NetBSD/sys/kern/subr_vmem.c
2013-07-22 19:43:54 +00:00

1746 lines
40 KiB
C

/* $NetBSD: subr_vmem.c,v 1.85 2013/07/22 19:43:54 alnsn Exp $ */
/*-
* Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* reference:
* - Magazines and Vmem: Extending the Slab Allocator
* to Many CPUs and Arbitrary Resources
* http://www.usenix.org/event/usenix01/bonwick.html
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.85 2013/07/22 19:43:54 alnsn Exp $");
#if defined(_KERNEL)
#include "opt_ddb.h"
#endif /* defined(_KERNEL) */
#include <sys/param.h>
#include <sys/hash.h>
#include <sys/queue.h>
#include <sys/bitops.h>
#if defined(_KERNEL)
#include <sys/systm.h>
#include <sys/kernel.h> /* hz */
#include <sys/callout.h>
#include <sys/kmem.h>
#include <sys/pool.h>
#include <sys/vmem.h>
#include <sys/vmem_impl.h>
#include <sys/workqueue.h>
#include <sys/atomic.h>
#include <uvm/uvm.h>
#include <uvm/uvm_extern.h>
#include <uvm/uvm_km.h>
#include <uvm/uvm_page.h>
#include <uvm/uvm_pdaemon.h>
#else /* defined(_KERNEL) */
#include <stdio.h>
#include <errno.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "../sys/vmem.h"
#include "../sys/vmem_impl.h"
#endif /* defined(_KERNEL) */
#if defined(_KERNEL)
#include <sys/evcnt.h>
#define VMEM_EVCNT_DEFINE(name) \
struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
"vmemev", #name); \
EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
#define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++
#define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count--
VMEM_EVCNT_DEFINE(bt_pages)
VMEM_EVCNT_DEFINE(bt_count)
VMEM_EVCNT_DEFINE(bt_inuse)
#define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan)
#define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv)
#define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock)
#define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv)
#else /* defined(_KERNEL) */
#define VMEM_EVCNT_INCR(ev) /* nothing */
#define VMEM_EVCNT_DECR(ev) /* nothing */
#define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */
#define VMEM_CONDVAR_DESTROY(vm) /* nothing */
#define VMEM_CONDVAR_WAIT(vm) /* nothing */
#define VMEM_CONDVAR_BROADCAST(vm) /* nothing */
#define UNITTEST
#define KASSERT(a) assert(a)
#define mutex_init(a, b, c) /* nothing */
#define mutex_destroy(a) /* nothing */
#define mutex_enter(a) /* nothing */
#define mutex_tryenter(a) true
#define mutex_exit(a) /* nothing */
#define mutex_owned(a) /* nothing */
#define ASSERT_SLEEPABLE() /* nothing */
#define panic(...) printf(__VA_ARGS__); abort()
#endif /* defined(_KERNEL) */
#if defined(VMEM_SANITY)
static void vmem_check(vmem_t *);
#else /* defined(VMEM_SANITY) */
#define vmem_check(vm) /* nothing */
#endif /* defined(VMEM_SANITY) */
#define VMEM_HASHSIZE_MIN 1 /* XXX */
#define VMEM_HASHSIZE_MAX 65536 /* XXX */
#define VMEM_HASHSIZE_INIT 1
#define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
#if defined(_KERNEL)
static bool vmem_bootstrapped = false;
static kmutex_t vmem_list_lock;
static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
#endif /* defined(_KERNEL) */
/* ---- misc */
#define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
#define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
#define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
#define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
#define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
#define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
#define VMEM_ALIGNUP(addr, align) \
(-(-(addr) & -(align)))
#define VMEM_CROSS_P(addr1, addr2, boundary) \
((((addr1) ^ (addr2)) & -(boundary)) != 0)
#define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
#define SIZE2ORDER(size) ((int)ilog2(size))
#if !defined(_KERNEL)
#define xmalloc(sz, flags) malloc(sz)
#define xfree(p, sz) free(p)
#define bt_alloc(vm, flags) malloc(sizeof(bt_t))
#define bt_free(vm, bt) free(bt)
#else /* defined(_KERNEL) */
#define xmalloc(sz, flags) \
kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
#define xfree(p, sz) kmem_free(p, sz);
/*
* BT_RESERVE calculation:
* we allocate memory for boundry tags with vmem, therefor we have
* to keep a reserve of bts used to allocated memory for bts.
* This reserve is 4 for each arena involved in allocating vmems memory.
* BT_MAXFREE: don't cache excessive counts of bts in arenas
*/
#define STATIC_BT_COUNT 200
#define BT_MINRESERVE 4
#define BT_MAXFREE 64
static struct vmem_btag static_bts[STATIC_BT_COUNT];
static int static_bt_count = STATIC_BT_COUNT;
static struct vmem kmem_va_meta_arena_store;
vmem_t *kmem_va_meta_arena;
static struct vmem kmem_meta_arena_store;
vmem_t *kmem_meta_arena;
static kmutex_t vmem_refill_lock;
static kmutex_t vmem_btag_lock;
static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
static size_t vmem_btag_freelist_count = 0;
static size_t vmem_btag_count = STATIC_BT_COUNT;
/* ---- boundary tag */
#define BT_PER_PAGE (PAGE_SIZE / sizeof(bt_t))
static int bt_refill(vmem_t *vm, vm_flag_t flags);
static int
bt_refillglobal(vm_flag_t flags)
{
vmem_addr_t va;
bt_t *btp;
bt_t *bt;
int i;
mutex_enter(&vmem_refill_lock);
mutex_enter(&vmem_btag_lock);
if (vmem_btag_freelist_count > 0) {
mutex_exit(&vmem_btag_lock);
mutex_exit(&vmem_refill_lock);
return 0;
}
mutex_exit(&vmem_btag_lock);
if (vmem_alloc(kmem_meta_arena, PAGE_SIZE,
(flags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va) != 0) {
mutex_exit(&vmem_refill_lock);
return ENOMEM;
}
VMEM_EVCNT_INCR(bt_pages);
mutex_enter(&vmem_btag_lock);
btp = (void *) va;
for (i = 0; i < (BT_PER_PAGE); i++) {
bt = btp;
memset(bt, 0, sizeof(*bt));
LIST_INSERT_HEAD(&vmem_btag_freelist, bt,
bt_freelist);
vmem_btag_freelist_count++;
vmem_btag_count++;
VMEM_EVCNT_INCR(bt_count);
btp++;
}
mutex_exit(&vmem_btag_lock);
bt_refill(kmem_arena, (flags & ~VM_FITMASK)
| VM_INSTANTFIT | VM_POPULATING);
bt_refill(kmem_va_meta_arena, (flags & ~VM_FITMASK)
| VM_INSTANTFIT | VM_POPULATING);
bt_refill(kmem_meta_arena, (flags & ~VM_FITMASK)
| VM_INSTANTFIT | VM_POPULATING);
mutex_exit(&vmem_refill_lock);
return 0;
}
static int
bt_refill(vmem_t *vm, vm_flag_t flags)
{
bt_t *bt;
if (!(flags & VM_POPULATING)) {
bt_refillglobal(flags);
}
VMEM_LOCK(vm);
mutex_enter(&vmem_btag_lock);
while (!LIST_EMPTY(&vmem_btag_freelist) &&
vm->vm_nfreetags <= BT_MINRESERVE) {
bt = LIST_FIRST(&vmem_btag_freelist);
LIST_REMOVE(bt, bt_freelist);
LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
vm->vm_nfreetags++;
vmem_btag_freelist_count--;
}
mutex_exit(&vmem_btag_lock);
if (vm->vm_nfreetags == 0) {
VMEM_UNLOCK(vm);
return ENOMEM;
}
VMEM_UNLOCK(vm);
return 0;
}
static inline bt_t *
bt_alloc(vmem_t *vm, vm_flag_t flags)
{
bt_t *bt;
again:
VMEM_LOCK(vm);
if (vm->vm_nfreetags <= BT_MINRESERVE &&
(flags & VM_POPULATING) == 0) {
VMEM_UNLOCK(vm);
if (bt_refill(vm, VM_NOSLEEP | VM_INSTANTFIT)) {
return NULL;
}
goto again;
}
bt = LIST_FIRST(&vm->vm_freetags);
LIST_REMOVE(bt, bt_freelist);
vm->vm_nfreetags--;
VMEM_UNLOCK(vm);
VMEM_EVCNT_INCR(bt_inuse);
return bt;
}
static inline void
bt_free(vmem_t *vm, bt_t *bt)
{
VMEM_LOCK(vm);
LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
vm->vm_nfreetags++;
while (vm->vm_nfreetags > BT_MAXFREE) {
bt = LIST_FIRST(&vm->vm_freetags);
LIST_REMOVE(bt, bt_freelist);
vm->vm_nfreetags--;
mutex_enter(&vmem_btag_lock);
LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
vmem_btag_freelist_count++;
mutex_exit(&vmem_btag_lock);
}
VMEM_UNLOCK(vm);
VMEM_EVCNT_DECR(bt_inuse);
}
#endif /* defined(_KERNEL) */
/*
* freelist[0] ... [1, 1]
* freelist[1] ... [2, 3]
* freelist[2] ... [4, 7]
* freelist[3] ... [8, 15]
* :
* freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
* :
*/
static struct vmem_freelist *
bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
{
const vmem_size_t qsize = size >> vm->vm_quantum_shift;
const int idx = SIZE2ORDER(qsize);
KASSERT(size != 0 && qsize != 0);
KASSERT((size & vm->vm_quantum_mask) == 0);
KASSERT(idx >= 0);
KASSERT(idx < VMEM_MAXORDER);
return &vm->vm_freelist[idx];
}
/*
* bt_freehead_toalloc: return the freelist for the given size and allocation
* strategy.
*
* for VM_INSTANTFIT, return the list in which any blocks are large enough
* for the requested size. otherwise, return the list which can have blocks
* large enough for the requested size.
*/
static struct vmem_freelist *
bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
{
const vmem_size_t qsize = size >> vm->vm_quantum_shift;
int idx = SIZE2ORDER(qsize);
KASSERT(size != 0 && qsize != 0);
KASSERT((size & vm->vm_quantum_mask) == 0);
if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
idx++;
/* check too large request? */
}
KASSERT(idx >= 0);
KASSERT(idx < VMEM_MAXORDER);
return &vm->vm_freelist[idx];
}
/* ---- boundary tag hash */
static struct vmem_hashlist *
bt_hashhead(vmem_t *vm, vmem_addr_t addr)
{
struct vmem_hashlist *list;
unsigned int hash;
hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
list = &vm->vm_hashlist[hash % vm->vm_hashsize];
return list;
}
static bt_t *
bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
{
struct vmem_hashlist *list;
bt_t *bt;
list = bt_hashhead(vm, addr);
LIST_FOREACH(bt, list, bt_hashlist) {
if (bt->bt_start == addr) {
break;
}
}
return bt;
}
static void
bt_rembusy(vmem_t *vm, bt_t *bt)
{
KASSERT(vm->vm_nbusytag > 0);
vm->vm_inuse -= bt->bt_size;
vm->vm_nbusytag--;
LIST_REMOVE(bt, bt_hashlist);
}
static void
bt_insbusy(vmem_t *vm, bt_t *bt)
{
struct vmem_hashlist *list;
KASSERT(bt->bt_type == BT_TYPE_BUSY);
list = bt_hashhead(vm, bt->bt_start);
LIST_INSERT_HEAD(list, bt, bt_hashlist);
vm->vm_nbusytag++;
vm->vm_inuse += bt->bt_size;
}
/* ---- boundary tag list */
static void
bt_remseg(vmem_t *vm, bt_t *bt)
{
CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
}
static void
bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
{
CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
}
static void
bt_insseg_tail(vmem_t *vm, bt_t *bt)
{
CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
}
static void
bt_remfree(vmem_t *vm, bt_t *bt)
{
KASSERT(bt->bt_type == BT_TYPE_FREE);
LIST_REMOVE(bt, bt_freelist);
}
static void
bt_insfree(vmem_t *vm, bt_t *bt)
{
struct vmem_freelist *list;
list = bt_freehead_tofree(vm, bt->bt_size);
LIST_INSERT_HEAD(list, bt, bt_freelist);
}
/* ---- vmem internal functions */
#if defined(QCACHE)
static inline vm_flag_t
prf_to_vmf(int prflags)
{
vm_flag_t vmflags;
KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
if ((prflags & PR_WAITOK) != 0) {
vmflags = VM_SLEEP;
} else {
vmflags = VM_NOSLEEP;
}
return vmflags;
}
static inline int
vmf_to_prf(vm_flag_t vmflags)
{
int prflags;
if ((vmflags & VM_SLEEP) != 0) {
prflags = PR_WAITOK;
} else {
prflags = PR_NOWAIT;
}
return prflags;
}
static size_t
qc_poolpage_size(size_t qcache_max)
{
int i;
for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
/* nothing */
}
return ORDER2SIZE(i);
}
static void *
qc_poolpage_alloc(struct pool *pool, int prflags)
{
qcache_t *qc = QC_POOL_TO_QCACHE(pool);
vmem_t *vm = qc->qc_vmem;
vmem_addr_t addr;
if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
return NULL;
return (void *)addr;
}
static void
qc_poolpage_free(struct pool *pool, void *addr)
{
qcache_t *qc = QC_POOL_TO_QCACHE(pool);
vmem_t *vm = qc->qc_vmem;
vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
}
static void
qc_init(vmem_t *vm, size_t qcache_max, int ipl)
{
qcache_t *prevqc;
struct pool_allocator *pa;
int qcache_idx_max;
int i;
KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
}
vm->vm_qcache_max = qcache_max;
pa = &vm->vm_qcache_allocator;
memset(pa, 0, sizeof(*pa));
pa->pa_alloc = qc_poolpage_alloc;
pa->pa_free = qc_poolpage_free;
pa->pa_pagesz = qc_poolpage_size(qcache_max);
qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
prevqc = NULL;
for (i = qcache_idx_max; i > 0; i--) {
qcache_t *qc = &vm->vm_qcache_store[i - 1];
size_t size = i << vm->vm_quantum_shift;
pool_cache_t pc;
qc->qc_vmem = vm;
snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
vm->vm_name, size);
pc = pool_cache_init(size,
ORDER2SIZE(vm->vm_quantum_shift), 0,
PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
qc->qc_name, pa, ipl, NULL, NULL, NULL);
KASSERT(pc);
qc->qc_cache = pc;
KASSERT(qc->qc_cache != NULL); /* XXX */
if (prevqc != NULL &&
qc->qc_cache->pc_pool.pr_itemsperpage ==
prevqc->qc_cache->pc_pool.pr_itemsperpage) {
pool_cache_destroy(qc->qc_cache);
vm->vm_qcache[i - 1] = prevqc;
continue;
}
qc->qc_cache->pc_pool.pr_qcache = qc;
vm->vm_qcache[i - 1] = qc;
prevqc = qc;
}
}
static void
qc_destroy(vmem_t *vm)
{
const qcache_t *prevqc;
int i;
int qcache_idx_max;
qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
prevqc = NULL;
for (i = 0; i < qcache_idx_max; i++) {
qcache_t *qc = vm->vm_qcache[i];
if (prevqc == qc) {
continue;
}
pool_cache_destroy(qc->qc_cache);
prevqc = qc;
}
}
#endif
#if defined(_KERNEL)
static void
vmem_bootstrap(void)
{
mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM);
mutex_init(&vmem_refill_lock, MUTEX_DEFAULT, IPL_VM);
mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
while (static_bt_count-- > 0) {
bt_t *bt = &static_bts[static_bt_count];
LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
VMEM_EVCNT_INCR(bt_count);
vmem_btag_freelist_count++;
}
vmem_bootstrapped = TRUE;
}
void
vmem_subsystem_init(vmem_t *vm)
{
kmem_va_meta_arena = vmem_init(&kmem_va_meta_arena_store, "vmem-va",
0, 0, PAGE_SIZE, vmem_alloc, vmem_free, vm,
0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
IPL_VM);
kmem_meta_arena = vmem_init(&kmem_meta_arena_store, "vmem-meta",
0, 0, PAGE_SIZE,
uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
}
#endif /* defined(_KERNEL) */
static int
vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
int spanbttype)
{
bt_t *btspan;
bt_t *btfree;
KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
KASSERT(spanbttype == BT_TYPE_SPAN ||
spanbttype == BT_TYPE_SPAN_STATIC);
btspan = bt_alloc(vm, flags);
if (btspan == NULL) {
return ENOMEM;
}
btfree = bt_alloc(vm, flags);
if (btfree == NULL) {
bt_free(vm, btspan);
return ENOMEM;
}
btspan->bt_type = spanbttype;
btspan->bt_start = addr;
btspan->bt_size = size;
btfree->bt_type = BT_TYPE_FREE;
btfree->bt_start = addr;
btfree->bt_size = size;
VMEM_LOCK(vm);
bt_insseg_tail(vm, btspan);
bt_insseg(vm, btfree, btspan);
bt_insfree(vm, btfree);
vm->vm_size += size;
VMEM_UNLOCK(vm);
return 0;
}
static void
vmem_destroy1(vmem_t *vm)
{
#if defined(QCACHE)
qc_destroy(vm);
#endif /* defined(QCACHE) */
if (vm->vm_hashlist != NULL) {
int i;
for (i = 0; i < vm->vm_hashsize; i++) {
bt_t *bt;
while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
bt_free(vm, bt);
}
}
if (vm->vm_hashlist != &vm->vm_hash0) {
xfree(vm->vm_hashlist,
sizeof(struct vmem_hashlist *) * vm->vm_hashsize);
}
}
while (vm->vm_nfreetags > 0) {
bt_t *bt = LIST_FIRST(&vm->vm_freetags);
LIST_REMOVE(bt, bt_freelist);
vm->vm_nfreetags--;
mutex_enter(&vmem_btag_lock);
#if defined (_KERNEL)
LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
vmem_btag_freelist_count++;
#endif /* defined(_KERNEL) */
mutex_exit(&vmem_btag_lock);
}
VMEM_CONDVAR_DESTROY(vm);
VMEM_LOCK_DESTROY(vm);
xfree(vm, sizeof(*vm));
}
static int
vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
{
vmem_addr_t addr;
int rc;
if (vm->vm_importfn == NULL) {
return EINVAL;
}
if (vm->vm_flags & VM_LARGEIMPORT) {
size *= 16;
}
if (vm->vm_flags & VM_XIMPORT) {
rc = ((vmem_ximport_t *)vm->vm_importfn)(vm->vm_arg, size,
&size, flags, &addr);
} else {
rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
}
if (rc) {
return ENOMEM;
}
if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
(*vm->vm_releasefn)(vm->vm_arg, addr, size);
return ENOMEM;
}
return 0;
}
static int
vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
{
bt_t *bt;
int i;
struct vmem_hashlist *newhashlist;
struct vmem_hashlist *oldhashlist;
size_t oldhashsize;
KASSERT(newhashsize > 0);
newhashlist =
xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
if (newhashlist == NULL) {
return ENOMEM;
}
for (i = 0; i < newhashsize; i++) {
LIST_INIT(&newhashlist[i]);
}
if (!VMEM_TRYLOCK(vm)) {
xfree(newhashlist,
sizeof(struct vmem_hashlist *) * newhashsize);
return EBUSY;
}
oldhashlist = vm->vm_hashlist;
oldhashsize = vm->vm_hashsize;
vm->vm_hashlist = newhashlist;
vm->vm_hashsize = newhashsize;
if (oldhashlist == NULL) {
VMEM_UNLOCK(vm);
return 0;
}
for (i = 0; i < oldhashsize; i++) {
while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
bt_rembusy(vm, bt); /* XXX */
bt_insbusy(vm, bt);
}
}
VMEM_UNLOCK(vm);
if (oldhashlist != &vm->vm_hash0) {
xfree(oldhashlist,
sizeof(struct vmem_hashlist *) * oldhashsize);
}
return 0;
}
/*
* vmem_fit: check if a bt can satisfy the given restrictions.
*
* it's a caller's responsibility to ensure the region is big enough
* before calling us.
*/
static int
vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
vmem_size_t phase, vmem_size_t nocross,
vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
{
vmem_addr_t start;
vmem_addr_t end;
KASSERT(size > 0);
KASSERT(bt->bt_size >= size); /* caller's responsibility */
/*
* XXX assumption: vmem_addr_t and vmem_size_t are
* unsigned integer of the same size.
*/
start = bt->bt_start;
if (start < minaddr) {
start = minaddr;
}
end = BT_END(bt);
if (end > maxaddr) {
end = maxaddr;
}
if (start > end) {
return ENOMEM;
}
start = VMEM_ALIGNUP(start - phase, align) + phase;
if (start < bt->bt_start) {
start += align;
}
if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
KASSERT(align < nocross);
start = VMEM_ALIGNUP(start - phase, nocross) + phase;
}
if (start <= end && end - start >= size - 1) {
KASSERT((start & (align - 1)) == phase);
KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
KASSERT(minaddr <= start);
KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
KASSERT(bt->bt_start <= start);
KASSERT(BT_END(bt) - start >= size - 1);
*addrp = start;
return 0;
}
return ENOMEM;
}
/* ---- vmem API */
/*
* vmem_create_internal: creates a vmem arena.
*/
vmem_t *
vmem_init(vmem_t *vm, const char *name,
vmem_addr_t base, vmem_size_t size, vmem_size_t quantum,
vmem_import_t *importfn, vmem_release_t *releasefn,
vmem_t *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
{
int i;
KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
KASSERT(quantum > 0);
#if defined(_KERNEL)
/* XXX: SMP, we get called early... */
if (!vmem_bootstrapped) {
vmem_bootstrap();
}
#endif /* defined(_KERNEL) */
if (vm == NULL) {
vm = xmalloc(sizeof(*vm), flags);
}
if (vm == NULL) {
return NULL;
}
VMEM_CONDVAR_INIT(vm, "vmem");
VMEM_LOCK_INIT(vm, ipl);
vm->vm_flags = flags;
vm->vm_nfreetags = 0;
LIST_INIT(&vm->vm_freetags);
strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
vm->vm_quantum_mask = quantum - 1;
vm->vm_quantum_shift = SIZE2ORDER(quantum);
KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
vm->vm_importfn = importfn;
vm->vm_releasefn = releasefn;
vm->vm_arg = arg;
vm->vm_nbusytag = 0;
vm->vm_size = 0;
vm->vm_inuse = 0;
#if defined(QCACHE)
qc_init(vm, qcache_max, ipl);
#endif /* defined(QCACHE) */
CIRCLEQ_INIT(&vm->vm_seglist);
for (i = 0; i < VMEM_MAXORDER; i++) {
LIST_INIT(&vm->vm_freelist[i]);
}
memset(&vm->vm_hash0, 0, sizeof(struct vmem_hashlist));
vm->vm_hashsize = 1;
vm->vm_hashlist = &vm->vm_hash0;
if (size != 0) {
if (vmem_add(vm, base, size, flags) != 0) {
vmem_destroy1(vm);
return NULL;
}
}
#if defined(_KERNEL)
if (flags & VM_BOOTSTRAP) {
bt_refill(vm, VM_NOSLEEP);
}
mutex_enter(&vmem_list_lock);
LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
mutex_exit(&vmem_list_lock);
#endif /* defined(_KERNEL) */
return vm;
}
/*
* vmem_create: create an arena.
*
* => must not be called from interrupt context.
*/
vmem_t *
vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
{
KASSERT((flags & (VM_XIMPORT)) == 0);
return vmem_init(NULL, name, base, size, quantum,
importfn, releasefn, source, qcache_max, flags, ipl);
}
/*
* vmem_xcreate: create an arena takes alternative import func.
*
* => must not be called from interrupt context.
*/
vmem_t *
vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
{
KASSERT((flags & (VM_XIMPORT)) == 0);
return vmem_init(NULL, name, base, size, quantum,
(vmem_import_t *)importfn, releasefn, source,
qcache_max, flags | VM_XIMPORT, ipl);
}
void
vmem_destroy(vmem_t *vm)
{
#if defined(_KERNEL)
mutex_enter(&vmem_list_lock);
LIST_REMOVE(vm, vm_alllist);
mutex_exit(&vmem_list_lock);
#endif /* defined(_KERNEL) */
vmem_destroy1(vm);
}
vmem_size_t
vmem_roundup_size(vmem_t *vm, vmem_size_t size)
{
return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
}
/*
* vmem_alloc: allocate resource from the arena.
*/
int
vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
{
const vm_flag_t strat __unused = flags & VM_FITMASK;
KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
KASSERT(size > 0);
KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
if ((flags & VM_SLEEP) != 0) {
ASSERT_SLEEPABLE();
}
#if defined(QCACHE)
if (size <= vm->vm_qcache_max) {
void *p;
int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
qcache_t *qc = vm->vm_qcache[qidx - 1];
p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
if (addrp != NULL)
*addrp = (vmem_addr_t)p;
return (p == NULL) ? ENOMEM : 0;
}
#endif /* defined(QCACHE) */
return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
flags, addrp);
}
int
vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
const vmem_size_t phase, const vmem_size_t nocross,
const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
vmem_addr_t *addrp)
{
struct vmem_freelist *list;
struct vmem_freelist *first;
struct vmem_freelist *end;
bt_t *bt;
bt_t *btnew;
bt_t *btnew2;
const vmem_size_t size = vmem_roundup_size(vm, size0);
vm_flag_t strat = flags & VM_FITMASK;
vmem_addr_t start;
int rc;
KASSERT(size0 > 0);
KASSERT(size > 0);
KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
if ((flags & VM_SLEEP) != 0) {
ASSERT_SLEEPABLE();
}
KASSERT((align & vm->vm_quantum_mask) == 0);
KASSERT((align & (align - 1)) == 0);
KASSERT((phase & vm->vm_quantum_mask) == 0);
KASSERT((nocross & vm->vm_quantum_mask) == 0);
KASSERT((nocross & (nocross - 1)) == 0);
KASSERT((align == 0 && phase == 0) || phase < align);
KASSERT(nocross == 0 || nocross >= size);
KASSERT(minaddr <= maxaddr);
KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
if (align == 0) {
align = vm->vm_quantum_mask + 1;
}
/*
* allocate boundary tags before acquiring the vmem lock.
*/
btnew = bt_alloc(vm, flags);
if (btnew == NULL) {
return ENOMEM;
}
btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
if (btnew2 == NULL) {
bt_free(vm, btnew);
return ENOMEM;
}
/*
* choose a free block from which we allocate.
*/
retry_strat:
first = bt_freehead_toalloc(vm, size, strat);
end = &vm->vm_freelist[VMEM_MAXORDER];
retry:
bt = NULL;
VMEM_LOCK(vm);
vmem_check(vm);
if (strat == VM_INSTANTFIT) {
/*
* just choose the first block which satisfies our restrictions.
*
* note that we don't need to check the size of the blocks
* because any blocks found on these list should be larger than
* the given size.
*/
for (list = first; list < end; list++) {
bt = LIST_FIRST(list);
if (bt != NULL) {
rc = vmem_fit(bt, size, align, phase,
nocross, minaddr, maxaddr, &start);
if (rc == 0) {
goto gotit;
}
/*
* don't bother to follow the bt_freelist link
* here. the list can be very long and we are
* told to run fast. blocks from the later free
* lists are larger and have better chances to
* satisfy our restrictions.
*/
}
}
} else { /* VM_BESTFIT */
/*
* we assume that, for space efficiency, it's better to
* allocate from a smaller block. thus we will start searching
* from the lower-order list than VM_INSTANTFIT.
* however, don't bother to find the smallest block in a free
* list because the list can be very long. we can revisit it
* if/when it turns out to be a problem.
*
* note that the 'first' list can contain blocks smaller than
* the requested size. thus we need to check bt_size.
*/
for (list = first; list < end; list++) {
LIST_FOREACH(bt, list, bt_freelist) {
if (bt->bt_size >= size) {
rc = vmem_fit(bt, size, align, phase,
nocross, minaddr, maxaddr, &start);
if (rc == 0) {
goto gotit;
}
}
}
}
}
VMEM_UNLOCK(vm);
#if 1
if (strat == VM_INSTANTFIT) {
strat = VM_BESTFIT;
goto retry_strat;
}
#endif
if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
/*
* XXX should try to import a region large enough to
* satisfy restrictions?
*/
goto fail;
}
/* XXX eeek, minaddr & maxaddr not respected */
if (vmem_import(vm, size, flags) == 0) {
goto retry;
}
/* XXX */
if ((flags & VM_SLEEP) != 0) {
#if defined(_KERNEL) && !defined(_RUMPKERNEL)
mutex_spin_enter(&uvm_fpageqlock);
uvm_kick_pdaemon();
mutex_spin_exit(&uvm_fpageqlock);
#endif
VMEM_LOCK(vm);
VMEM_CONDVAR_WAIT(vm);
VMEM_UNLOCK(vm);
goto retry;
}
fail:
bt_free(vm, btnew);
bt_free(vm, btnew2);
return ENOMEM;
gotit:
KASSERT(bt->bt_type == BT_TYPE_FREE);
KASSERT(bt->bt_size >= size);
bt_remfree(vm, bt);
vmem_check(vm);
if (bt->bt_start != start) {
btnew2->bt_type = BT_TYPE_FREE;
btnew2->bt_start = bt->bt_start;
btnew2->bt_size = start - bt->bt_start;
bt->bt_start = start;
bt->bt_size -= btnew2->bt_size;
bt_insfree(vm, btnew2);
bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
btnew2 = NULL;
vmem_check(vm);
}
KASSERT(bt->bt_start == start);
if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
/* split */
btnew->bt_type = BT_TYPE_BUSY;
btnew->bt_start = bt->bt_start;
btnew->bt_size = size;
bt->bt_start = bt->bt_start + size;
bt->bt_size -= size;
bt_insfree(vm, bt);
bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
bt_insbusy(vm, btnew);
vmem_check(vm);
VMEM_UNLOCK(vm);
} else {
bt->bt_type = BT_TYPE_BUSY;
bt_insbusy(vm, bt);
vmem_check(vm);
VMEM_UNLOCK(vm);
bt_free(vm, btnew);
btnew = bt;
}
if (btnew2 != NULL) {
bt_free(vm, btnew2);
}
KASSERT(btnew->bt_size >= size);
btnew->bt_type = BT_TYPE_BUSY;
if (addrp != NULL)
*addrp = btnew->bt_start;
return 0;
}
/*
* vmem_free: free the resource to the arena.
*/
void
vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
{
KASSERT(size > 0);
#if defined(QCACHE)
if (size <= vm->vm_qcache_max) {
int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
qcache_t *qc = vm->vm_qcache[qidx - 1];
pool_cache_put(qc->qc_cache, (void *)addr);
return;
}
#endif /* defined(QCACHE) */
vmem_xfree(vm, addr, size);
}
void
vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
{
bt_t *bt;
bt_t *t;
LIST_HEAD(, vmem_btag) tofree;
LIST_INIT(&tofree);
KASSERT(size > 0);
VMEM_LOCK(vm);
bt = bt_lookupbusy(vm, addr);
KASSERT(bt != NULL);
KASSERT(bt->bt_start == addr);
KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
KASSERT(bt->bt_type == BT_TYPE_BUSY);
bt_rembusy(vm, bt);
bt->bt_type = BT_TYPE_FREE;
/* coalesce */
t = CIRCLEQ_NEXT(bt, bt_seglist);
if (t != NULL && t->bt_type == BT_TYPE_FREE) {
KASSERT(BT_END(bt) < t->bt_start); /* YYY */
bt_remfree(vm, t);
bt_remseg(vm, t);
bt->bt_size += t->bt_size;
LIST_INSERT_HEAD(&tofree, t, bt_freelist);
}
t = CIRCLEQ_PREV(bt, bt_seglist);
if (t != NULL && t->bt_type == BT_TYPE_FREE) {
KASSERT(BT_END(t) < bt->bt_start); /* YYY */
bt_remfree(vm, t);
bt_remseg(vm, t);
bt->bt_size += t->bt_size;
bt->bt_start = t->bt_start;
LIST_INSERT_HEAD(&tofree, t, bt_freelist);
}
t = CIRCLEQ_PREV(bt, bt_seglist);
KASSERT(t != NULL);
KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
t->bt_size == bt->bt_size) {
vmem_addr_t spanaddr;
vmem_size_t spansize;
KASSERT(t->bt_start == bt->bt_start);
spanaddr = bt->bt_start;
spansize = bt->bt_size;
bt_remseg(vm, bt);
LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
bt_remseg(vm, t);
LIST_INSERT_HEAD(&tofree, t, bt_freelist);
vm->vm_size -= spansize;
VMEM_CONDVAR_BROADCAST(vm);
VMEM_UNLOCK(vm);
(*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
} else {
bt_insfree(vm, bt);
VMEM_CONDVAR_BROADCAST(vm);
VMEM_UNLOCK(vm);
}
while (!LIST_EMPTY(&tofree)) {
t = LIST_FIRST(&tofree);
LIST_REMOVE(t, bt_freelist);
bt_free(vm, t);
}
}
/*
* vmem_add:
*
* => caller must ensure appropriate spl,
* if the arena can be accessed from interrupt context.
*/
int
vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
{
return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
}
/*
* vmem_size: information about arenas size
*
* => return free/allocated size in arena
*/
vmem_size_t
vmem_size(vmem_t *vm, int typemask)
{
switch (typemask) {
case VMEM_ALLOC:
return vm->vm_inuse;
case VMEM_FREE:
return vm->vm_size - vm->vm_inuse;
case VMEM_FREE|VMEM_ALLOC:
return vm->vm_size;
default:
panic("vmem_size");
}
}
/* ---- rehash */
#if defined(_KERNEL)
static struct callout vmem_rehash_ch;
static int vmem_rehash_interval;
static struct workqueue *vmem_rehash_wq;
static struct work vmem_rehash_wk;
static void
vmem_rehash_all(struct work *wk, void *dummy)
{
vmem_t *vm;
KASSERT(wk == &vmem_rehash_wk);
mutex_enter(&vmem_list_lock);
LIST_FOREACH(vm, &vmem_list, vm_alllist) {
size_t desired;
size_t current;
if (!VMEM_TRYLOCK(vm)) {
continue;
}
desired = vm->vm_nbusytag;
current = vm->vm_hashsize;
VMEM_UNLOCK(vm);
if (desired > VMEM_HASHSIZE_MAX) {
desired = VMEM_HASHSIZE_MAX;
} else if (desired < VMEM_HASHSIZE_MIN) {
desired = VMEM_HASHSIZE_MIN;
}
if (desired > current * 2 || desired * 2 < current) {
vmem_rehash(vm, desired, VM_NOSLEEP);
}
}
mutex_exit(&vmem_list_lock);
callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
}
static void
vmem_rehash_all_kick(void *dummy)
{
workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
}
void
vmem_rehash_start(void)
{
int error;
error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
if (error) {
panic("%s: workqueue_create %d\n", __func__, error);
}
callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
vmem_rehash_interval = hz * 10;
callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
}
#endif /* defined(_KERNEL) */
/* ---- debug */
#if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
static void bt_dump(const bt_t *, void (*)(const char *, ...)
__printflike(1, 2));
static const char *
bt_type_string(int type)
{
static const char * const table[] = {
[BT_TYPE_BUSY] = "busy",
[BT_TYPE_FREE] = "free",
[BT_TYPE_SPAN] = "span",
[BT_TYPE_SPAN_STATIC] = "static span",
};
if (type >= __arraycount(table)) {
return "BOGUS";
}
return table[type];
}
static void
bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
{
(*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
bt->bt_type, bt_type_string(bt->bt_type));
}
static void
vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...) __printflike(1, 2))
{
const bt_t *bt;
int i;
(*pr)("vmem %p '%s'\n", vm, vm->vm_name);
CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
bt_dump(bt, pr);
}
for (i = 0; i < VMEM_MAXORDER; i++) {
const struct vmem_freelist *fl = &vm->vm_freelist[i];
if (LIST_EMPTY(fl)) {
continue;
}
(*pr)("freelist[%d]\n", i);
LIST_FOREACH(bt, fl, bt_freelist) {
bt_dump(bt, pr);
}
}
}
#endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
#if defined(DDB)
static bt_t *
vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
{
bt_t *bt;
CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
if (BT_ISSPAN_P(bt)) {
continue;
}
if (bt->bt_start <= addr && addr <= BT_END(bt)) {
return bt;
}
}
return NULL;
}
void
vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
{
vmem_t *vm;
LIST_FOREACH(vm, &vmem_list, vm_alllist) {
bt_t *bt;
bt = vmem_whatis_lookup(vm, addr);
if (bt == NULL) {
continue;
}
(*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
(void *)addr, (void *)bt->bt_start,
(size_t)(addr - bt->bt_start), vm->vm_name,
(bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
}
}
void
vmem_printall(const char *modif, void (*pr)(const char *, ...))
{
const vmem_t *vm;
LIST_FOREACH(vm, &vmem_list, vm_alllist) {
vmem_dump(vm, pr);
}
}
void
vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
{
const vmem_t *vm = (const void *)addr;
vmem_dump(vm, pr);
}
#endif /* defined(DDB) */
#if defined(_KERNEL)
#define vmem_printf printf
#else
#include <stdio.h>
#include <stdarg.h>
static void
vmem_printf(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
}
#endif
#if defined(VMEM_SANITY)
static bool
vmem_check_sanity(vmem_t *vm)
{
const bt_t *bt, *bt2;
KASSERT(vm != NULL);
CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
if (bt->bt_start > BT_END(bt)) {
printf("corrupted tag\n");
bt_dump(bt, vmem_printf);
return false;
}
}
CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
if (bt == bt2) {
continue;
}
if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
continue;
}
if (bt->bt_start <= BT_END(bt2) &&
bt2->bt_start <= BT_END(bt)) {
printf("overwrapped tags\n");
bt_dump(bt, vmem_printf);
bt_dump(bt2, vmem_printf);
return false;
}
}
}
return true;
}
static void
vmem_check(vmem_t *vm)
{
if (!vmem_check_sanity(vm)) {
panic("insanity vmem %p", vm);
}
}
#endif /* defined(VMEM_SANITY) */
#if defined(UNITTEST)
int
main(void)
{
int rc;
vmem_t *vm;
vmem_addr_t p;
struct reg {
vmem_addr_t p;
vmem_size_t sz;
bool x;
} *reg = NULL;
int nreg = 0;
int nalloc = 0;
int nfree = 0;
vmem_size_t total = 0;
#if 1
vm_flag_t strat = VM_INSTANTFIT;
#else
vm_flag_t strat = VM_BESTFIT;
#endif
vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
#ifdef _KERNEL
IPL_NONE
#else
0
#endif
);
if (vm == NULL) {
printf("vmem_create\n");
exit(EXIT_FAILURE);
}
vmem_dump(vm, vmem_printf);
rc = vmem_add(vm, 0, 50, VM_SLEEP);
assert(rc == 0);
rc = vmem_add(vm, 100, 200, VM_SLEEP);
assert(rc == 0);
rc = vmem_add(vm, 2000, 1, VM_SLEEP);
assert(rc == 0);
rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
assert(rc == 0);
rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
assert(rc == 0);
rc = vmem_add(vm, 500, 1000, VM_SLEEP);
assert(rc == 0);
rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
assert(rc == 0);
rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
assert(rc != 0);
rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
assert(rc == 0 && p == 0);
vmem_xfree(vm, p, 50);
rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
assert(rc == 0 && p == 0);
rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
assert(rc != 0);
rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
assert(rc != 0);
rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
assert(rc == 0);
vmem_dump(vm, vmem_printf);
for (;;) {
struct reg *r;
int t = rand() % 100;
if (t > 45) {
/* alloc */
vmem_size_t sz = rand() % 500 + 1;
bool x;
vmem_size_t align, phase, nocross;
vmem_addr_t minaddr, maxaddr;
if (t > 70) {
x = true;
/* XXX */
align = 1 << (rand() % 15);
phase = rand() % 65536;
nocross = 1 << (rand() % 15);
if (align <= phase) {
phase = 0;
}
if (VMEM_CROSS_P(phase, phase + sz - 1,
nocross)) {
nocross = 0;
}
do {
minaddr = rand() % 50000;
maxaddr = rand() % 70000;
} while (minaddr > maxaddr);
printf("=== xalloc %" PRIu64
" align=%" PRIu64 ", phase=%" PRIu64
", nocross=%" PRIu64 ", min=%" PRIu64
", max=%" PRIu64 "\n",
(uint64_t)sz,
(uint64_t)align,
(uint64_t)phase,
(uint64_t)nocross,
(uint64_t)minaddr,
(uint64_t)maxaddr);
rc = vmem_xalloc(vm, sz, align, phase, nocross,
minaddr, maxaddr, strat|VM_SLEEP, &p);
} else {
x = false;
printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
}
printf("-> %" PRIu64 "\n", (uint64_t)p);
vmem_dump(vm, vmem_printf);
if (rc != 0) {
if (x) {
continue;
}
break;
}
nreg++;
reg = realloc(reg, sizeof(*reg) * nreg);
r = &reg[nreg - 1];
r->p = p;
r->sz = sz;
r->x = x;
total += sz;
nalloc++;
} else if (nreg != 0) {
/* free */
r = &reg[rand() % nreg];
printf("=== free %" PRIu64 ", %" PRIu64 "\n",
(uint64_t)r->p, (uint64_t)r->sz);
if (r->x) {
vmem_xfree(vm, r->p, r->sz);
} else {
vmem_free(vm, r->p, r->sz);
}
total -= r->sz;
vmem_dump(vm, vmem_printf);
*r = reg[nreg - 1];
nreg--;
nfree++;
}
printf("total=%" PRIu64 "\n", (uint64_t)total);
}
fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
(uint64_t)total, nalloc, nfree);
exit(EXIT_SUCCESS);
}
#endif /* defined(UNITTEST) */