NetBSD/sys/kern/subr_kmem.c

472 lines
11 KiB
C

/* $NetBSD: subr_kmem.c,v 1.44 2012/04/13 06:27:02 mrg Exp $ */
/*-
* Copyright (c) 2009 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c)2006 YAMAMOTO Takashi,
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* allocator of kernel wired memory.
*
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.44 2012/04/13 06:27:02 mrg Exp $");
#include <sys/param.h>
#include <sys/callback.h>
#include <sys/kmem.h>
#include <sys/pool.h>
#include <sys/debug.h>
#include <sys/lockdebug.h>
#include <sys/cpu.h>
#include <uvm/uvm_extern.h>
#include <uvm/uvm_map.h>
#include <uvm/uvm_kmguard.h>
#include <lib/libkern/libkern.h>
static const struct kmem_cache_info {
size_t kc_size;
const char * kc_name;
} kmem_cache_sizes[] = {
{ 8, "kmem-8" },
{ 16, "kmem-16" },
{ 24, "kmem-24" },
{ 32, "kmem-32" },
{ 40, "kmem-40" },
{ 48, "kmem-48" },
{ 56, "kmem-56" },
{ 64, "kmem-64" },
{ 80, "kmem-80" },
{ 96, "kmem-96" },
{ 112, "kmem-112" },
{ 128, "kmem-128" },
{ 160, "kmem-160" },
{ 192, "kmem-192" },
{ 224, "kmem-224" },
{ 256, "kmem-256" },
{ 320, "kmem-320" },
{ 384, "kmem-384" },
{ 448, "kmem-448" },
{ 512, "kmem-512" },
{ 768, "kmem-768" },
{ 1024, "kmem-1024" },
{ 2048, "kmem-2048" },
{ 4096, "kmem-4096" },
{ 0, NULL }
};
/*
* KMEM_ALIGN is the smallest guaranteed alignment and also the
* smallest allocateable quantum. Every cache size is a multiply
* of CACHE_LINE_SIZE and gets CACHE_LINE_SIZE alignment.
*/
#define KMEM_ALIGN 8
#define KMEM_SHIFT 3
#define KMEM_MAXSIZE 4096
#define KMEM_CACHE_COUNT (KMEM_MAXSIZE >> KMEM_SHIFT)
static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
static size_t kmem_cache_maxidx __read_mostly;
#if defined(DEBUG)
#ifndef KMEM_GUARD_DEPTH
#define KMEM_GUARD_DEPTH 0
#endif
int kmem_guard_depth = KMEM_GUARD_DEPTH;
size_t kmem_guard_size;
static struct uvm_kmguard kmem_guard;
static void *kmem_freecheck;
#define KMEM_POISON
#define KMEM_REDZONE
#define KMEM_SIZE
#define KMEM_GUARD
#endif /* defined(DEBUG) */
#if defined(KMEM_POISON)
static int kmem_poison_ctor(void *, void *, int);
static void kmem_poison_fill(void *, size_t);
static void kmem_poison_check(void *, size_t);
#else /* defined(KMEM_POISON) */
#define kmem_poison_fill(p, sz) /* nothing */
#define kmem_poison_check(p, sz) /* nothing */
#endif /* defined(KMEM_POISON) */
#if defined(KMEM_REDZONE)
#define REDZONE_SIZE 1
#else /* defined(KMEM_REDZONE) */
#define REDZONE_SIZE 0
#endif /* defined(KMEM_REDZONE) */
#if defined(KMEM_SIZE)
#define SIZE_SIZE (MAX(KMEM_ALIGN, sizeof(size_t)))
static void kmem_size_set(void *, size_t);
static void kmem_size_check(void *, size_t);
#else
#define SIZE_SIZE 0
#define kmem_size_set(p, sz) /* nothing */
#define kmem_size_check(p, sz) /* nothing */
#endif
CTASSERT(KM_SLEEP == PR_WAITOK);
CTASSERT(KM_NOSLEEP == PR_NOWAIT);
void *
kmem_intr_alloc(size_t size, km_flag_t kmflags)
{
size_t allocsz, index;
pool_cache_t pc;
uint8_t *p;
KASSERT(size > 0);
#ifdef KMEM_GUARD
if (size <= kmem_guard_size) {
return uvm_kmguard_alloc(&kmem_guard, size,
(kmflags & KM_SLEEP) != 0);
}
#endif
allocsz = kmem_roundup_size(size) + REDZONE_SIZE + SIZE_SIZE;
index = (allocsz - 1) >> KMEM_SHIFT;
if (index >= kmem_cache_maxidx) {
int ret = uvm_km_kmem_alloc(kmem_va_arena,
(vsize_t)round_page(size),
((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
| VM_INSTANTFIT, (vmem_addr_t *)&p);
return ret ? NULL : p;
}
pc = kmem_cache[index];
p = pool_cache_get(pc, kmflags);
if (__predict_true(p != NULL)) {
kmem_poison_check(p, kmem_roundup_size(size));
FREECHECK_OUT(&kmem_freecheck, p);
kmem_size_set(p, allocsz);
}
return p;
}
void *
kmem_intr_zalloc(size_t size, km_flag_t kmflags)
{
void *p;
p = kmem_intr_alloc(size, kmflags);
if (p != NULL) {
memset(p, 0, size);
}
return p;
}
void
kmem_intr_free(void *p, size_t size)
{
size_t allocsz, index;
pool_cache_t pc;
KASSERT(p != NULL);
KASSERT(size > 0);
#ifdef KMEM_GUARD
if (size <= kmem_guard_size) {
uvm_kmguard_free(&kmem_guard, size, p);
return;
}
#endif
allocsz = kmem_roundup_size(size) + REDZONE_SIZE + SIZE_SIZE;
index = (allocsz - 1) >> KMEM_SHIFT;
if (index >= kmem_cache_maxidx) {
uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
round_page(size));
return;
}
kmem_size_check(p, allocsz);
FREECHECK_IN(&kmem_freecheck, p);
LOCKDEBUG_MEM_CHECK(p, allocsz - (REDZONE_SIZE + SIZE_SIZE));
kmem_poison_check((uint8_t *)p + size, allocsz - size - SIZE_SIZE);
kmem_poison_fill(p, allocsz);
pc = kmem_cache[index];
pool_cache_put(pc, p);
}
/* ---- kmem API */
/*
* kmem_alloc: allocate wired memory.
* => must not be called from interrupt context.
*/
void *
kmem_alloc(size_t size, km_flag_t kmflags)
{
KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
"kmem(9) should not be used from the interrupt context");
return kmem_intr_alloc(size, kmflags);
}
/*
* kmem_zalloc: allocate zeroed wired memory.
* => must not be called from interrupt context.
*/
void *
kmem_zalloc(size_t size, km_flag_t kmflags)
{
KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
"kmem(9) should not be used from the interrupt context");
return kmem_intr_zalloc(size, kmflags);
}
/*
* kmem_free: free wired memory allocated by kmem_alloc.
* => must not be called from interrupt context.
*/
void
kmem_free(void *p, size_t size)
{
KASSERT(!cpu_intr_p());
KASSERT(!cpu_softintr_p());
kmem_intr_free(p, size);
}
static void
kmem_create_caches(const struct kmem_cache_info *array,
pool_cache_t alloc_table[], size_t maxsize)
{
size_t table_unit = (1 << KMEM_SHIFT);
size_t size = table_unit;
int i;
for (i = 0; array[i].kc_size != 0 ; i++) {
const char *name = array[i].kc_name;
size_t cache_size = array[i].kc_size;
int flags = PR_NOALIGN;
pool_cache_t pc;
size_t align;
if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
align = CACHE_LINE_SIZE;
else if ((cache_size & (PAGE_SIZE - 1)) == 0)
align = PAGE_SIZE;
else
align = KMEM_ALIGN;
if (cache_size < CACHE_LINE_SIZE)
flags |= PR_NOTOUCH;
/* check if we reached the requested size */
if (cache_size > maxsize) {
break;
}
if ((cache_size >> KMEM_SHIFT) > kmem_cache_maxidx) {
kmem_cache_maxidx = cache_size >> KMEM_SHIFT;
}
#if defined(KMEM_POISON)
pc = pool_cache_init(cache_size, align, 0, flags,
name, &pool_allocator_kmem, IPL_VM, kmem_poison_ctor,
NULL, (void *)cache_size);
#else /* defined(KMEM_POISON) */
pc = pool_cache_init(cache_size, align, 0, flags,
name, &pool_allocator_kmem, IPL_VM, NULL, NULL, NULL);
#endif /* defined(KMEM_POISON) */
while (size <= cache_size) {
alloc_table[(size - 1) >> KMEM_SHIFT] = pc;
size += table_unit;
}
}
}
void
kmem_init(void)
{
#ifdef KMEM_GUARD
uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
kmem_va_arena);
#endif
kmem_create_caches(kmem_cache_sizes, kmem_cache, KMEM_MAXSIZE);
}
size_t
kmem_roundup_size(size_t size)
{
return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
}
/* ---- debug */
#if defined(KMEM_POISON)
#if defined(_LP64)
#define PRIME 0x9e37fffffffc0000UL
#else /* defined(_LP64) */
#define PRIME 0x9e3779b1
#endif /* defined(_LP64) */
static inline uint8_t
kmem_poison_pattern(const void *p)
{
return (uint8_t)(((uintptr_t)p) * PRIME
>> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
}
static int
kmem_poison_ctor(void *arg, void *obj, int flag)
{
size_t sz = (size_t)arg;
kmem_poison_fill(obj, sz);
return 0;
}
static void
kmem_poison_fill(void *p, size_t sz)
{
uint8_t *cp;
const uint8_t *ep;
cp = p;
ep = cp + sz;
while (cp < ep) {
*cp = kmem_poison_pattern(cp);
cp++;
}
}
static void
kmem_poison_check(void *p, size_t sz)
{
uint8_t *cp;
const uint8_t *ep;
cp = p;
ep = cp + sz;
while (cp < ep) {
const uint8_t expected = kmem_poison_pattern(cp);
if (*cp != expected) {
panic("%s: %p: 0x%02x != 0x%02x\n",
__func__, cp, *cp, expected);
}
cp++;
}
}
#endif /* defined(KMEM_POISON) */
#if defined(KMEM_SIZE)
static void
kmem_size_set(void *p, size_t sz)
{
void *szp;
szp = (uint8_t *)p + sz - SIZE_SIZE;
memcpy(szp, &sz, sizeof(sz));
}
static void
kmem_size_check(void *p, size_t sz)
{
uint8_t *szp;
size_t psz;
szp = (uint8_t *)p + sz - SIZE_SIZE;
memcpy(&psz, szp, sizeof(psz));
if (psz != sz) {
panic("kmem_free(%p, %zu) != allocated size %zu",
(const uint8_t *)p + SIZE_SIZE, sz - SIZE_SIZE, psz);
}
}
#endif /* defined(KMEM_SIZE) */
/*
* Used to dynamically allocate string with kmem accordingly to format.
*/
char *
kmem_asprintf(const char *fmt, ...)
{
int size, len;
va_list va;
char *str;
va_start(va, fmt);
len = vsnprintf(NULL, 0, fmt, va);
va_end(va);
str = kmem_alloc(len + 1, KM_SLEEP);
va_start(va, fmt);
size = vsnprintf(str, len + 1, fmt, va);
va_end(va);
KASSERT(size == len);
return str;
}