make the state
* transition decision in the state automaton.)
*/
static enum cp_rcr_type
sppp_ipv6cp_confreq(struct sppp *sp, struct lcp_header *h, int origlen,
uint8_t **msgbuf, size_t *buflen, size_t *msglen)
{
u_char *buf, *r, *p, l, blen;
struct ifnet *ifp = &sp->pp_if;
int rlen, len, debug = ifp->if_flags & IFF_DEBUG;
struct in6_addr myaddr, desiredaddr, suggestaddr;
enum cp_rcr_type type;
int ifidcount;
int collision, nohisaddr;
char ip6buf[INET6_ADDRSTRLEN];
KASSERT(SPPP_WLOCKED(sp));
type = CP_RCR_NONE;
origlen -= sizeof(*h);
if (origlen < 0)
return CP_RCR_DROP;
/*
* Make sure to allocate a buf that can at least hold a
* conf-nak with an `address' option. We might need it below.
*/
blen = MAX(6, origlen);
buf = kmem_intr_alloc(blen, KM_NOSLEEP);
if (buf == NULL)
return CP_RCR_DROP;
/* pass 1: see if we can recognize them */
if (debug)
log(LOG_DEBUG, "%s: ipv6cp parse opts:",
ifp->if_xname);
p = (void *)(h + 1);
r = buf;
rlen = 0;
ifidcount = 0;
for (len = origlen; len > 1; len -= l, p += l) {
l = p[1];
if (l == 0)
break;
/* Sanity check option length */
if (l > len) {
/* XXX just RXJ? */
addlog("%s: received malicious IPCPv6 option, "
"dropping\n", ifp->if_xname);
type = CP_RCR_ERR;
goto end;
}
if (debug)
addlog(" %s", sppp_ipv6cp_opt_name(*p));
switch (p[0]) {
case IPV6CP_OPT_IFID:
if (len >= 10 && l == 10 && ifidcount == 0) {
/* correctly formed address option */
ifidcount++;
continue;
}
if (debug)
addlog(" [invalid]");
break;
#ifdef notyet
case IPV6CP_OPT_COMPRESSION:
if (len >= 4 && l >= 4) {
/* correctly formed compress option */
continue;
}
if (debug)
addlog(" [invalid]");
break;
#endif
default:
/* Others not supported. */
if (debug)
addlog(" [rej]");
break;
}
if (rlen + l > blen) {
if (debug)
addlog(" [overflow]");
continue;
}
/* Add the option to rejected list. */
memcpy(r, p, l);
r += l;
rlen += l;
}
if (rlen > 0) {
type = CP_RCR_REJ;
goto end;
}
if (debug)
addlog("\n");
/* pass 2: parse option values */
sppp_get_ip6_addrs(sp, &myaddr, 0, 0);
if (debug)
log(LOG_DEBUG, "%s: ipv6cp parse opt values: ",
ifp->if_xname);
p = (void *)(h + 1);
r = buf;
rlen = 0;
type = CP_RCR_ACK;
for (len = origlen; len > 1; len -= l, p += l) {
l = p[1];
if (l == 0)
break;
if (debug)
addlog(" %s", sppp_ipv6cp_opt_name(*p));
switch (p[0]) {
#ifdef notyet
case IPV6CP_OPT_COMPRESSION:
continue;
#endif
case IPV6CP_OPT_IFID:
memset(&desiredaddr, 0, sizeof(desiredaddr));
memcpy(&desiredaddr.s6_addr[8], &p[2], 8);
collision = (memcmp(&desiredaddr.s6_addr[8],
&myaddr.s6_addr[8], 8) == 0);
nohisaddr = IN6_IS_ADDR_UNSPECIFIED(&desiredaddr);
desiredaddr.s6_addr16[0] = htons(0xfe80);
(void)in6_setscope(&desiredaddr, &sp->pp_if, NULL);
if (!collision && !nohisaddr) {
/* no collision, hisaddr known - Conf-Ack */
type = CP_RCR_ACK;
memcpy(sp->ipv6cp.my_ifid, &myaddr.s6_addr[8],
sizeof(sp->ipv6cp.my_ifid));
memcpy(sp->ipv6cp.his_ifid,
&desiredaddr.s6_addr[8],
sizeof(sp->ipv6cp.my_ifid));
if (debug) {
addlog(" %s [%s]",
IN6_PRINT(ip6buf, &desiredaddr),
sppp_cp_type_name(CONF_ACK));
}
continue;
}
memset(&suggestaddr, 0, sizeof(suggestaddr));
if (collision && nohisaddr) {
/* collision, hisaddr unknown - Conf-Rej */
type = CP_RCR_REJ;
memset(&p[2], 0, 8);
} else {
/*
* - no collision, hisaddr unknown, or
* - collision, hisaddr known
* Conf-Nak, suggest hisaddr
*/
type = CP_RCR_NAK;
sppp_suggest_ip6_addr(sp, &suggestaddr);
memcpy(&p[2], &suggestaddr.s6_addr[8], 8);
}
if (debug) {
int ctype = type == CP_RCR_REJ ? CONF_REJ : CONF_NAK;
addlog(" %s [%s]", IN6_PRINT(ip6buf, &desiredaddr),
sppp_cp_type_name(ctype));
}
break;
}
if (rlen + l > blen) {
if (debug)
addlog(" [overflow]");
continue;
}
/* Add the option to nak'ed list. */
memcpy(r, p, l);
r += l;
rlen += l;
}
if (rlen > 0) {
if (type != CP_RCR_ACK) {
if (debug) {
int ctype ;
ctype = type == CP_RCR_REJ ?
CONF_REJ : CONF_NAK;
addlog(" send %s suggest %s\n",
sppp_cp_type_name(ctype),
IN6_PRINT(ip6buf, &suggestaddr));
}
}
#ifdef notdef
if (type == CP_RCR_ACK)
panic("IPv6CP RCR: CONF_ACK with non-zero rlen");
#endif
} else {
if (type == CP_RCR_ACK) {
rlen = origlen;
memcpy(r, h + 1, rlen);
}
}
end:
if (debug)
addlog("\n");
if (type == CP_RCR_ERR || type == CP_RCR_DROP) {
if (buf != NULL)
kmem_intr_free(buf, blen);
} else {
*msgbuf = buf;
*buflen = blen;
*msglen = rlen;
}
return type;
}
/*
* Analyze the IPv6CP Configure-Reject option list, and adjust our
* negotiation.
*/
static void
sppp_ipv6cp_confrej(struct sppp *sp, struct lcp_header *h, int len)
{
u_char *p, l;
struct ifnet *ifp = &sp->pp_if;
int debug = ifp->if_flags & IFF_DEBUG;
KASSERT(SPPP_WLOCKED(sp));
if (len <= sizeof(*h))
return;
len -= sizeof(*h);
if (debug)
log(LOG_DEBUG, "%s: ipv6cp rej opts:",
ifp->if_xname);
p = (void *)(h + 1);
for (; len > 1; len -= l, p += l) {
l = p[1];
if (l == 0)
break;
if (l > len) {
/* XXX just RXJ? */
addlog("%s: received malicious IPCPv6 option, "
"dropping\n", ifp->if_xname);
goto end;
}
if (debug)
addlog(" %s", sppp_ipv6cp_opt_name(*p));
switch (p[0]) {
case IPV6CP_OPT_IFID:
/*
* Peer doesn't grok address option. This is
* bad. XXX Should we better give up here?
*/
CLR(sp->ipv6cp.opts, SPPP_IPV6CP_OPT_IFID);
break;
#ifdef notyet
case IPV6CP_OPT_COMPRESS:
CLR(sp->ipv6cp.opts, SPPP_IPV6CP_OPT_COMPRESS);
break;
#endif
}
}
if (debug)
addlog("\n");
end:
return;
}
/*
* Analyze the IPv6CP Configure-NAK option list, and adjust our
* negotiation.
*/
static void
sppp_ipv6cp_confnak(struct sppp *sp, struct lcp_header *h, int len)
{
u_char *p, l;
struct ifnet *ifp = &sp->pp_if;
int debug = ifp->if_flags & IFF_DEBUG;
struct in6_addr suggestaddr;
char ip6buf[INET6_ADDRSTRLEN];
KASSERT(SPPP_WLOCKED(sp));
if (len <= sizeof(*h))
return;
len -= sizeof(*h);
if (debug)
log(LOG_DEBUG, "%s: ipv6cp nak opts:",
ifp->if_xname);
p = (void *)(h + 1);
for (; len > 1; len -= l, p += l) {
l = p[1];
if (l == 0)
break;
if (l > len) {
/* XXX just RXJ? */
addlog("%s: received malicious IPCPv6 option, "
"dropping\n", ifp->if_xname);
goto end;
}
if (debug)
addlog(" %s", sppp_ipv6cp_opt_name(*p));
switch (p[0]) {
case IPV6CP_OPT_IFID:
/*
* Peer doesn't like our local ifid. See
* if we can do something for him. We'll drop
* him our address then.
*/
if (len < 10 || l != 10)
break;
memset(&suggestaddr, 0, sizeof(suggestaddr));
suggestaddr.s6_addr16[0] = htons(0xfe80);
(void)in6_setscope(&suggestaddr, &sp->pp_if, NULL);
memcpy(&suggestaddr.s6_addr[8], &p[2], 8);
SET(sp->ipv6cp.opts, SPPP_IPV6CP_OPT_IFID);
if (debug)
addlog(" [suggestaddr %s]",
IN6_PRINT(ip6buf, &suggestaddr));
#ifdef IPV6CP_MYIFID_DYN
/*
* When doing dynamic address assignment,
* we accept his offer.
*/
if (sp->ipv6cp.flags & IPV6CP_MYIFID_DYN) {
struct in6_addr lastsuggest;
/*
* If <suggested myaddr from peer> equals to
* <hisaddr we have suggested last time>,
* we have a collision. generate new random
* ifid.
*/
sppp_suggest_ip6_addr(&lastsuggest);
if (IN6_ARE_ADDR_EQUAL(&suggestaddr,
lastsuggest)) {
if (debug)
addlog(" [random]");
sppp_gen_ip6_addr(sp, &suggestaddr);
}
sppp_set_ip6_addr(sp, &suggestaddr, 0);
if (debug)
addlog(" [agree]");
sp->ipv6cp.flags |= IPV6CP_MYIFID_SEEN;
}
#else
/*
* Since we do not do dynamic address assignment,
* we ignore it and thus continue to negotiate
* our already existing value. This can possibly
* go into infinite request-reject loop.
*
* This is not likely because we normally use
* ifid based on MAC-address.
* If you have no ethernet card on the node, too bad.
* XXX should we use fail_counter?
*/
#endif
break;
#ifdef notyet
case IPV6CP_OPT_COMPRESS:
/*
* Peer wants different compression parameters.
*/
break;
#endif
}
}
if (debug)
addlog("\n");
end:
return;
}
static void
sppp_ipv6cp_tlu(struct sppp *sp)
{
KASSERT(SPPP_WLOCKED(sp));
/* we are up - notify isdn daemon */
sppp_notify_con_wlocked(sp);
}
static void
sppp_ipv6cp_scr(struct sppp *sp)
{
char opt[10 /* ifid */ + 4 /* compression, minimum */];
struct in6_addr ouraddr;
int i = 0;
KASSERT(SPPP_WLOCKED(sp));
if (ISSET(sp->ipv6cp.opts, SPPP_IPV6CP_OPT_IFID)) {
kpreempt_disable();
sppp_get_ip6_addrs(sp, &ouraddr, 0, 0);
kpreempt_enable();
opt[i++] = IPV6CP_OPT_IFID;
opt[i++] = 10;
memcpy(&opt[i], &ouraddr.s6_addr[8], 8);
i += 8;
}
#ifdef notyet
if (ISSET(sp->ipv6cp.opts, SPPP_IPV6CP_OPT_COMPRESSION)) {
opt[i++] = IPV6CP_OPT_COMPRESSION;
opt[i++] = 4;
opt[i++] = 0; /* TBD */
opt[i++] = 0; /* TBD */
/* variable length data may follow */
}
#endif
sp->scp[IDX_IPV6CP].confid = ++sp->scp[IDX_IPV6CP].seq;
sppp_cp_send(sp, PPP_IPV6CP, CONF_REQ, sp->scp[IDX_IPV6CP].confid, i, &opt);
}
#else /*INET6*/
static void
sppp_ipv6cp_init(struct sppp *sp)
{
KASSERT(SPPP_WLOCKED(sp));
}
static void
sppp_ipv6cp_open(struct sppp *sp, void *xcp)
{
KASSERT(SPPP_WLOCKED(sp));
}
static enum cp_rcr_type
sppp_ipv6cp_confreq(struct sppp *sp, struct lcp_header *h,
int len, uint8_t **msgbuf, size_t *buflen, size_t *msglen)
{
KASSERT(SPPP_WLOCKED(sp));
return 0;
}
static void
sppp_ipv6cp_confrej(struct sppp *sp, struct lcp_header *h,
int len)
{
KASSERT(SPPP_WLOCKED(sp));
}
static void
sppp_ipv6cp_confnak(struct sppp *sp, struct lcp_header *h,
int len)
{
KASSERT(SPPP_WLOCKED(sp));
}
static void
sppp_ipv6cp_tlu(struct sppp *sp)
{
KASSERT(SPPP_WLOCKED(sp));
}
static void
sppp_ipv6cp_scr(struct sppp *sp)
{
KASSERT(SPPP_WLOCKED(sp));
}
#endif /*INET6*/
/*
*--------------------------------------------------------------------------*
* *
* The CHAP implementation. *
* *
*--------------------------------------------------------------------------*
*/
/*
* The authentication protocols is implemented on the state machine for
* control protocols. And it uses following actions and events.
*
* Actions:
* - scr: send CHAP_CHALLENGE and CHAP_RESPONSE
* - sca: send CHAP_SUCCESS
* - scn: send CHAP_FAILURE and shutdown lcp
* Events:
* - RCR+: receive CHAP_RESPONSE containing correct digest
* - RCR-: receive CHAP_RESPONSE containing wrong digest
* - RCA: receive CHAP_SUCCESS
* - RCN: (this event is unused)
* - TO+: re-send CHAP_CHALLENGE and CHAP_RESPONSE
* - TO-: this layer finish
*/
/*
* Handle incoming CHAP packets.
*/
void
sppp_chap_input(struct sppp *sp, struct mbuf *m)
{
STDDCL;
struct lcp_header *h;
int len, x;
u_char *value, *name, digest[sizeof(sp->chap.challenge)];
int value_len, name_len;
MD5_CTX ctx;
len = m->m_pkthdr.len;
if (len < 4) {
if (debug)
log(LOG_DEBUG,
"%s: chap invalid packet length: %d bytes\n",
ifp->if_xname, len);
return;
}
h = mtod(m, struct lcp_header *);
if (len > ntohs(h->len))
len = ntohs(h->len);
SPPP_LOCK(sp, RW_WRITER);
switch (h->type) {
/* challenge, failure and success are his authproto */
case CHAP_CHALLENGE:
if (sp->myauth.secret == NULL || sp->myauth.name == NULL) {
/* can't do anything useful */
sp->pp_auth_failures++;
printf("%s: chap input without my name and my secret being set\n",
ifp->if_xname);
break;
}
value = 1 + (u_char *)(h + 1);
value_len = value[-1];
name = value + value_len;
name_len = len - value_len - 5;
if (name_len < 0) {
if (debug) {
log(LOG_DEBUG,
"%s: chap corrupted challenge "
"<%s id=0x%x len=%d",
ifp->if_xname,
sppp_auth_type_name(PPP_CHAP, h->type),
h->ident, ntohs(h->len));
if (len > 4)
sppp_print_bytes((u_char *)(h + 1),
len - 4);
addlog(">\n");
}
break;
}
if (debug) {
log(LOG_DEBUG,
"%s: chap input <%s id=0x%x len=%d name=",
ifp->if_xname,
sppp_auth_type_name(PPP_CHAP, h->type), h->ident,
ntohs(h->len));
sppp_print_string((char *) name, name_len);
addlog(" value-size=%d value=", value_len);
sppp_print_bytes(value, value_len);
addlog(">\n");
}
/* Compute reply value. */
MD5Init(&ctx);
MD5Update(&ctx, &h->ident, 1);
MD5Update(&ctx, sp->myauth.secret, sp->myauth.secret_len);
MD5Update(&ctx, value, value_len);
MD5Final(sp->chap.digest, &ctx);
sp->chap.digest_len = sizeof(sp->chap.digest);
sp->scp[IDX_CHAP].rconfid = h->ident;
sppp_wq_add(sp->wq_cp, &sp->chap.work_challenge_rcvd);
break;
case CHAP_SUCCESS:
if (debug) {
log(LOG_DEBUG, "%s: chap success",
ifp->if_xname);
if (len > 4) {
addlog(": ");
sppp_print_string((char *)(h + 1), len - 4);
}
addlog("\n");
}
if (h->ident != sp->scp[IDX_CHAP].rconfid) {
if (debug) {
log(LOG_DEBUG, "%s: %s id mismatch 0x%x != 0x%x\n",
ifp->if_xname, chap.name,
h->ident, sp->scp[IDX_CHAP].rconfid);
}
if_statinc(ifp, if_ierrors);
break;
}
if (sp->chap.digest_len == 0) {
if (debug) {
log(LOG_DEBUG,
"%s: receive CHAP success without challenge\n",
ifp->if_xname);
}
if_statinc(ifp, if_ierrors);
break;
}
x = splnet();
sp->pp_auth_failures = 0;
sp->pp_flags &= ~PP_NEEDAUTH;
splx(x);
memset(sp->chap.digest, 0, sizeof(sp->chap.digest));
sp->chap.digest_len = 0;
if (!ISSET(sppp_auth_role(&chap, sp), SPPP_AUTH_SERV)) {
/*
* we are not authenticator for CHAP,
* generate a dummy RCR+ event without CHAP_RESPONSE
*/
sp->scp[IDX_CHAP].rcr_type = CP_RCR_ACK;
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_CHAP].work_rcr);
}
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_CHAP].work_rca);
break;
case CHAP_FAILURE:
if (h->ident != sp->scp[IDX_CHAP].rconfid) {
if (debug) {
log(LOG_DEBUG, "%s: %s id mismatch 0x%x != 0x%x\n",
ifp->if_xname, chap.name,
h->ident, sp->scp[IDX_CHAP].rconfid);
}
if_statinc(ifp, if_ierrors);
break;
}
if (sp->chap.digest_len == 0) {
if (debug) {
log(LOG_DEBUG,
"%s: receive CHAP failure without challenge\n",
ifp->if_xname);
}
if_statinc(ifp, if_ierrors);
break;
}
x = splnet();
sp->pp_auth_failures++;
splx(x);
if (debug) {
log(LOG_INFO, "%s: chap failure",
ifp->if_xname);
if (len > 4) {
addlog(": ");
sppp_print_string((char *)(h + 1), len - 4);
}
addlog("\n");
} else
log(LOG_INFO, "%s: chap failure\n",
ifp->if_xname);
memset(sp->chap.digest, 0, sizeof(sp->chap.digest));
sp->chap.digest_len = 0;
/*
* await LCP shutdown by authenticator,
* so we don't have to enqueue sc->scp[IDX_CHAP].work_rcn
*/
break;
/* response is my authproto */
case CHAP_RESPONSE:
if (sp->hisauth.name == NULL || sp->hisauth.secret == NULL) {
/* can't do anything useful */
printf("%s: chap response"
" without his name and his secret being set\n",
ifp->if_xname);
break;
}
value = 1 + (u_char *)(h + 1);
value_len = value[-1];
name = value + value_len;
name_len = len - value_len - 5;
if (name_len < 0) {
if (debug) {
log(LOG_DEBUG,
"%s: chap corrupted response "
"<%s id=0x%x len=%d",
ifp->if_xname,
sppp_auth_type_name(PPP_CHAP, h->type),
h->ident, ntohs(h->len));
if (len > 4)
sppp_print_bytes((u_char *)(h + 1),
len - 4);
addlog(">\n");
}
break;
}
if (h->ident != sp->scp[IDX_CHAP].confid) {
if (debug)
log(LOG_DEBUG,
"%s: chap dropping response for old ID "
"(got %d, expected %d)\n",
ifp->if_xname,
h->ident, sp->scp[IDX_CHAP].confid);
break;
} else {
sp->scp[IDX_CHAP].rconfid = h->ident;
}
if (sp->hisauth.name != NULL &&
(name_len != sp->hisauth.name_len
|| memcmp(name, sp->hisauth.name, name_len) != 0)) {
log(LOG_INFO, "%s: chap response, his name ",
ifp->if_xname);
sppp_print_string(name, name_len);
addlog(" != expected ");
sppp_print_string(sp->hisauth.name,
sp->hisauth.name_len);
addlog("\n");
/* generate RCR- event */
sp->scp[IDX_CHAP].rcr_type = CP_RCR_NAK;
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_CHAP].work_rcr);
break;
}
if (debug) {
log(LOG_DEBUG, "%s: chap input(%s) "
"<%s id=0x%x len=%d name=",
ifp->if_xname,
sppp_state_name(sp->scp[IDX_CHAP].state),
sppp_auth_type_name(PPP_CHAP, h->type),
h->ident, ntohs(h->len));
sppp_print_string((char *)name, name_len);
addlog(" value-size=%d value=", value_len);
sppp_print_bytes(value, value_len);
addlog(">\n");
}
if (value_len == sizeof(sp->chap.challenge) &&
value_len == sizeof(sp->chap.digest)) {
MD5Init(&ctx);
MD5Update(&ctx, &h->ident, 1);
MD5Update(&ctx, sp->hisauth.secret, sp->hisauth.secret_len);
MD5Update(&ctx, sp->chap.challenge, sizeof(sp->chap.challenge));
MD5Final(digest, &ctx);
if (memcmp(digest, value, value_len) == 0) {
sp->scp[IDX_CHAP].rcr_type = CP_RCR_ACK;
if (!ISSET(sppp_auth_role(&chap, sp), SPPP_AUTH_PEER) ||
sp->chap.rechallenging) {
/* generate a dummy RCA event*/
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_CHAP].work_rca);
}
} else {
sp->scp[IDX_CHAP].rcr_type = CP_RCR_NAK;
}
} else {
if (debug)
log(LOG_DEBUG,
"%s: chap bad hash value length: "
"%d bytes, should be %zu\n",
ifp->if_xname, value_len,
sizeof(sp->chap.challenge));
sp->scp[IDX_CHAP].rcr_type = CP_RCR_NAK;
}
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_CHAP].work_rcr);
break;
default:
/* Unknown CHAP packet type -- ignore. */
if (debug) {
log(LOG_DEBUG, "%s: chap unknown input(%s) "
"<0x%x id=0x%xh len=%d",
ifp->if_xname,
sppp_state_name(sp->scp[IDX_CHAP].state),
h->type, h->ident, ntohs(h->len));
if (len > 4)
sppp_print_bytes((u_char *)(h + 1), len - 4);
addlog(">\n");
}
break;
}
SPPP_UNLOCK(sp);
}
static void
sppp_chap_init(struct sppp *sp)
{
KASSERT(SPPP_WLOCKED(sp));
sppp_cp_init(&chap, sp);
SPPP_WQ_SET(&sp->chap.work_challenge_rcvd,
sppp_chap_rcv_challenge_event, &chap);
}
static void
sppp_chap_open(struct sppp *sp, void *xcp)
{
KASSERT(SPPP_WLOCKED(sp));
memset(sp->chap.digest, 0, sizeof(sp->chap.digest));
sp->chap.digest_len = 0;
sp->chap.rechallenging = false;
sp->chap.response_rcvd = false;
sppp_open_event(sp, xcp);
}
static void
sppp_chap_tlu(struct sppp *sp)
{
STDDCL;
int i, x;
KASSERT(SPPP_WLOCKED(sp));
i = 0;
sp->scp[IDX_CHAP].rst_counter = sp->lcp.max_configure;
x = splnet();
sp->pp_auth_failures = 0;
splx(x);
log(LOG_DEBUG, "%s: chap %s", ifp->if_xname,
sp->pp_phase == SPPP_PHASE_NETWORK ? "reconfirmed" : "tlu");
/*
* Some broken CHAP implementations (Conware CoNet, firmware
* 4.0.?) don't want to re-authenticate their CHAP once the
* initial challenge-response exchange has taken place.
* Provide for an option to avoid rechallenges.
*/
if (ISSET(sppp_auth_role(&chap, sp), SPPP_AUTH_SERV) &&
(sp->hisauth.flags & SPPP_AUTHFLAG_NORECHALLENGE) == 0) {
/*
* Compute the re-challenge timeout. This will yield
* a number between 300 and 810 seconds.
*/
i = 300 + ((unsigned)(cprng_fast32() & 0xff00) >> 7);
callout_schedule(&sp->scp[IDX_CHAP].ch, i * hz);
if (debug) {
addlog(", next rechallenge in %d seconds", i);
}
}
addlog("\n");
/*
* If we are already in phase network, we are done here. This
* is the case if this is a dummy tlu event after a re-challenge.
*/
if (sp->pp_phase != SPPP_PHASE_NETWORK)
sppp_phase_network(sp);
}
static void
sppp_chap_scr(struct sppp *sp)
{
uint32_t *ch;
u_char clen, dsize;
int role;
KASSERT(SPPP_WLOCKED(sp));
role = sppp_auth_role(&chap, sp);
if (ISSET(role, SPPP_AUTH_SERV) &&
!sp->chap.response_rcvd) {
/* we are authenticator for CHAP, send challenge */
ch = (uint32_t *)sp->chap.challenge;
clen = sizeof(sp->chap.challenge);
/* Compute random challenge. */
cprng_strong(kern_cprng, ch, clen, 0);
sp->scp[IDX_CHAP].confid = ++sp->scp[IDX_CHAP].seq;
sppp_auth_send(&chap, sp, CHAP_CHALLENGE, sp->scp[IDX_CHAP].confid,
sizeof(clen), (const char *)&clen,
sizeof(sp->chap.challenge), sp->chap.challenge,
0);
}
if (ISSET(role, SPPP_AUTH_PEER) &&
sp->chap.digest_len > 0) {
/* we are peer for CHAP, send response */
dsize = sp->chap.digest_len;
sppp_auth_send(&chap, sp, CHAP_RESPONSE, sp->scp[IDX_CHAP].rconfid,
sizeof(dsize), (const char *)&dsize,
sp->chap.digest_len, sp->chap.digest,
sp->myauth.name_len, sp->myauth.name, 0);
}
}
static void
sppp_chap_rcv_challenge_event(struct sppp *sp, void *xcp)
{
const struct cp *cp = xcp;
KASSERT(!cpu_softintr_p());
sp->chap.rechallenging = false;
switch (sp->scp[IDX_CHAP].state) {
case STATE_REQ_SENT:
sppp_cp_change_state(cp, sp, STATE_REQ_SENT);
cp->scr(sp);
break;
case STATE_OPENED:
sppp_cp_change_state(cp, sp, STATE_ACK_SENT);
cp->scr(sp);
break;
}
}
/*
*--------------------------------------------------------------------------*
* *
* The PAP implementation. *
* *
*--------------------------------------------------------------------------*
*/
/*
* PAP uses following actions and events.
* Actions:
* - scr: send PAP_REQ
* - sca: send PAP_ACK
* - scn: send PAP_NAK
* Events:
* - RCR+: receive PAP_REQ containing correct username and password
* - RCR-: receive PAP_REQ containing wrong username and password
* - RCA: receive PAP_ACK
* - RCN: (this event is unused)
* - TO+: re-send PAP_REQ
* - TO-: this layer finish
*/
/*
* Handle incoming PAP packets. */
static void
sppp_pap_input(struct sppp *sp, struct mbuf *m)
{
STDDCL;
struct lcp_header *h;
int len, x;
char *name, *secret;
int name_len, secret_len;
/*
* Malicious input might leave this uninitialized, so
* init to an impossible value.
*/
secret_len = -1;
len = m->m_pkthdr.len;
if (len < 5) {
if (debug)
log(LOG_DEBUG,
"%s: pap invalid packet length: %d bytes\n",
ifp->if_xname, len);
return;
}
h = mtod(m, struct lcp_header *);
if (len > ntohs(h->len))
len = ntohs(h->len);
SPPP_LOCK(sp, RW_WRITER);
switch (h->type) {
/* PAP request is my authproto */
case PAP_REQ:
if (sp->hisauth.name == NULL || sp->hisauth.secret == NULL) {
/* can't do anything useful */
printf("%s: pap request"
" without his name and his secret being set\n",
ifp->if_xname);
break;
}
name = 1 + (u_char *)(h + 1);
name_len = name[-1];
secret = name + name_len + 1;
if (name_len > len - 6 ||
(secret_len = secret[-1]) > len - 6 - name_len) {
if (debug) {
log(LOG_DEBUG, "%s: pap corrupted input "
"<%s id=0x%x len=%d",
ifp->if_xname,
sppp_auth_type_name(PPP_PAP, h->type),
h->ident, ntohs(h->len));
if (len > 4)
sppp_print_bytes((u_char *)(h + 1),
len - 4);
addlog(">\n");
}
break;
}
if (debug) {
log(LOG_DEBUG, "%s: pap input(%s) "
"<%s id=0x%x len=%d name=",
ifp->if_xname,
sppp_state_name(sp->scp[IDX_PAP].state),
sppp_auth_type_name(PPP_PAP, h->type),
h->ident, ntohs(h->len));
sppp_print_string((char *)name, name_len);
addlog(" secret=");
sppp_print_string((char *)secret, secret_len);
addlog(">\n");
}
sp->scp[IDX_PAP].rconfid = h->ident;
if (name_len == sp->hisauth.name_len &&
memcmp(name, sp->hisauth.name, name_len) == 0 &&
secret_len == sp->hisauth.secret_len &&
memcmp(secret, sp->hisauth.secret, secret_len) == 0) {
sp->scp[IDX_PAP].rcr_type = CP_RCR_ACK;
if (!ISSET(sppp_auth_role(&pap, sp), SPPP_AUTH_PEER)) {
/* generate a dummy RCA event*/
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_PAP].work_rca);
}
} else {
sp->scp[IDX_PAP].rcr_type = CP_RCR_NAK;
}
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_PAP].work_rcr);
break;
/* ack and nak are his authproto */
case PAP_ACK:
if (debug) {
log(LOG_DEBUG, "%s: pap success",
ifp->if_xname);
name = 1 + (u_char *)(h + 1);
name_len = name[-1];
if (len > 5 && name_len < len+4) {
addlog(": ");
sppp_print_string(name, name_len);
}
addlog("\n");
}
if (h->ident != sp->scp[IDX_PAP].confid) {
if (debug) {
log(LOG_DEBUG, "%s: %s id mismatch 0x%x != 0x%x\n",
ifp->if_xname, pap.name,
h->ident, sp->scp[IDX_PAP].rconfid);
}
if_statinc(ifp, if_ierrors);
break;
}
x = splnet();
sp->pp_auth_failures = 0;
sp->pp_flags &= ~PP_NEEDAUTH;
splx(x);
/* we are not authenticator, generate a dummy RCR+ event */
if (!ISSET(sppp_auth_role(&pap, sp), SPPP_AUTH_SERV)) {
sp->scp[IDX_PAP].rcr_type = CP_RCR_ACK;
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_PAP].work_rcr);
}
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_PAP].work_rca);
break;
case PAP_NAK:
if (debug) {
log(LOG_INFO, "%s: pap failure",
ifp->if_xname);
name = 1 + (u_char *)(h + 1);
name_len = name[-1];
if (len > 5 && name_len < len+4) {
addlog(": ");
sppp_print_string(name, name_len);
}
addlog("\n");
} else
log(LOG_INFO, "%s: pap failure\n",
ifp->if_xname);
if (h->ident != sp->scp[IDX_PAP].confid) {
if (debug) {
log(LOG_DEBUG, "%s: %s id mismatch 0x%x != 0x%x\n",
ifp->if_xname, pap.name,
h->ident, sp->scp[IDX_PAP].rconfid);
}
if_statinc(ifp, if_ierrors);
break;
}
sp->pp_auth_failures++;
/*
* await LCP shutdown by authenticator,
* so we don't have to enqueue sc->scp[IDX_PAP].work_rcn
*/
break;
default:
/* Unknown PAP packet type -- ignore. */
if (debug) {
log(LOG_DEBUG, "%s: pap corrupted input "
"<0x%x id=0x%x len=%d",
ifp->if_xname,
h->type, h->ident, ntohs(h->len));
if (len > 4)
sppp_print_bytes((u_char *)(h + 1), len - 4);
addlog(">\n");
}
break;
}
SPPP_UNLOCK(sp);
}
static void
sppp_pap_init(struct sppp *sp)
{
KASSERT(SPPP_WLOCKED(sp));
sppp_cp_init(&pap, sp);
}
static void
sppp_pap_tlu(struct sppp *sp)
{
STDDCL;
int x;
sp->scp[IDX_PAP].rst_counter = sp->lcp.max_configure;
if (debug)
log(LOG_DEBUG, "%s: %s tlu\n",
ifp->if_xname, pap.name);
x = splnet();
sp->pp_auth_failures = 0;
splx(x);
if (sp->pp_phase < SPPP_PHASE_NETWORK)
sppp_phase_network(sp);
}
static void
sppp_pap_scr(struct sppp *sp)
{
u_char idlen, pwdlen;
KASSERT(SPPP_WLOCKED(sp));
if (ISSET(sppp_auth_role(&pap, sp), SPPP_AUTH_PEER) &&
sp->scp[IDX_PAP].state != STATE_ACK_RCVD) {
if (sp->myauth.secret == NULL || sp->myauth.name == NULL) {
log(LOG_DEBUG, "%s: couldn't send PAP_REQ "
"because of no name or no secret\n",
sp->pp_if.if_xname);
} else {
sp->scp[IDX_PAP].confid = ++sp->scp[IDX_PAP].seq;
pwdlen = sp->myauth.secret_len;
idlen = sp->myauth.name_len;
sppp_auth_send(&pap, sp, PAP_REQ, sp->scp[IDX_PAP].confid,
sizeof idlen, (const char *)&idlen,
idlen, sp->myauth.name,
sizeof pwdlen, (const char *)&pwdlen,
pwdlen, sp->myauth.secret,
0);
}
}
}
/*
* Random miscellaneous functions.
*/
/*
* Send a PAP or CHAP proto packet.
*
* Varadic function, each of the elements for the ellipsis is of type
* ``size_t mlen, const u_char *msg''. Processing will stop iff
* mlen == 0.
* NOTE: never declare variadic functions with types subject to type
* promotion (i.e. u_char). This is asking for big trouble depending
* on the architecture you are on...
*/
static void
sppp_auth_send(const struct cp *cp, struct sppp *sp,
unsigned int type, unsigned int id,
...)
{
STDDCL;
struct lcp_header *lh;
struct mbuf *m;
u_char *p;
int len;
size_t pkthdrlen;
unsigned int mlen;
const char *msg;
va_list ap;
KASSERT(SPPP_WLOCKED(sp));
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (! m)
return;
m_reset_rcvif(m);
if (sp->pp_flags & PP_NOFRAMING) {
*mtod(m, uint16_t *) = htons(cp->proto);
pkthdrlen = 2;
lh = (struct lcp_header *)(mtod(m, uint8_t *)+2);
} else {
struct ppp_header *h;
h = mtod(m, struct ppp_header *);
h->address = PPP_ALLSTATIONS; /* broadcast address */
h->control = PPP_UI; /* Unnumbered Info */
h->protocol = htons(cp->proto);
pkthdrlen = PPP_HEADER_LEN;
lh = (struct lcp_header *)(h + 1);
}
lh->type = type;
lh->ident = id;
p = (u_char *)(lh + 1);
va_start(ap, id);
len = 0;
while ((mlen = (unsigned int)va_arg(ap, size_t)) != 0) {
msg = va_arg(ap, const char *);
len += mlen;
if (len > MHLEN - pkthdrlen - LCP_HEADER_LEN) {
va_end(ap);
m_freem(m);
return;
}
memcpy(p, msg, mlen);
p += mlen;
}
va_end(ap);
m->m_pkthdr.len = m->m_len = pkthdrlen + LCP_HEADER_LEN + len;
lh->len = htons(LCP_HEADER_LEN + len);
if (debug) {
log(LOG_DEBUG, "%s: %s output <%s id=0x%x len=%d",
ifp->if_xname, cp->name,
sppp_auth_type_name(cp->proto, lh->type),
lh->ident, ntohs(lh->len));
if (len)
sppp_print_bytes((u_char *)(lh + 1), len);
addlog(">\n");
}
if (IF_QFULL(&sp->pp_cpq)) {
IF_DROP(&sp->pp_fastq);
IF_DROP(&ifp->if_snd);
m_freem(m);
if_statinc(ifp, if_oerrors);
return;
}
if_statadd(ifp, if_obytes, m->m_pkthdr.len + sp->pp_framebytes);
IF_ENQUEUE(&sp->pp_cpq, m);
if (! (ifp->if_flags & IFF_OACTIVE)) {
SPPP_UNLOCK(sp);
if_start_lock(ifp);
SPPP_LOCK(sp, RW_WRITER);
}
}
static int
sppp_auth_role(const struct cp *cp, struct sppp *sp)
{
int role;
role = SPPP_AUTH_NOROLE;
if (sp->hisauth.proto == cp->proto &&
ISSET(sp->lcp.opts, SPPP_LCP_OPT_AUTH_PROTO))
SET(role, SPPP_AUTH_SERV);
if (sp->myauth.proto == cp->proto)
SET(role, SPPP_AUTH_PEER);
return role;
}
static void
sppp_auth_to_event(struct sppp *sp, void *xcp)
{
const struct cp *cp = xcp;
bool override;
int state;
STDDCL;
KASSERT(SPPP_WLOCKED(sp));
KASSERT(!cpu_softintr_p());
override = false;
state = sp->scp[cp->protoidx].state;
if (sp->scp[cp->protoidx].rst_counter > 0) {
/* override TO+ event */
switch (state) {
case STATE_OPENED:
if ((sp->hisauth.flags & SPPP_AUTHFLAG_NORECHALLENGE) == 0) {
override = true;
sp->chap.rechallenging = true;
sp->chap.response_rcvd = false;
sppp_cp_change_state(cp, sp, STATE_REQ_SENT);
cp->scr(sp);
}
break;
case STATE_ACK_RCVD:
override = true;
cp->scr(sp);
callout_schedule(&sp->scp[cp->protoidx].ch, sp->lcp.timeout);
break;
}
}
if (override) {
if (debug)
log(LOG_DEBUG, "%s: %s TO(%s) rst_counter = %d\n",
ifp->if_xname, cp->name,
sppp_state_name(state),
sp->scp[cp->protoidx].rst_counter);
sp->scp[cp->protoidx].rst_counter--;
} else {
sppp_to_event(sp, xcp);
}
}
static void
sppp_auth_sca_scn(const struct cp *cp, struct sppp *sp)
{
static const char *succmsg = "Welcome!";
static const char *failmsg = "Failed...";
const char *msg;
u_char type, rconfid, mlen;
KASSERT(SPPP_WLOCKED(sp));
if (!ISSET(sppp_auth_role(cp, sp), SPPP_AUTH_SERV))
return;
rconfid = sp->scp[cp->protoidx].rconfid;
if (sp->scp[cp->protoidx].rcr_type == CP_RCR_ACK) {
type = cp->proto == PPP_CHAP ? CHAP_SUCCESS : PAP_ACK;
msg = succmsg;
mlen = sizeof(succmsg) - 1;
sp->pp_auth_failures = 0;
} else {
type = cp->proto == PPP_CHAP ? CHAP_FAILURE : PAP_NAK;
msg = failmsg;
mlen = sizeof(failmsg) - 1;
/* shutdown LCP if auth failed */
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_LCP].work_close);
sp->pp_auth_failures++;
}
sppp_auth_send(cp, sp, type, rconfid,
mlen, (const u_char *)msg, 0);
}
/*
* Send keepalive packets, every 10 seconds.
*/
static void
sppp_keepalive(void *dummy)
{
struct sppp *sp;
int s;
time_t now;
SPPPQ_LOCK();
s = splnet();
now = time_uptime;
for (sp=spppq; sp; sp=sp->pp_next) {
struct ifnet *ifp = NULL;
SPPP_LOCK(sp, RW_WRITER);
ifp = &sp->pp_if;
/* check idle timeout */
if ((sp->pp_idle_timeout != 0) && (ifp->if_flags & IFF_RUNNING)
&& (sp->pp_phase == SPPP_PHASE_NETWORK)) {
/* idle timeout is enabled for this interface */
if ((now-sp->pp_last_activity) >= sp->pp_idle_timeout) {
if (ifp->if_flags & IFF_DEBUG)
printf("%s: no activity for %lu seconds\n",
sp->pp_if.if_xname,
(unsigned long)(now-sp->pp_last_activity));
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_LCP].work_close);
SPPP_UNLOCK(sp);
continue;
}
}
/* Keepalive mode disabled or channel down? */
if (! (sp->pp_flags & PP_KEEPALIVE) ||
! (ifp->if_flags & IFF_RUNNING)) {
SPPP_UNLOCK(sp);
continue;
}
/* No keepalive in PPP mode if LCP not opened yet. */
if (! (sp->pp_flags & PP_CISCO) &&
sp->pp_phase < SPPP_PHASE_AUTHENTICATE) {
SPPP_UNLOCK(sp);
continue;
}
/* No echo reply, but maybe user data passed through? */
if ((now - sp->pp_last_receive) < sp->pp_max_noreceive) {
sp->pp_alivecnt = 0;
SPPP_UNLOCK(sp);
continue;
}
if (sp->pp_alivecnt >= sp->pp_maxalive) {
/* No keepalive packets got. Stop the interface. */
sppp_wq_add(sp->wq_cp, &sp->work_ifdown);
if (! (sp->pp_flags & PP_CISCO)) {
printf("%s: LCP keepalive timed out, going to restart the connection\n",
ifp->if_xname);
sp->pp_alivecnt = 0;
/* we are down, close all open protocols */
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_LCP].work_close);
/* And now prepare LCP to reestablish the link, if configured to do so. */
sp->lcp.reestablish = true;
SPPP_UNLOCK(sp);
continue;
}
}
if (sp->pp_alivecnt < sp->pp_maxalive)
++sp->pp_alivecnt;
if (sp->pp_flags & PP_CISCO)
sppp_cisco_send(sp, CISCO_KEEPALIVE_REQ,
++sp->scp[IDX_LCP].seq, sp->scp[IDX_LCP].rseq);
else if (sp->pp_phase >= SPPP_PHASE_AUTHENTICATE) {
int32_t nmagic = htonl(sp->lcp.magic);
sp->lcp.echoid = ++sp->scp[IDX_LCP].seq;
sppp_cp_send(sp, PPP_LCP, ECHO_REQ,
sp->lcp.echoid, 4, &nmagic);
}
SPPP_UNLOCK(sp);
}
splx(s);
callout_reset(&keepalive_ch, hz * LCP_KEEPALIVE_INTERVAL, sppp_keepalive, NULL);
SPPPQ_UNLOCK();
}
#ifdef INET
/*
* Get both IP addresses.
*/
static void
sppp_get_ip_addrs(struct sppp *sp, uint32_t *src, uint32_t *dst, uint32_t *srcmask)
{
struct ifnet *ifp = &sp->pp_if;
struct ifaddr *ifa;
struct sockaddr_in *si, *sm;
uint32_t ssrc, ddst;
int s;
struct psref psref;
sm = NULL;
ssrc = ddst = 0;
/*
* Pick the first AF_INET address from the list,
* aliases don't make any sense on a p2p link anyway.
*/
si = 0;
s = pserialize_read_enter();
IFADDR_READER_FOREACH(ifa, ifp) {
if (ifa->ifa_addr->sa_family == AF_INET) {
si = (struct sockaddr_in *)ifa->ifa_addr;
sm = (struct sockaddr_in *)ifa->ifa_netmask;
if (si) {
ifa_acquire(ifa, &psref);
break;
}
}
}
pserialize_read_exit(s);
if (ifa) {
if (si && si->sin_addr.s_addr) {
ssrc = si->sin_addr.s_addr;
if (srcmask)
*srcmask = ntohl(sm->sin_addr.s_addr);
}
si = (struct sockaddr_in *)ifa->ifa_dstaddr;
if (si && si->sin_addr.s_addr)
ddst = si->sin_addr.s_addr;
ifa_release(ifa, &psref);
}
if (dst) *dst = ntohl(ddst);
if (src) *src = ntohl(ssrc);
}
/*
* Set IP addresses. Must be called at splnet.
* If an address is 0, leave it the way it is.
*/
static void
sppp_set_ip_addrs(struct sppp *sp)
{
STDDCL;
struct ifaddr *ifa;
struct sockaddr_in *si, *dest;
uint32_t myaddr = 0, hisaddr = 0;
int s;
IFNET_LOCK(ifp);
/*
* Pick the first AF_INET address from the list,
* aliases don't make any sense on a p2p link anyway.
*/
si = dest = NULL;
s = pserialize_read_enter();
IFADDR_READER_FOREACH(ifa, ifp) {
if (ifa->ifa_addr->sa_family == AF_INET) {
si = (struct sockaddr_in *)ifa->ifa_addr;
dest = (struct sockaddr_in *)ifa->ifa_dstaddr;
break;
}
}
pserialize_read_exit(s);
if ((sp->ipcp.flags & IPCP_MYADDR_DYN) && (sp->ipcp.flags & IPCP_MYADDR_SEEN))
myaddr = sp->ipcp.req_myaddr;
else if (si != NULL)
myaddr = ntohl(si->sin_addr.s_addr);
if ((sp->ipcp.flags & IPCP_HISADDR_DYN) && (sp->ipcp.flags & IPCP_HISADDR_SEEN))
hisaddr = sp->ipcp.req_hisaddr;
else if (dest != NULL)
hisaddr = ntohl(dest->sin_addr.s_addr);
if (si != NULL && dest != NULL) {
int error;
struct sockaddr_in new_sin = *si;
struct sockaddr_in new_dst = *dest;
if (myaddr != 0)
new_sin.sin_addr.s_addr = htonl(myaddr);
if (hisaddr != 0) {
new_dst.sin_addr.s_addr = htonl(hisaddr);
if (new_dst.sin_addr.s_addr != dest->sin_addr.s_addr)
sp->ipcp.saved_hisaddr = dest->sin_addr.s_addr;
}
in_addrhash_remove(ifatoia(ifa));
error = in_ifinit(ifp, ifatoia(ifa), &new_sin, &new_dst, 0);
in_addrhash_insert(ifatoia(ifa));
if (debug && error)
{
log(LOG_DEBUG, "%s: %s: in_ifinit failed, error=%d\n",
ifp->if_xname, __func__, error);
}
if (!error) {
pfil_run_addrhooks(if_pfil, SIOCAIFADDR, ifa);
}
}
if (ifp->if_mtu > sp->lcp.their_mru) {
sp->pp_saved_mtu = ifp->if_mtu;
ifp->if_mtu = sp->lcp.their_mru;
if (debug)
log(LOG_DEBUG,
"%s: setting MTU to %" PRIu64 " bytes\n",
ifp->if_xname, ifp->if_mtu);
}
IFNET_UNLOCK(ifp);
sppp_notify_con(sp);
}
/*
* Clear IP addresses. Must be called at splnet.
*/
static void
sppp_clear_ip_addrs(struct sppp *sp)
{
STDDCL;
struct ifaddr *ifa;
struct sockaddr_in *si, *dest;
int s;
IFNET_LOCK(ifp);
/*
* Pick the first AF_INET address from the list,
* aliases don't make any sense on a p2p link anyway.
*/
si = dest = NULL;
s = pserialize_read_enter();
IFADDR_READER_FOREACH(ifa, ifp) {
if (ifa->ifa_addr->sa_family == AF_INET) {
si = (struct sockaddr_in *)ifa->ifa_addr;
dest = (struct sockaddr_in *)ifa->ifa_dstaddr;
break;
}
}
pserialize_read_exit(s);
if (si != NULL) {
struct sockaddr_in new_sin = *si;
struct sockaddr_in new_dst = *dest;
int error;
if (sp->ipcp.flags & IPCP_MYADDR_DYN)
new_sin.sin_addr.s_addr = 0;
if (sp->ipcp.flags & IPCP_HISADDR_DYN)
new_dst.sin_addr.s_addr = sp->ipcp.saved_hisaddr;
in_addrhash_remove(ifatoia(ifa));
error = in_ifinit(ifp, ifatoia(ifa), &new_sin, &new_dst, 0);
in_addrhash_insert(ifatoia(ifa));
if (debug && error)
{
log(LOG_DEBUG, "%s: %s: in_ifinit failed, error=%d\n",
ifp->if_xname, __func__, error);
}
if (!error) {
pfil_run_addrhooks(if_pfil, SIOCAIFADDR, ifa);
}
}
if (sp->pp_saved_mtu > 0) {
ifp->if_mtu = sp->pp_saved_mtu;
sp->pp_saved_mtu = 0;
if (debug)
log(LOG_DEBUG,
"%s: resetting MTU to %" PRIu64 " bytes\n",
ifp->if_xname, ifp->if_mtu);
}
IFNET_UNLOCK(ifp);
}
#endif
#ifdef INET6
/*
* Get both IPv6 addresses.
*/
static void
sppp_get_ip6_addrs(struct sppp *sp, struct in6_addr *src, struct in6_addr *dst,
struct in6_addr *srcmask)
{
struct ifnet *ifp = &sp->pp_if;
struct ifaddr *ifa;
struct sockaddr_in6 *si, *sm;
struct in6_addr ssrc, ddst;
int s;
struct psref psref;
sm = NULL;
memset(&ssrc, 0, sizeof(ssrc));
memset(&ddst, 0, sizeof(ddst));
/*
* Pick the first link-local AF_INET6 address from the list,
* aliases don't make any sense on a p2p link anyway.
*/
si = 0;
s = pserialize_read_enter();
IFADDR_READER_FOREACH(ifa, ifp) {
if (ifa->ifa_addr->sa_family == AF_INET6) {
si = (struct sockaddr_in6 *)ifa->ifa_addr;
sm = (struct sockaddr_in6 *)ifa->ifa_netmask;
if (si && IN6_IS_ADDR_LINKLOCAL(&si->sin6_addr)) {
ifa_acquire(ifa, &psref);
break;
}
}
}
pserialize_read_exit(s);
if (ifa) {
if (si && !IN6_IS_ADDR_UNSPECIFIED(&si->sin6_addr)) {
memcpy(&ssrc, &si->sin6_addr, sizeof(ssrc));
if (srcmask) {
memcpy(srcmask, &sm->sin6_addr,
sizeof(*srcmask));
}
}
si = (struct sockaddr_in6 *)ifa->ifa_dstaddr;
if (si && !IN6_IS_ADDR_UNSPECIFIED(&si->sin6_addr))
memcpy(&ddst, &si->sin6_addr, sizeof(ddst));
ifa_release(ifa, &psref);
}
if (dst)
memcpy(dst, &ddst, sizeof(*dst));
if (src)
memcpy(src, &ssrc, sizeof(*src));
}
#ifdef IPV6CP_MYIFID_DYN
/*
* Generate random ifid.
*/
static void
sppp_gen_ip6_addr(struct sppp *sp, struct in6_addr *addr)
{
/* TBD */
}
/*
* Set my IPv6 address. Must be called at splnet.
*/
static void
sppp_set_ip6_addr(struct sppp *sp, const struct in6_addr *src)
{
STDDCL;
struct ifaddr *ifa;
struct sockaddr_in6 *sin6;
int s;
struct psref psref;
IFNET_LOCK(ifp);
/*
* Pick the first link-local AF_INET6 address from the list,
* aliases don't make any sense on a p2p link anyway.
*/
sin6 = NULL;
s = pserialize_read_enter();
IFADDR_READER_FOREACH(ifa, ifp)
{
if (ifa->ifa_addr->sa_family == AF_INET6)
{
sin6 = (struct sockaddr_in6 *)ifa->ifa_addr;
if (sin6 && IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
ifa_acquire(ifa, &psref);
break;
}
}
}
pserialize_read_exit(s);
if (ifa && sin6)
{
int error;
struct sockaddr_in6 new_sin6 = *sin6;
memcpy(&new_sin6.sin6_addr, src, sizeof(new_sin6.sin6_addr));
error = in6_ifinit(ifp, ifatoia6(ifa), &new_sin6, 1);
if (debug && error)
{
log(LOG_DEBUG, "%s: %s: in6_ifinit failed, error=%d\n",
ifp->if_xname, __func__, error);
}
if (!error) {
pfil_run_addrhooks(if_pfil, SIOCAIFADDR_IN6, ifa);
}
ifa_release(ifa, &psref);
}
IFNET_UNLOCK(ifp);
}
#endif
/*
* Suggest a candidate address to be used by peer.
*/
static void
sppp_suggest_ip6_addr(struct sppp *sp, struct in6_addr *suggest)
{
struct in6_addr myaddr;
struct timeval tv;
sppp_get_ip6_addrs(sp, &myaddr, 0, 0);
myaddr.s6_addr[8] &= ~0x02; /* u bit to "local" */
microtime(&tv);
if ((tv.tv_usec & 0xff) == 0 && (tv.tv_sec & 0xff) == 0) {
myaddr.s6_addr[14] ^= 0xff;
myaddr.s6_addr[15] ^= 0xff;
} else {
myaddr.s6_addr[14] ^= (tv.tv_usec & 0xff);
myaddr.s6_addr[15] ^= (tv.tv_sec & 0xff);
}
if (suggest)
memcpy(suggest, &myaddr, sizeof(myaddr));
}
#endif /*INET6*/
/*
* Process ioctl requests specific to the PPP interface.
* Permissions have already been checked.
*/
static int
sppp_params(struct sppp *sp, u_long cmd, void *data)
{
switch (cmd) {
case SPPPGETAUTHCFG:
{
struct spppauthcfg *cfg = (struct spppauthcfg *)data;
int error;
size_t len;
SPPP_LOCK(sp, RW_READER);
cfg->myauthflags = sp->myauth.flags;
cfg->hisauthflags = sp->hisauth.flags;
strlcpy(cfg->ifname, sp->pp_if.if_xname, sizeof(cfg->ifname));
cfg->hisauth = 0;
if (sp->hisauth.proto)
cfg->hisauth = (sp->hisauth.proto == PPP_PAP) ? SPPP_AUTHPROTO_PAP : SPPP_AUTHPROTO_CHAP;
cfg->myauth = 0;
if (sp->myauth.proto)
cfg->myauth = (sp->myauth.proto == PPP_PAP) ? SPPP_AUTHPROTO_PAP : SPPP_AUTHPROTO_CHAP;
if (cfg->myname_length == 0) {
if (sp->myauth.name != NULL)
cfg->myname_length = sp->myauth.name_len + 1;
} else {
if (sp->myauth.name == NULL) {
cfg->myname_length = 0;
} else {
len = sp->myauth.name_len + 1;
if (cfg->myname_length < len) {
SPPP_UNLOCK(sp);
return (ENAMETOOLONG);
}
error = copyout(sp->myauth.name, cfg->myname, len);
if (error) {
SPPP_UNLOCK(sp);
return error;
}
}
}
if (cfg->hisname_length == 0) {
if (sp->hisauth.name != NULL)
cfg->hisname_length = sp->hisauth.name_len + 1;
} else {
if (sp->hisauth.name == NULL) {
cfg->hisname_length = 0;
} else {
len = sp->hisauth.name_len + 1;
if (cfg->hisname_length < len) {
SPPP_UNLOCK(sp);
return (ENAMETOOLONG);
}
error = copyout(sp->hisauth.name, cfg->hisname, len);
if (error) {
SPPP_UNLOCK(sp);
return error;
}
}
}
SPPP_UNLOCK(sp);
}
break;
case SPPPSETAUTHCFG:
{
struct spppauthcfg *cfg = (struct spppauthcfg *)data;
int error;
SPPP_LOCK(sp, RW_WRITER);
if (sp->myauth.name) {
free(sp->myauth.name, M_DEVBUF);
sp->myauth.name = NULL;
}
if (sp->myauth.secret) {
free(sp->myauth.secret, M_DEVBUF);
sp->myauth.secret = NULL;
}
if (sp->hisauth.name) {
free(sp->hisauth.name, M_DEVBUF);
sp->hisauth.name = NULL;
}
if (sp->hisauth.secret) {
free(sp->hisauth.secret, M_DEVBUF);
sp->hisauth.secret = NULL;
}
if (cfg->hisname != NULL && cfg->hisname_length > 0) {
if (cfg->hisname_length >= MCLBYTES) {
SPPP_UNLOCK(sp);
return (ENAMETOOLONG);
}
sp->hisauth.name = malloc(cfg->hisname_length, M_DEVBUF, M_WAITOK);
error = copyin(cfg->hisname, sp->hisauth.name, cfg->hisname_length);
if (error) {
free(sp->hisauth.name, M_DEVBUF);
sp->hisauth.name = NULL;
SPPP_UNLOCK(sp);
return error;
}
sp->hisauth.name_len = cfg->hisname_length - 1;
sp->hisauth.name[sp->hisauth.name_len] = 0;
}
if (cfg->hissecret != NULL && cfg->hissecret_length > 0) {
if (cfg->hissecret_length >= MCLBYTES) {
SPPP_UNLOCK(sp);
return (ENAMETOOLONG);
}
sp->hisauth.secret = malloc(cfg->hissecret_length,
M_DEVBUF, M_WAITOK);
error = copyin(cfg->hissecret, sp->hisauth.secret,
cfg->hissecret_length);
if (error) {
free(sp->hisauth.secret, M_DEVBUF);
sp->hisauth.secret = NULL;
SPPP_UNLOCK(sp);
return error;
}
sp->hisauth.secret_len = cfg->hissecret_length - 1;
sp->hisauth.secret[sp->hisauth.secret_len] = 0;
}
if (cfg->myname != NULL && cfg->myname_length > 0) {
if (cfg->myname_length >= MCLBYTES) {
SPPP_UNLOCK(sp);
return (ENAMETOOLONG);
}
sp->myauth.name = malloc(cfg->myname_length, M_DEVBUF, M_WAITOK);
error = copyin(cfg->myname, sp->myauth.name, cfg->myname_length);
if (error) {
free(sp->myauth.name, M_DEVBUF);
sp->myauth.name = NULL;
SPPP_UNLOCK(sp);
return error;
}
sp->myauth.name_len = cfg->myname_length - 1;
sp->myauth.name[sp->myauth.name_len] = 0;
}
if (cfg->mysecret != NULL && cfg->mysecret_length > 0) {
if (cfg->mysecret_length >= MCLBYTES) {
SPPP_UNLOCK(sp);
return (ENAMETOOLONG);
}
sp->myauth.secret = malloc(cfg->mysecret_length,
M_DEVBUF, M_WAITOK);
error = copyin(cfg->mysecret, sp->myauth.secret,
cfg->mysecret_length);
if (error) {
free(sp->myauth.secret, M_DEVBUF);
sp->myauth.secret = NULL;
SPPP_UNLOCK(sp);
return error;
}
sp->myauth.secret_len = cfg->mysecret_length - 1;
sp->myauth.secret[sp->myauth.secret_len] = 0;
}
sp->myauth.flags = cfg->myauthflags;
if (cfg->myauth)
sp->myauth.proto = (cfg->myauth == SPPP_AUTHPROTO_PAP) ? PPP_PAP : PPP_CHAP;
sp->hisauth.flags = cfg->hisauthflags;
if (cfg->hisauth)
sp->hisauth.proto = (cfg->hisauth == SPPP_AUTHPROTO_PAP) ? PPP_PAP : PPP_CHAP;
sp->pp_auth_failures = 0;
if (sp->hisauth.proto != 0)
SET(sp->lcp.opts, SPPP_LCP_OPT_AUTH_PROTO);
else
CLR(sp->lcp.opts, SPPP_LCP_OPT_AUTH_PROTO);
SPPP_UNLOCK(sp);
}
break;
case SPPPGETLCPCFG:
{
struct sppplcpcfg *lcpp = (struct sppplcpcfg *)data;
SPPP_LOCK(sp, RW_READER);
lcpp->lcp_timeout = sp->lcp.timeout;
SPPP_UNLOCK(sp);
}
break;
case SPPPSETLCPCFG:
{
struct sppplcpcfg *lcpp = (struct sppplcpcfg *)data;
SPPP_LOCK(sp, RW_WRITER);
sp->lcp.timeout = lcpp->lcp_timeout;
SPPP_UNLOCK(sp);
}
break;
case SPPPGETSTATUS:
{
struct spppstatus *status = (struct spppstatus *)data;
SPPP_LOCK(sp, RW_READER);
status->phase = sp->pp_phase;
SPPP_UNLOCK(sp);
}
break;
case SPPPGETSTATUSNCP:
{
struct spppstatusncp *status = (struct spppstatusncp *)data;
SPPP_LOCK(sp, RW_READER);
status->phase = sp->pp_phase;
status->ncpup = sppp_cp_check(sp, CP_NCP);
SPPP_UNLOCK(sp);
}
break;
case SPPPGETIDLETO:
{
struct spppidletimeout *to = (struct spppidletimeout *)data;
SPPP_LOCK(sp, RW_READER);
to->idle_seconds = sp->pp_idle_timeout;
SPPP_UNLOCK(sp);
}
break;
case SPPPSETIDLETO:
{
struct spppidletimeout *to = (struct spppidletimeout *)data;
SPPP_LOCK(sp, RW_WRITER);
sp->pp_idle_timeout = to->idle_seconds;
SPPP_UNLOCK(sp);
}
break;
case SPPPSETAUTHFAILURE:
{
struct spppauthfailuresettings *afsettings =
(struct spppauthfailuresettings *)data;
SPPP_LOCK(sp, RW_WRITER);
sp->pp_max_auth_fail = afsettings->max_failures;
sp->pp_auth_failures = 0;
SPPP_UNLOCK(sp);
}
break;
case SPPPGETAUTHFAILURES:
{
struct spppauthfailurestats *stats = (struct spppauthfailurestats *)data;
SPPP_LOCK(sp, RW_READER);
stats->auth_failures = sp->pp_auth_failures;
stats->max_failures = sp->pp_max_auth_fail;
SPPP_UNLOCK(sp);
}
break;
case SPPPSETDNSOPTS:
{
struct spppdnssettings *req = (struct spppdnssettings *)data;
SPPP_LOCK(sp, RW_WRITER);
sp->query_dns = req->query_dns & 3;
SPPP_UNLOCK(sp);
}
break;
case SPPPGETDNSOPTS:
{
struct spppdnssettings *req = (struct spppdnssettings *)data;
SPPP_LOCK(sp, RW_READER);
req->query_dns = sp->query_dns;
SPPP_UNLOCK(sp);
}
break;
case SPPPGETDNSADDRS:
{
struct spppdnsaddrs *addrs = (struct spppdnsaddrs *)data;
SPPP_LOCK(sp, RW_READER);
memcpy(&addrs->dns, &sp->dns_addrs, sizeof addrs->dns);
SPPP_UNLOCK(sp);
}
break;
case SPPPGETKEEPALIVE:
{
struct spppkeepalivesettings *settings =
(struct spppkeepalivesettings*)data;
SPPP_LOCK(sp, RW_READER);
settings->maxalive = sp->pp_maxalive;
settings->max_noreceive = sp->pp_max_noreceive;
SPPP_UNLOCK(sp);
}
break;
case SPPPSETKEEPALIVE:
{
struct spppkeepalivesettings *settings =
(struct spppkeepalivesettings*)data;
SPPP_LOCK(sp, RW_WRITER);
sp->pp_maxalive = settings->maxalive;
sp->pp_max_noreceive = settings->max_noreceive;
SPPP_UNLOCK(sp);
}
break;
case SPPPGETLCPSTATUS:
{
struct sppplcpstatus *status =
(struct sppplcpstatus *)data;
SPPP_LOCK(sp, RW_READER);
status->state = sp->scp[IDX_LCP].state;
status->opts = sp->lcp.opts;
status->magic = sp->lcp.magic;
status->mru = sp->lcp.mru;
SPPP_UNLOCK(sp);
}
break;
case SPPPGETIPCPSTATUS:
{
struct spppipcpstatus *status =
(struct spppipcpstatus *)data;
u_int32_t myaddr;
SPPP_LOCK(sp, RW_READER);
status->state = sp->scp[IDX_IPCP].state;
status->opts = sp->ipcp.opts;
#ifdef INET
kpreempt_disable();
sppp_get_ip_addrs(sp, &myaddr, 0, 0);
kpreempt_enable();
#else
myaddr = 0;
#endif
status->myaddr = ntohl(myaddr);
SPPP_UNLOCK(sp);
}
break;
case SPPPGETIPV6CPSTATUS:
{
struct spppipv6cpstatus *status =
(struct spppipv6cpstatus *)data;
SPPP_LOCK(sp, RW_READER);
status->state = sp->scp[IDX_IPV6CP].state;
memcpy(status->my_ifid, sp->ipv6cp.my_ifid,
sizeof(status->my_ifid));
memcpy(status->his_ifid, sp->ipv6cp.his_ifid,
sizeof(status->his_ifid));
SPPP_UNLOCK(sp);
}
break;
default:
{
int ret;
MODULE_HOOK_CALL(sppp_params_50_hook, (sp, cmd, data),
enosys(), ret);
if (ret != ENOSYS)
return ret;
return (EINVAL);
}
}
return (0);
}
static void
sppp_phase_network(struct sppp *sp)
{
int i;
KASSERT(SPPP_WLOCKED(sp));
sppp_change_phase(sp, SPPP_PHASE_NETWORK);
/* Notify NCPs now. */
for (i = 0; i < IDX_COUNT; i++)
if ((cps[i])->flags & CP_NCP)
sppp_wq_add(sp->wq_cp, &sp->scp[i].work_open);
}
static const char *
sppp_cp_type_name(u_char type)
{
static char buf[12];
switch (type) {
case CONF_REQ: return "conf-req";
case CONF_ACK: return "conf-ack";
case CONF_NAK: return "conf-nak";
case CONF_REJ: return "conf-rej";
case TERM_REQ: return "term-req";
case TERM_ACK: return "term-ack";
case CODE_REJ: return "code-rej";
case PROTO_REJ: return "proto-rej";
case ECHO_REQ: return "echo-req";
case ECHO_REPLY: return "echo-reply";
case DISC_REQ: return "discard-req";
}
snprintf(buf, sizeof(buf), "0x%x", type);
return buf;
}
static const char *
sppp_auth_type_name(u_short proto, u_char type)
{
static char buf[32];
const char *name;
switch (proto) {
case PPP_CHAP:
switch (type) {
case CHAP_CHALLENGE: return "challenge";
case CHAP_RESPONSE: return "response";
case CHAP_SUCCESS: return "success";
case CHAP_FAILURE: return "failure";
default: name = "chap"; break;
}
break;
case PPP_PAP:
switch (type) {
case PAP_REQ: return "req";
case PAP_ACK: return "ack";
case PAP_NAK: return "nak";
default: name = "pap"; break;
}
break;
default:
name = "bad";
break;
}
snprintf(buf, sizeof(buf), "%s(%#x) %#x", name, proto, type);
return buf;
}
static const char *
sppp_lcp_opt_name(u_char opt)
{
static char buf[12];
switch (opt) {
case LCP_OPT_MRU: return "mru";
case LCP_OPT_ASYNC_MAP: return "async-map";
case LCP_OPT_AUTH_PROTO: return "auth-proto";
case LCP_OPT_QUAL_PROTO: return "qual-proto";
case LCP_OPT_MAGIC: return "magic";
case LCP_OPT_PROTO_COMP: return "proto-comp";
case LCP_OPT_ADDR_COMP: return "addr-comp";
case LCP_OPT_SELF_DESC_PAD: return "sdpad";
case LCP_OPT_CALL_BACK: return "callback";
case LCP_OPT_COMPOUND_FRMS: return "cmpd-frms";
case LCP_OPT_MP_MRRU: return "mrru";
case LCP_OPT_MP_SSNHF: return "mp-ssnhf";
case LCP_OPT_MP_EID: return "mp-eid";
}
snprintf(buf, sizeof(buf), "0x%x", opt);
return buf;
}
static const char *
sppp_ipcp_opt_name(u_char opt)
{
static char buf[12];
switch (opt) {
case IPCP_OPT_ADDRESSES: return "addresses";
case IPCP_OPT_COMPRESSION: return "compression";
case IPCP_OPT_ADDRESS: return "address";
}
snprintf(buf, sizeof(buf), "0x%x", opt);
return buf;
}
#ifdef INET6
static const char *
sppp_ipv6cp_opt_name(u_char opt)
{
static char buf[12];
switch (opt) {
case IPV6CP_OPT_IFID: return "ifid";
case IPV6CP_OPT_COMPRESSION: return "compression";
}
snprintf(buf, sizeof(buf), "0x%x", opt);
return buf;
}
#endif
static const char *
sppp_state_name(int state)
{
switch (state) {
case STATE_INITIAL: return "initial";
case STATE_STARTING: return "starting";
case STATE_CLOSED: return "closed";
case STATE_STOPPED: return "stopped";
case STATE_CLOSING: return "closing";
case STATE_STOPPING: return "stopping";
case STATE_REQ_SENT: return "req-sent";
case STATE_ACK_RCVD: return "ack-rcvd";
case STATE_ACK_SENT: return "ack-sent";
case STATE_OPENED: return "opened";
}
return "illegal";
}
static const char *
sppp_phase_name(int phase)
{
switch (phase) {
case SPPP_PHASE_DEAD: return "dead";
case SPPP_PHASE_ESTABLISH: return "establish";
case SPPP_PHASE_TERMINATE: return "terminate";
case SPPP_PHASE_AUTHENTICATE: return "authenticate";
case SPPP_PHASE_NETWORK: return "network";
}
return "illegal";
}
static const char *
sppp_proto_name(u_short proto)
{
static char buf[12];
switch (proto) {
case PPP_LCP: return "lcp";
case PPP_IPCP: return "ipcp";
case PPP_PAP: return "pap";
case PPP_CHAP: return "chap";
case PPP_IPV6CP: return "ipv6cp";
}
snprintf(buf, sizeof(buf), "0x%x", (unsigned)proto);
return buf;
}
static void
sppp_print_bytes(const u_char *p, u_short len)
{
addlog(" %02x", *p++);
while (--len > 0)
addlog("-%02x", *p++);
}
static void
sppp_print_string(const char *p, u_short len)
{
u_char c;
while (len-- > 0) {
c = *p++;
/*
* Print only ASCII chars directly. RFC 1994 recommends
* using only them, but we don't rely on it. */
if (c < ' ' || c > '~')
addlog("\\x%x", c);
else
addlog("%c", c);
}
}
static const char *
sppp_dotted_quad(uint32_t addr)
{
static char s[16];
snprintf(s, sizeof(s), "%d.%d.%d.%d",
(int)((addr >> 24) & 0xff),
(int)((addr >> 16) & 0xff),
(int)((addr >> 8) & 0xff),
(int)(addr & 0xff));
return s;
}
/* a dummy, used to drop uninteresting events */
static void
sppp_null(struct sppp *unused)
{
/* do just nothing */
}
static void
sppp_tls(const struct cp *cp, struct sppp *sp)
{
/* notify lcp that is lower layer */
sp->lcp.protos |= (1 << cp->protoidx);
if (sp->scp[IDX_LCP].state == STATE_OPENED)
sppp_wq_add(sp->wq_cp, &sp->scp[cp->protoidx].work_up);
}
static void
sppp_tlf(const struct cp *cp, struct sppp *sp)
{
STDDCL;
if (debug)
log(LOG_DEBUG, "%s: %s tlf\n", ifp->if_xname, cp->name);
/* notify lcp that is lower layer */
sp->lcp.protos &= ~(1 << cp->protoidx);
/* cleanup */
if (sp->scp[cp->protoidx].rcr_buf != NULL) {
kmem_free(sp->scp[cp->protoidx].rcr_buf,
sp->scp[cp->protoidx].rcr_blen);
}
sp->scp[cp->protoidx].rcr_buf = NULL;
sp->scp[cp->protoidx].rcr_blen = 0;
sp->scp[cp->protoidx].rcr_rlen = 0;
sppp_lcp_check_and_close(sp);
}
static void
sppp_sca_scn(const struct cp *cp, struct sppp *sp)
{
STDDCL;
u_char rconfid, rlen;
int type;
void *buf;
size_t blen;
rconfid = sp->scp[cp->protoidx].rconfid;
buf = sp->scp[cp->protoidx].rcr_buf;
rlen = sp->scp[cp->protoidx].rcr_rlen;
blen = sp->scp[cp->protoidx].rcr_blen;
sp->scp[cp->protoidx].rcr_buf = NULL;
sp->scp[cp->protoidx].rcr_blen = 0;
switch (sp->scp[cp->protoidx].rcr_type) {
case CP_RCR_ACK:
type = CONF_ACK;
break;
case CP_RCR_REJ:
type = CONF_REJ;
break;
case CP_RCR_NAK:
type = CONF_NAK;
break;
default:
type = -1;
break;
}
sp->scp[cp->protoidx].rcr_type = CP_RCR_NONE;
if (buf != NULL) {
if (rlen > 0 && type != -1) {
if (debug) {
log(LOG_DEBUG, "%s: send %s\n",
ifp->if_xname, sppp_cp_type_name(type));
}
sppp_cp_send(sp, cp->proto, type, rconfid, rlen, buf);
}
kmem_free(buf, blen);
}
}
static void
sppp_ifdown(struct sppp *sp, void *xcp __unused)
{
SPPP_UNLOCK(sp);
if_down(&sp->pp_if);
IF_PURGE(&sp->pp_cpq);
SPPP_LOCK(sp, RW_WRITER);
}
static void
sppp_notify_up(struct sppp *sp)
{
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_LCP].work_up);
}
static void
sppp_notify_down(struct sppp *sp)
{
sppp_wq_add(sp->wq_cp, &sp->scp[IDX_LCP].work_down);
}
static void
sppp_notify_tls_wlocked(struct sppp *sp)
{
KASSERT(SPPP_WLOCKED(sp));
if (!sp->pp_tls)
return;
SPPP_UNLOCK(sp);
sp->pp_tls(sp);
SPPP_LOCK(sp, RW_WRITER);
}
static void
sppp_notify_tlf_wlocked(struct sppp *sp)
{
KASSERT(SPPP_WLOCKED(sp));
if (!sp->pp_tlf)
return;
SPPP_UNLOCK(sp);
sp->pp_tlf(sp);
SPPP_LOCK(sp, RW_WRITER);
}
static void
sppp_notify_con(struct sppp *sp)
{
if (!sp->pp_con)
return;
sp->pp_con(sp);
}
#ifdef INET6
static void
sppp_notify_con_wlocked(struct sppp *sp)
{
KASSERT(SPPP_WLOCKED(sp));
SPPP_UNLOCK(sp);
sppp_notify_con(sp);
SPPP_LOCK(sp, RW_WRITER);
}
#endif
static void
sppp_notify_chg_wlocked(struct sppp *sp)
{
KASSERT(SPPP_WLOCKED(sp));
if (!sp->pp_chg)
return;
SPPP_UNLOCK(sp);
sp->pp_chg(sp, sp->pp_phase);
SPPP_LOCK(sp, RW_WRITER);
}
static void
sppp_wq_work(struct work *wk, void *xsp)
{
struct sppp *sp;
struct sppp_work *work;
sp = xsp;
work = container_of(wk, struct sppp_work, work);
atomic_cas_uint(&work->state, SPPP_WK_BUSY, SPPP_WK_FREE);
SPPP_LOCK(sp, RW_WRITER);
work->func(sp, work->arg);
SPPP_UNLOCK(sp);
}
static struct workqueue *
sppp_wq_create(struct sppp *sp, const char *xnamebuf, pri_t prio, int ipl, int flags)
{
struct workqueue *wq;
int error;
error = workqueue_create(&wq, xnamebuf, sppp_wq_work,
(void *)sp, prio, ipl, flags);
if (error) {
panic("%s: workqueue_create failed [%s, %d]\n",
sp->pp_if.if_xname, xnamebuf, error);
}
return wq;
}
static void
sppp_wq_destroy(struct sppp *sp __unused, struct workqueue *wq)
{
workqueue_destroy(wq);
}
static void
sppp_wq_set(struct sppp_work *work,
void (*func)(struct sppp *, void *), void *arg)
{
work->func = func;
work->arg = arg;
}
static void
sppp_wq_add(struct workqueue *wq, struct sppp_work *work)
{
if (atomic_cas_uint(&work->state, SPPP_WK_FREE, SPPP_WK_BUSY)
!= SPPP_WK_FREE)
return;
KASSERT(work->func != NULL);
kpreempt_disable();
workqueue_enqueue(wq, &work->work, NULL);
kpreempt_enable();
}
static void
sppp_wq_wait(struct workqueue *wq, struct sppp_work *work)
{
atomic_swap_uint(&work->state, SPPP_WK_UNAVAIL);
workqueue_wait(wq, &work->work);
}
/*
* This file is large. Tell emacs to highlight it nevertheless.
*
* Local Variables:
* hilit-auto-highlight-maxout: 120000
* End:
*/
/*
* Module glue
*/
MODULE(MODULE_CLASS_MISC, sppp_subr, NULL);
static int
sppp_subr_modcmd(modcmd_t cmd, void *arg)
{
switch (cmd) {
case MODULE_CMD_INIT:
case MODULE_CMD_FINI:
return 0;
case MODULE_CMD_STAT:
case MODULE_CMD_AUTOUNLOAD:
default:
return ENOTTY;
}
}