NetBSD/usr.sbin/makemandb/custom_apropos_tokenizer.c
abhinav b0184879c2 Casting variable of type int * to size_t *, may cause
alignment issues on some platforms (e.g. Sparc64)
So, Use a temporary variable to avoid the cast.

Thanks to Martin@ for noticing the issue and also suggesting the issue.
Fixes PR bin/52678
2017-10-31 10:14:27 +00:00

758 lines
17 KiB
C

/* $NetBSD: custom_apropos_tokenizer.c,v 1.2 2017/10/31 10:14:27 abhinav Exp $ */
/*
** 2006 September 30
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** Implementation of the full-text-search tokenizer that implements
** a Porter stemmer.
*/
/*
** The code in this file is only compiled if:
**
** * The FTS3 module is being built as an extension
** (in which case SQLITE_CORE is not defined), or
**
** * The FTS3 module is being built into the core of
** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
*/
#include <assert.h>
#include <ctype.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "custom_apropos_tokenizer.h"
#include "fts3_tokenizer.h"
#include "nostem.c"
/*
* Class derived from sqlite3_tokenizer
*/
typedef struct custom_apropos_tokenizer {
sqlite3_tokenizer base; /* Base class */
} custom_apropos_tokenizer;
/*
* Class derived from sqlite3_tokenizer_cursor
*/
typedef struct custom_apropos_tokenizer_cursor {
sqlite3_tokenizer_cursor base;
const char *zInput; /* input we are tokenizing */
size_t nInput; /* size of the input */
size_t iOffset; /* current position in zInput */
size_t iToken; /* index of next token to be returned */
char *zToken; /* storage for current token */
size_t nAllocated; /* space allocated to zToken buffer */
} custom_apropos_tokenizer_cursor;
/*
* Create a new tokenizer instance.
*/
static int
aproposPorterCreate(int argc, const char *const * argv,
sqlite3_tokenizer ** ppTokenizer)
{
custom_apropos_tokenizer *t;
t = calloc(1, sizeof(*t));
if (t == NULL)
return SQLITE_NOMEM;
*ppTokenizer = &t->base;
return SQLITE_OK;
}
/*
* Destroy a tokenizer
*/
static int
aproposPorterDestroy(sqlite3_tokenizer * pTokenizer)
{
free(pTokenizer);
return SQLITE_OK;
}
/*
* Prepare to begin tokenizing a particular string. The input
* string to be tokenized is zInput[0..nInput-1]. A cursor
* used to incrementally tokenize this string is returned in
* *ppCursor.
*/
static int
aproposPorterOpen(
sqlite3_tokenizer * pTokenizer, /* The tokenizer */
const char *zInput, int nInput, /* String to be tokenized */
sqlite3_tokenizer_cursor ** ppCursor /* OUT: Tokenization cursor */
)
{
custom_apropos_tokenizer_cursor *c;
c = calloc(1, sizeof(*c));
if (c == NULL)
return SQLITE_NOMEM;
c->zInput = zInput;
if (zInput != 0) {
if (nInput < 0)
c->nInput = strlen(zInput);
else
c->nInput = nInput;
}
*ppCursor = &c->base;
return SQLITE_OK;
}
/*
* Close a tokenization cursor previously opened by a call to
* aproposPorterOpen() above.
*/
static int
aproposPorterClose(sqlite3_tokenizer_cursor *pCursor)
{
custom_apropos_tokenizer_cursor *c = (custom_apropos_tokenizer_cursor *) pCursor;
free(c->zToken);
free(c);
return SQLITE_OK;
}
/*
* Vowel or consonant
*/
static const char cType[] = {
0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
1, 1, 1, 2, 1
};
/*
* isConsonant() and isVowel() determine if their first character in
* the string they point to is a consonant or a vowel, according
* to Porter ruls.
*
* A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
* 'Y' is a consonant unless it follows another consonant,
* in which case it is a vowel.
*
* In these routine, the letters are in reverse order. So the 'y' rule
* is that 'y' is a consonant unless it is followed by another
* consonent.
*/
static int isVowel(const char*);
static int
isConsonant(const char *z)
{
int j;
char x = *z;
if (x == 0)
return 0;
assert(x >= 'a' && x <= 'z');
j = cType[x - 'a'];
if (j < 2)
return j;
return z[1] == 0 || isVowel(z + 1);
}
static int
isVowel(const char *z)
{
int j;
char x = *z;
if (x == 0)
return 0;
assert(x >= 'a' && x <= 'z');
j = cType[x - 'a'];
if (j < 2)
return 1 - j;
return isConsonant(z + 1);
}
/*
* Let any sequence of one or more vowels be represented by V and let
* C be sequence of one or more consonants. Then every word can be
* represented as:
*
* [C] (VC){m} [V]
*
* In prose: A word is an optional consonant followed by zero or
* vowel-consonant pairs followed by an optional vowel. "m" is the
* number of vowel consonant pairs. This routine computes the value
* of m for the first i bytes of a word.
*
* Return true if the m-value for z is 1 or more. In other words,
* return true if z contains at least one vowel that is followed
* by a consonant.
*
* In this routine z[] is in reverse order. So we are really looking
* for an instance of a consonant followed by a vowel.
*/
static int
m_gt_0(const char *z)
{
while (isVowel(z)) {
z++;
}
if (*z == 0)
return 0;
while (isConsonant(z)) {
z++;
}
return *z != 0;
}
/* Like mgt0 above except we are looking for a value of m which is
* exactly 1
*/
static int
m_eq_1(const char *z)
{
while (isVowel(z)) {
z++;
}
if (*z == 0)
return 0;
while (isConsonant(z)) {
z++;
}
if (*z == 0)
return 0;
while (isVowel(z)) {
z++;
}
if (*z == 0)
return 1;
while (isConsonant(z)) {
z++;
}
return *z == 0;
}
/* Like mgt0 above except we are looking for a value of m>1 instead
* or m>0
*/
static int
m_gt_1(const char *z)
{
while (isVowel(z)) {
z++;
}
if (*z == 0)
return 0;
while (isConsonant(z)) {
z++;
}
if (*z == 0)
return 0;
while (isVowel(z)) {
z++;
}
if (*z == 0)
return 0;
while (isConsonant(z)) {
z++;
}
return *z != 0;
}
/*
* Return TRUE if there is a vowel anywhere within z[0..n-1]
*/
static int
hasVowel(const char *z)
{
while (isConsonant(z)) {
z++;
}
return *z != 0;
}
/*
* Return TRUE if the word ends in a double consonant.
*
* The text is reversed here. So we are really looking at
* the first two characters of z[].
*/
static int
doubleConsonant(const char *z)
{
return isConsonant(z) && z[0] == z[1];
}
/*
* Return TRUE if the word ends with three letters which
* are consonant-vowel-consonent and where the final consonant
* is not 'w', 'x', or 'y'.
*
* The word is reversed here. So we are really checking the
* first three letters and the first one cannot be in [wxy].
*/
static int
star_oh(const char *z)
{
return isConsonant(z) &&
z[0] != 'w' && z[0] != 'x' && z[0] != 'y' &&
isVowel(z + 1) &&
isConsonant(z + 2);
}
/*
* If the word ends with zFrom and xCond() is true for the stem
* of the word that preceeds the zFrom ending, then change the
* ending to zTo.
*
* The input word *pz and zFrom are both in reverse order. zTo
* is in normal order.
*
* Return TRUE if zFrom matches. Return FALSE if zFrom does not
* match. Not that TRUE is returned even if xCond() fails and
* no substitution occurs.
*/
static int
stem(
char **pz, /* The word being stemmed (Reversed) */
const char *zFrom, /* If the ending matches this... (Reversed) */
const char *zTo, /* ... change the ending to this (not reversed) */
int (*xCond) (const char *) /* Condition that must be true */
)
{
char *z = *pz;
while (*zFrom && *zFrom == *z) {
z++;
zFrom++;
}
if (*zFrom != 0)
return 0;
if (xCond && !xCond(z))
return 1;
while (*zTo) {
*(--z) = *(zTo++);
}
*pz = z;
return 1;
}
/*
* This is the fallback stemmer used when the porter stemmer is
* inappropriate. The input word is copied into the output with
* US-ASCII case folding. If the input word is too long (more
* than 20 bytes if it contains no digits or more than 6 bytes if
* it contains digits) then word is truncated to 20 or 6 bytes
* by taking 10 or 3 bytes from the beginning and end.
*/
static void
copy_stemmer(const char *zIn, size_t nIn, char *zOut, size_t *pnOut)
{
size_t i, mx, j;
int hasDigit = 0;
for (i = 0; i < nIn; i++) {
char c = zIn[i];
if (c >= 'A' && c <= 'Z') {
zOut[i] = c - 'A' + 'a';
} else {
if (c >= '0' && c <= '9')
hasDigit = 1;
zOut[i] = c;
}
}
mx = hasDigit ? 3 : 10;
if (nIn > mx * 2) {
for (j = mx, i = nIn - mx; i < nIn; i++, j++) {
zOut[j] = zOut[i];
}
i = j;
}
zOut[i] = 0;
*pnOut = i;
}
/*
* Stem the input word zIn[0..nIn-1]. Store the output in zOut.
* zOut is at least big enough to hold nIn bytes. Write the actual
* size of the output word (exclusive of the '\0' terminator) into *pnOut.
*
* Any upper-case characters in the US-ASCII character set ([A-Z])
* are converted to lower case. Upper-case UTF characters are
* unchanged.
*
* Words that are longer than about 20 bytes are stemmed by retaining
* a few bytes from the beginning and the end of the word. If the
* word contains digits, 3 bytes are taken from the beginning and
* 3 bytes from the end. For long words without digits, 10 bytes
* are taken from each end. US-ASCII case folding still applies.
*
* If the input word contains not digits but does characters not
* in [a-zA-Z] then no stemming is attempted and this routine just
* copies the input into the input into the output with US-ASCII
* case folding.
*
* Stemming never increases the length of the word. So there is
* no chance of overflowing the zOut buffer.
*/
static void
porter_stemmer(const char *zIn, size_t nIn, char *zOut, size_t *pnOut)
{
size_t i, j;
char zReverse[28];
char *z, *z2;
if (nIn < 3 || nIn >= sizeof(zReverse) - 7) {
/* The word is too big or too small for the porter stemmer.
* Fallback to the copy stemmer
*/
copy_stemmer(zIn, nIn, zOut, pnOut);
return;
}
for (i = 0, j = sizeof(zReverse) - 6; i < nIn; i++, j--) {
char c = zIn[i];
if (c >= 'A' && c <= 'Z') {
zReverse[j] = c + 'a' - 'A';
} else if (c >= 'a' && c <= 'z') {
zReverse[j] = c;
} else {
/* The use of a character not in [a-zA-Z] means that
* we fallback * to the copy stemmer
*/
copy_stemmer(zIn, nIn, zOut, pnOut);
return;
}
}
memset(&zReverse[sizeof(zReverse) - 5], 0, 5);
z = &zReverse[j + 1];
/* Step 1a */
if (z[0] == 's') {
if (
!stem(&z, "sess", "ss", 0) &&
!stem(&z, "sei", "i", 0) &&
!stem(&z, "ss", "ss", 0)
) {
z++;
}
}
/* Step 1b */
z2 = z;
if (stem(&z, "dee", "ee", m_gt_0)) {
/* Do nothing. The work was all in the test */
} else if (
(stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel))
&& z != z2
) {
if (stem(&z, "ta", "ate", 0) ||
stem(&z, "lb", "ble", 0) ||
stem(&z, "zi", "ize", 0)) {
/* Do nothing. The work was all in the test */
} else if (doubleConsonant(z) && (*z != 'l' && *z != 's' && *z != 'z')) {
z++;
} else if (m_eq_1(z) && star_oh(z)) {
*(--z) = 'e';
}
}
/* Step 1c */
if (z[0] == 'y' && hasVowel(z + 1)) {
z[0] = 'i';
}
/* Step 2 */
switch (z[1]) {
case 'a':
if (!stem(&z, "lanoita", "ate", m_gt_0)) {
stem(&z, "lanoit", "tion", m_gt_0);
}
break;
case 'c':
if (!stem(&z, "icne", "ence", m_gt_0)) {
stem(&z, "icna", "ance", m_gt_0);
}
break;
case 'e':
stem(&z, "rezi", "ize", m_gt_0);
break;
case 'g':
stem(&z, "igol", "log", m_gt_0);
break;
case 'l':
if (!stem(&z, "ilb", "ble", m_gt_0)
&& !stem(&z, "illa", "al", m_gt_0)
&& !stem(&z, "iltne", "ent", m_gt_0)
&& !stem(&z, "ile", "e", m_gt_0)
) {
stem(&z, "ilsuo", "ous", m_gt_0);
}
break;
case 'o':
if (!stem(&z, "noitazi", "ize", m_gt_0)
&& !stem(&z, "noita", "ate", m_gt_0)
) {
stem(&z, "rota", "ate", m_gt_0);
}
break;
case 's':
if (!stem(&z, "msila", "al", m_gt_0)
&& !stem(&z, "ssenevi", "ive", m_gt_0)
&& !stem(&z, "ssenluf", "ful", m_gt_0)
) {
stem(&z, "ssensuo", "ous", m_gt_0);
}
break;
case 't':
if (!stem(&z, "itila", "al", m_gt_0)
&& !stem(&z, "itivi", "ive", m_gt_0)
) {
stem(&z, "itilib", "ble", m_gt_0);
}
break;
}
/* Step 3 */
switch (z[0]) {
case 'e':
if (!stem(&z, "etaci", "ic", m_gt_0)
&& !stem(&z, "evita", "", m_gt_0)
) {
stem(&z, "ezila", "al", m_gt_0);
}
break;
case 'i':
stem(&z, "itici", "ic", m_gt_0);
break;
case 'l':
if (!stem(&z, "laci", "ic", m_gt_0)) {
stem(&z, "luf", "", m_gt_0);
}
break;
case 's':
stem(&z, "ssen", "", m_gt_0);
break;
}
/* Step 4 */
switch (z[1]) {
case 'a':
if (z[0] == 'l' && m_gt_1(z + 2)) {
z += 2;
}
break;
case 'c':
if (z[0] == 'e' && z[2] == 'n' && (z[3] == 'a' || z[3] == 'e') && m_gt_1(z + 4)) {
z += 4;
}
break;
case 'e':
if (z[0] == 'r' && m_gt_1(z + 2)) {
z += 2;
}
break;
case 'i':
if (z[0] == 'c' && m_gt_1(z + 2)) {
z += 2;
}
break;
case 'l':
if (z[0] == 'e' && z[2] == 'b' && (z[3] == 'a' || z[3] == 'i') && m_gt_1(z + 4)) {
z += 4;
}
break;
case 'n':
if (z[0] == 't') {
if (z[2] == 'a') {
if (m_gt_1(z + 3)) {
z += 3;
}
} else if (z[2] == 'e') {
if (!stem(&z, "tneme", "", m_gt_1)
&& !stem(&z, "tnem", "", m_gt_1)
) {
stem(&z, "tne", "", m_gt_1);
}
}
}
break;
case 'o':
if (z[0] == 'u') {
if (m_gt_1(z + 2)) {
z += 2;
}
} else if (z[3] == 's' || z[3] == 't') {
stem(&z, "noi", "", m_gt_1);
}
break;
case 's':
if (z[0] == 'm' && z[2] == 'i' && m_gt_1(z + 3)) {
z += 3;
}
break;
case 't':
if (!stem(&z, "eta", "", m_gt_1)) {
stem(&z, "iti", "", m_gt_1);
}
break;
case 'u':
if (z[0] == 's' && z[2] == 'o' && m_gt_1(z + 3)) {
z += 3;
}
break;
case 'v':
case 'z':
if (z[0] == 'e' && z[2] == 'i' && m_gt_1(z + 3)) {
z += 3;
}
break;
}
/* Step 5a */
if (z[0] == 'e') {
if (m_gt_1(z + 1)) {
z++;
} else if (m_eq_1(z + 1) && !star_oh(z + 1)) {
z++;
}
}
/* Step 5b */
if (m_gt_1(z) && z[0] == 'l' && z[1] == 'l') {
z++;
}
/* z[] is now the stemmed word in reverse order. Flip it back
* around into forward order and return.
*/
*pnOut = i = strlen(z);
zOut[i] = 0;
while (*z) {
zOut[--i] = *(z++);
}
}
/*
* Based on whether the input word is in the nostem list or not
* call porter stemmer to stem it, or call copy_stemmer to keep it
* as it is (copy_stemmer converts simply converts it to lower case)
* Returns SQLITE_OK if stemming is successful, an error code for
* any errors
*/
static int
do_stem(const char *zIn, size_t nIn, char *zOut, size_t *pnOut)
{
/* Before looking up the word in the hash table, convert it to lower-case */
char *dupword = malloc(nIn);
if (dupword == NULL)
return SQLITE_NOMEM;
for (size_t i = 0; i < nIn; i++)
dupword[i] = tolower((unsigned char) zIn[i]);
size_t idx = nostem_hash(dupword, nIn);
if (strncmp(nostem[idx], dupword, nIn) == 0 && nostem[idx][nIn] == 0)
copy_stemmer(zIn, nIn, zOut, pnOut);
else
porter_stemmer(zIn, nIn, zOut, pnOut);
free(dupword);
return SQLITE_OK;
}
/*
* Characters that can be part of a token. We assume any character
* whose value is greater than 0x80 (any UTF character) can be
* part of a token. In other words, delimiters all must have
* values of 0x7f or lower.
*/
static const char porterIdChar[] = {
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 5x */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
};
#define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30]))
/*
* Extract the next token from a tokenization cursor. The cursor must
* have been opened by a prior call to aproposPorterOpen().
*/
static int
aproposPorterNext(
sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by aproposPorterOpen */
const char **pzToken, /* OUT: *pzToken is the token text */
int *pnBytes, /* OUT: Number of bytes in token */
int *piStartOffset, /* OUT: Starting offset of token */
int *piEndOffset, /* OUT: Ending offset of token */
int *piPosition /* OUT: Position integer of token */
)
{
custom_apropos_tokenizer_cursor *c = (custom_apropos_tokenizer_cursor *) pCursor;
const char *z = c->zInput;
while (c->iOffset < c->nInput) {
size_t iStartOffset, ch;
/* Scan past delimiter characters */
while (c->iOffset < c->nInput && isDelim(z[c->iOffset])) {
c->iOffset++;
}
/* Count non-delimiter characters. */
iStartOffset = c->iOffset;
while (c->iOffset < c->nInput && !isDelim(z[c->iOffset])) {
c->iOffset++;
}
if (c->iOffset > iStartOffset) {
size_t n = c->iOffset - iStartOffset;
if (n > c->nAllocated) {
char *pNew;
c->nAllocated = n + 20;
pNew = realloc(c->zToken, c->nAllocated);
if (!pNew)
return SQLITE_NOMEM;
c->zToken = pNew;
}
size_t temp;
int stemStatus = do_stem(&z[iStartOffset], n, c->zToken, &temp);
*pnBytes = temp;
if (stemStatus != SQLITE_OK)
return stemStatus;
*pzToken = c->zToken;
*piStartOffset = iStartOffset;
*piEndOffset = c->iOffset;
*piPosition = c->iToken++;
return SQLITE_OK;
}
}
return SQLITE_DONE;
}
/*
* The set of routines that implement the porter-stemmer tokenizer
*/
static const sqlite3_tokenizer_module aproposPorterTokenizerModule = {
0,
aproposPorterCreate,
aproposPorterDestroy,
aproposPorterOpen,
aproposPorterClose,
aproposPorterNext,
0
};
/*
* Allocate a new porter tokenizer. Return a pointer to the new
* tokenizer in *ppModule
*/
void
get_custom_apropos_tokenizer(sqlite3_tokenizer_module const ** ppModule)
{
*ppModule = &aproposPorterTokenizerModule;
}