372 lines
8.2 KiB
C
372 lines
8.2 KiB
C
/* $NetBSD: subr_percpu.c,v 1.17 2014/11/27 15:00:00 uebayasi Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c)2007,2008 YAMAMOTO Takashi,
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* per-cpu storage.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: subr_percpu.c,v 1.17 2014/11/27 15:00:00 uebayasi Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/percpu.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/vmem.h>
|
|
#include <sys/xcall.h>
|
|
|
|
#define PERCPU_QUANTUM_SIZE (ALIGNBYTES + 1)
|
|
#define PERCPU_QCACHE_MAX 0
|
|
#define PERCPU_IMPORT_SIZE 2048
|
|
|
|
#if defined(DIAGNOSTIC)
|
|
#define MAGIC 0x50435055 /* "PCPU" */
|
|
#define percpu_encrypt(pc) ((pc) ^ MAGIC)
|
|
#define percpu_decrypt(pc) ((pc) ^ MAGIC)
|
|
#else /* defined(DIAGNOSTIC) */
|
|
#define percpu_encrypt(pc) (pc)
|
|
#define percpu_decrypt(pc) (pc)
|
|
#endif /* defined(DIAGNOSTIC) */
|
|
|
|
static krwlock_t percpu_swap_lock __cacheline_aligned;
|
|
static kmutex_t percpu_allocation_lock __cacheline_aligned;
|
|
static vmem_t * percpu_offset_arena __cacheline_aligned;
|
|
static unsigned int percpu_nextoff __cacheline_aligned;
|
|
|
|
static percpu_cpu_t *
|
|
cpu_percpu(struct cpu_info *ci)
|
|
{
|
|
|
|
return &ci->ci_data.cpu_percpu;
|
|
}
|
|
|
|
static unsigned int
|
|
percpu_offset(percpu_t *pc)
|
|
{
|
|
const unsigned int off = percpu_decrypt((uintptr_t)pc);
|
|
|
|
KASSERT(off < percpu_nextoff);
|
|
return off;
|
|
}
|
|
|
|
/*
|
|
* percpu_cpu_swap: crosscall handler for percpu_cpu_enlarge
|
|
*/
|
|
|
|
static void
|
|
percpu_cpu_swap(void *p1, void *p2)
|
|
{
|
|
struct cpu_info * const ci = p1;
|
|
percpu_cpu_t * const newpcc = p2;
|
|
percpu_cpu_t * const pcc = cpu_percpu(ci);
|
|
|
|
KASSERT(ci == curcpu() || !mp_online);
|
|
|
|
/*
|
|
* swap *pcc and *newpcc unless anyone has beaten us.
|
|
*/
|
|
rw_enter(&percpu_swap_lock, RW_WRITER);
|
|
if (newpcc->pcc_size > pcc->pcc_size) {
|
|
percpu_cpu_t tmp;
|
|
int s;
|
|
|
|
tmp = *pcc;
|
|
|
|
/*
|
|
* block interrupts so that we don't lose their modifications.
|
|
*/
|
|
|
|
s = splhigh();
|
|
|
|
/*
|
|
* copy data to new storage.
|
|
*/
|
|
|
|
memcpy(newpcc->pcc_data, pcc->pcc_data, pcc->pcc_size);
|
|
|
|
/*
|
|
* this assignment needs to be atomic for percpu_getptr_remote.
|
|
*/
|
|
|
|
pcc->pcc_data = newpcc->pcc_data;
|
|
|
|
splx(s);
|
|
|
|
pcc->pcc_size = newpcc->pcc_size;
|
|
*newpcc = tmp;
|
|
}
|
|
rw_exit(&percpu_swap_lock);
|
|
}
|
|
|
|
/*
|
|
* percpu_cpu_enlarge: ensure that percpu_cpu_t of each cpus have enough space
|
|
*/
|
|
|
|
static void
|
|
percpu_cpu_enlarge(size_t size)
|
|
{
|
|
CPU_INFO_ITERATOR cii;
|
|
struct cpu_info *ci;
|
|
|
|
for (CPU_INFO_FOREACH(cii, ci)) {
|
|
percpu_cpu_t pcc;
|
|
|
|
pcc.pcc_data = kmem_alloc(size, KM_SLEEP); /* XXX cacheline */
|
|
pcc.pcc_size = size;
|
|
if (!mp_online) {
|
|
percpu_cpu_swap(ci, &pcc);
|
|
} else {
|
|
uint64_t where;
|
|
|
|
where = xc_unicast(0, percpu_cpu_swap, ci, &pcc, ci);
|
|
xc_wait(where);
|
|
}
|
|
KASSERT(pcc.pcc_size < size);
|
|
if (pcc.pcc_data != NULL) {
|
|
kmem_free(pcc.pcc_data, pcc.pcc_size);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* percpu_backend_alloc: vmem import callback for percpu_offset_arena
|
|
*/
|
|
|
|
static int
|
|
percpu_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
|
|
vm_flag_t vmflags, vmem_addr_t *addrp)
|
|
{
|
|
unsigned int offset;
|
|
unsigned int nextoff;
|
|
|
|
ASSERT_SLEEPABLE();
|
|
KASSERT(dummy == NULL);
|
|
|
|
if ((vmflags & VM_NOSLEEP) != 0)
|
|
return ENOMEM;
|
|
|
|
size = roundup(size, PERCPU_IMPORT_SIZE);
|
|
mutex_enter(&percpu_allocation_lock);
|
|
offset = percpu_nextoff;
|
|
percpu_nextoff = nextoff = percpu_nextoff + size;
|
|
mutex_exit(&percpu_allocation_lock);
|
|
|
|
percpu_cpu_enlarge(nextoff);
|
|
|
|
*resultsize = size;
|
|
*addrp = (vmem_addr_t)offset;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
percpu_zero_cb(void *vp, void *vp2, struct cpu_info *ci)
|
|
{
|
|
size_t sz = (uintptr_t)vp2;
|
|
|
|
memset(vp, 0, sz);
|
|
}
|
|
|
|
/*
|
|
* percpu_zero: initialize percpu storage with zero.
|
|
*/
|
|
|
|
static void
|
|
percpu_zero(percpu_t *pc, size_t sz)
|
|
{
|
|
|
|
percpu_foreach(pc, percpu_zero_cb, (void *)(uintptr_t)sz);
|
|
}
|
|
|
|
/*
|
|
* percpu_init: subsystem initialization
|
|
*/
|
|
|
|
void
|
|
percpu_init(void)
|
|
{
|
|
|
|
ASSERT_SLEEPABLE();
|
|
rw_init(&percpu_swap_lock);
|
|
mutex_init(&percpu_allocation_lock, MUTEX_DEFAULT, IPL_NONE);
|
|
percpu_nextoff = PERCPU_QUANTUM_SIZE;
|
|
|
|
percpu_offset_arena = vmem_xcreate("percpu", 0, 0, PERCPU_QUANTUM_SIZE,
|
|
percpu_backend_alloc, NULL, NULL, PERCPU_QCACHE_MAX, VM_SLEEP,
|
|
IPL_NONE);
|
|
}
|
|
|
|
/*
|
|
* percpu_init_cpu: cpu initialization
|
|
*
|
|
* => should be called before the cpu appears on the list for CPU_INFO_FOREACH.
|
|
*/
|
|
|
|
void
|
|
percpu_init_cpu(struct cpu_info *ci)
|
|
{
|
|
percpu_cpu_t * const pcc = cpu_percpu(ci);
|
|
size_t size = percpu_nextoff; /* XXX racy */
|
|
|
|
ASSERT_SLEEPABLE();
|
|
pcc->pcc_size = size;
|
|
if (size) {
|
|
pcc->pcc_data = kmem_zalloc(pcc->pcc_size, KM_SLEEP);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* percpu_alloc: allocate percpu storage
|
|
*
|
|
* => called in thread context.
|
|
* => considered as an expensive and rare operation.
|
|
* => allocated storage is initialized with zeros.
|
|
*/
|
|
|
|
percpu_t *
|
|
percpu_alloc(size_t size)
|
|
{
|
|
vmem_addr_t offset;
|
|
percpu_t *pc;
|
|
|
|
ASSERT_SLEEPABLE();
|
|
if (vmem_alloc(percpu_offset_arena, size, VM_SLEEP | VM_BESTFIT,
|
|
&offset) != 0)
|
|
return NULL;
|
|
pc = (percpu_t *)percpu_encrypt((uintptr_t)offset);
|
|
percpu_zero(pc, size);
|
|
return pc;
|
|
}
|
|
|
|
/*
|
|
* percpu_free: free percpu storage
|
|
*
|
|
* => called in thread context.
|
|
* => considered as an expensive and rare operation.
|
|
*/
|
|
|
|
void
|
|
percpu_free(percpu_t *pc, size_t size)
|
|
{
|
|
|
|
ASSERT_SLEEPABLE();
|
|
vmem_free(percpu_offset_arena, (vmem_addr_t)percpu_offset(pc), size);
|
|
}
|
|
|
|
/*
|
|
* percpu_getref:
|
|
*
|
|
* => safe to be used in either thread or interrupt context
|
|
* => disables preemption; must be bracketed with a percpu_putref()
|
|
*/
|
|
|
|
void *
|
|
percpu_getref(percpu_t *pc)
|
|
{
|
|
|
|
kpreempt_disable();
|
|
return percpu_getptr_remote(pc, curcpu());
|
|
}
|
|
|
|
/*
|
|
* percpu_putref:
|
|
*
|
|
* => drops the preemption-disabled count after caller is done with per-cpu
|
|
* data
|
|
*/
|
|
|
|
void
|
|
percpu_putref(percpu_t *pc)
|
|
{
|
|
|
|
kpreempt_enable();
|
|
}
|
|
|
|
/*
|
|
* percpu_traverse_enter, percpu_traverse_exit, percpu_getptr_remote:
|
|
* helpers to access remote cpu's percpu data.
|
|
*
|
|
* => called in thread context.
|
|
* => percpu_traverse_enter can block low-priority xcalls.
|
|
* => typical usage would be:
|
|
*
|
|
* sum = 0;
|
|
* percpu_traverse_enter();
|
|
* for (CPU_INFO_FOREACH(cii, ci)) {
|
|
* unsigned int *p = percpu_getptr_remote(pc, ci);
|
|
* sum += *p;
|
|
* }
|
|
* percpu_traverse_exit();
|
|
*/
|
|
|
|
void
|
|
percpu_traverse_enter(void)
|
|
{
|
|
|
|
ASSERT_SLEEPABLE();
|
|
rw_enter(&percpu_swap_lock, RW_READER);
|
|
}
|
|
|
|
void
|
|
percpu_traverse_exit(void)
|
|
{
|
|
|
|
rw_exit(&percpu_swap_lock);
|
|
}
|
|
|
|
void *
|
|
percpu_getptr_remote(percpu_t *pc, struct cpu_info *ci)
|
|
{
|
|
|
|
return &((char *)cpu_percpu(ci)->pcc_data)[percpu_offset(pc)];
|
|
}
|
|
|
|
/*
|
|
* percpu_foreach: call the specified callback function for each cpus.
|
|
*
|
|
* => called in thread context.
|
|
* => caller should not rely on the cpu iteration order.
|
|
* => the callback function should be minimum because it is executed with
|
|
* holding a global lock, which can block low-priority xcalls.
|
|
* eg. it's illegal for a callback function to sleep for memory allocation.
|
|
*/
|
|
void
|
|
percpu_foreach(percpu_t *pc, percpu_callback_t cb, void *arg)
|
|
{
|
|
CPU_INFO_ITERATOR cii;
|
|
struct cpu_info *ci;
|
|
|
|
percpu_traverse_enter();
|
|
for (CPU_INFO_FOREACH(cii, ci)) {
|
|
(*cb)(percpu_getptr_remote(pc, ci), arg, ci);
|
|
}
|
|
percpu_traverse_exit();
|
|
}
|