NetBSD/sys/arch/sparc/dev/vme_machdep.c
1999-04-14 10:28:23 +00:00

1122 lines
27 KiB
C

/* $NetBSD: vme_machdep.c,v 1.18 1999/04/14 10:28:23 pk Exp $ */
/*-
* Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Paul Kranenburg.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/extent.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/syslog.h>
#include <vm/vm.h>
#define _SPARC_BUS_DMA_PRIVATE
#include <machine/bus.h>
#include <sparc/sparc/iommuvar.h>
#include <machine/autoconf.h>
#include <machine/pmap.h>
#include <machine/oldmon.h>
#include <machine/cpu.h>
#include <machine/ctlreg.h>
#include <dev/vme/vmevar.h>
#include <sparc/sparc/asm.h>
#include <sparc/sparc/vaddrs.h>
#include <sparc/sparc/cpuvar.h>
#include <sparc/dev/vmereg.h>
struct vmebus_softc {
struct device sc_dev; /* base device */
bus_space_tag_t sc_bustag;
bus_dma_tag_t sc_dmatag;
struct vmebusreg *sc_reg; /* VME control registers */
struct vmebusvec *sc_vec; /* VME interrupt vector */
struct rom_range *sc_range; /* ROM range property */
int sc_nrange;
volatile u_int32_t *sc_ioctags; /* VME IO-cache tag registers */
volatile u_int32_t *sc_iocflush;/* VME IO-cache flush registers */
int (*sc_vmeintr) __P((void *));
struct bootpath *sc_bp;
};
struct vmebus_softc *vmebus_sc;/*XXX*/
/* autoconfiguration driver */
static int vmematch_iommu __P((struct device *, struct cfdata *, void *));
static void vmeattach_iommu __P((struct device *, struct device *, void *));
static int vmematch_mainbus __P((struct device *, struct cfdata *, void *));
static void vmeattach_mainbus __P((struct device *, struct device *, void *));
#if defined(SUN4)
int vmeintr4 __P((void *));
#endif
#if defined(SUN4M)
int vmeintr4m __P((void *));
static int sparc_vme_error __P((void));
#endif
static int sparc_vme_probe __P((void *, bus_space_tag_t, vme_addr_t,
size_t, vme_size_t, vme_mod_t,
int (*) __P((void *, void *)), void *));
static int sparc_vme_map __P((void *, vme_addr_t, vme_size_t, vme_mod_t,
bus_space_tag_t, bus_space_handle_t *));
static void sparc_vme_unmap __P((void *));
static int sparc_vme_mmap_cookie __P((void *, vme_addr_t, vme_mod_t,
bus_space_tag_t, bus_space_handle_t *));
static int sparc_vme_intr_map __P((void *, int, int, vme_intr_handle_t *));
static void * sparc_vme_intr_establish __P((void *, vme_intr_handle_t,
int (*) __P((void *)), void *));
static void sparc_vme_intr_disestablish __P((void *, void *));
static int vmebus_translate __P((struct vmebus_softc *, vme_mod_t,
vme_addr_t, bus_type_t *, bus_addr_t *));
static void sparc_vme_bus_establish __P((void *, struct device *));
#if defined(SUN4M)
static void sparc_vme4m_barrier __P(( bus_space_tag_t, bus_space_handle_t,
bus_size_t, bus_size_t, int));
#endif
/*
* DMA functions.
*/
#if defined(SUN4)
static int sparc_vme4_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
bus_size_t, struct proc *, int));
static void sparc_vme4_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
static void sparc_vme4_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t,
bus_addr_t, bus_size_t, int));
static int sparc_vme4_dmamem_alloc __P((bus_dma_tag_t, bus_size_t,
bus_size_t, bus_size_t, bus_dma_segment_t *,
int, int *, int));
static void sparc_vme4_dmamem_free __P((bus_dma_tag_t,
bus_dma_segment_t *, int));
#endif
#if defined(SUN4M)
static int sparc_vme4m_dmamap_create __P((bus_dma_tag_t, bus_size_t, int,
bus_size_t, bus_size_t, int, bus_dmamap_t *));
static int sparc_vme4m_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
bus_size_t, struct proc *, int));
static void sparc_vme4m_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
static void sparc_vme4m_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t,
bus_addr_t, bus_size_t, int));
static int sparc_vme4m_dmamem_alloc __P((bus_dma_tag_t, bus_size_t,
bus_size_t, bus_size_t, bus_dma_segment_t *,
int, int *, int));
static void sparc_vme4m_dmamem_free __P((bus_dma_tag_t,
bus_dma_segment_t *, int));
#endif
static int sparc_vme_dmamem_map __P((bus_dma_tag_t, bus_dma_segment_t *,
int, size_t, caddr_t *, int));
#if 0
static void sparc_vme_dmamap_destroy __P((bus_dma_tag_t, bus_dmamap_t));
static void sparc_vme_dmamem_unmap __P((bus_dma_tag_t, caddr_t, size_t));
static int sparc_vme_dmamem_mmap __P((bus_dma_tag_t,
bus_dma_segment_t *, int, int, int, int));
#endif
struct cfattach vme_mainbus_ca = {
sizeof(struct vmebus_softc), vmematch_mainbus, vmeattach_mainbus
};
struct cfattach vme_iommu_ca = {
sizeof(struct vmebus_softc), vmematch_iommu, vmeattach_iommu
};
int (*vmeerr_handler) __P((void));
/* If the PROM does not provide the `ranges' property, we make up our own */
struct rom_range vmebus_translations[] = {
#define _DS (VMEMOD_D|VMEMOD_S)
{ VMEMOD_A16|_DS, 0, PMAP_VME16, 0xffff0000, 0 },
{ VMEMOD_A24|_DS, 0, PMAP_VME16, 0xff000000, 0 },
{ VMEMOD_A32|_DS, 0, PMAP_VME16, 0x00000000, 0 },
{ VMEMOD_A16|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xffff0000, 0 },
{ VMEMOD_A24|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xff000000, 0 },
{ VMEMOD_A32|VMEMOD_D32|_DS, 0, PMAP_VME32, 0x00000000, 0 }
#undef _DS
};
/*
* DMA on sun4 VME devices use the last MB of virtual space, which
* is mapped by hardware onto the first MB of VME space.
*/
struct extent *vme_dvmamap;
struct sparc_bus_space_tag sparc_vme_bus_tag = {
NULL, /* cookie */
NULL, /* parent bus tag */
NULL, /* bus_map */
NULL, /* bus_unmap */
NULL, /* bus_subregion */
NULL /* barrier */
};
struct vme_chipset_tag sparc_vme_chipset_tag = {
NULL,
sparc_vme_probe,
sparc_vme_map,
sparc_vme_unmap,
sparc_vme_mmap_cookie,
sparc_vme_intr_map,
sparc_vme_intr_establish,
sparc_vme_intr_disestablish,
sparc_vme_bus_establish
};
#if defined(SUN4)
struct sparc_bus_dma_tag sparc_vme4_dma_tag = {
NULL, /* cookie */
_bus_dmamap_create,
_bus_dmamap_destroy,
sparc_vme4_dmamap_load,
_bus_dmamap_load_mbuf,
_bus_dmamap_load_uio,
_bus_dmamap_load_raw,
sparc_vme4_dmamap_unload,
sparc_vme4_dmamap_sync,
sparc_vme4_dmamem_alloc,
sparc_vme4_dmamem_free,
sparc_vme_dmamem_map,
_bus_dmamem_unmap,
_bus_dmamem_mmap
};
#endif
#if defined(SUN4M)
struct sparc_bus_dma_tag sparc_vme4m_dma_tag = {
NULL, /* cookie */
sparc_vme4m_dmamap_create,
_bus_dmamap_destroy,
sparc_vme4m_dmamap_load,
_bus_dmamap_load_mbuf,
_bus_dmamap_load_uio,
_bus_dmamap_load_raw,
sparc_vme4m_dmamap_unload,
sparc_vme4m_dmamap_sync,
sparc_vme4m_dmamem_alloc,
sparc_vme4m_dmamem_free,
sparc_vme_dmamem_map,
_bus_dmamem_unmap,
_bus_dmamem_mmap
};
#endif
void
sparc_vme_bus_establish(cookie, dev)
void *cookie;
struct device *dev;
{
struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
struct bootpath *bp = sc->sc_bp;
char *name;
name = dev->dv_cfdata->cf_driver->cd_name;
#ifdef DEBUG
printf("sparc_vme_bus_establish: %s%d\n", name, dev->dv_unit);
#endif
if (bp != NULL && strcmp(bp->name, name) == 0 &&
dev->dv_unit == bp->val[1]) {
bp->dev = dev;
#ifdef DEBUG
printf("sparc_vme_bus_establish: on the boot path\n");
#endif
sc->sc_bp++;
bootpath_store(1, sc->sc_bp);
}
}
int
vmematch_mainbus(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
struct mainbus_attach_args *ma = aux;
if (!CPU_ISSUN4)
return (0);
return (strcmp(cf->cf_driver->cd_name, ma->ma_name) == 0);
}
int
vmematch_iommu(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
struct iommu_attach_args *ia = aux;
return (strcmp(cf->cf_driver->cd_name, ia->iom_name) == 0);
}
void
vmeattach_mainbus(parent, self, aux)
struct device *parent, *self;
void *aux;
{
#if defined(SUN4)
struct mainbus_attach_args *ma = aux;
struct vmebus_softc *sc = (struct vmebus_softc *)self;
struct vme_busattach_args vba;
if (self->dv_unit > 0) {
printf(" unsupported\n");
return;
}
sc->sc_bustag = ma->ma_bustag;
sc->sc_dmatag = ma->ma_dmatag;
if (ma->ma_bp != NULL && strcmp(ma->ma_bp->name, "vme") == 0) {
sc->sc_bp = ma->ma_bp + 1;
bootpath_store(1, sc->sc_bp);
}
/* VME interrupt entry point */
sc->sc_vmeintr = vmeintr4;
/*XXX*/ sparc_vme_chipset_tag.cookie = self;
/*XXX*/ sparc_vme4_dma_tag._cookie = self;
sparc_vme_bus_tag.parent = ma->ma_bustag;
vba.vba_bustag = &sparc_vme_bus_tag;
vba.vba_chipset_tag = &sparc_vme_chipset_tag;
vba.vba_dmatag = &sparc_vme4_dma_tag;
/* Fall back to our own `range' construction */
sc->sc_range = vmebus_translations;
sc->sc_nrange =
sizeof(vmebus_translations)/sizeof(vmebus_translations[0]);
vme_dvmamap = extent_create("vmedvma", VME4_DVMA_BASE, VME4_DVMA_END,
M_DEVBUF, 0, 0, EX_NOWAIT);
if (vme_dvmamap == NULL)
panic("vme: unable to allocate DVMA map");
printf("\n");
(void)config_search(vmesearch, self, &vba);
bootpath_store(1, NULL);
#endif
return;
}
/* sun4m vmebus */
void
vmeattach_iommu(parent, self, aux)
struct device *parent, *self;
void *aux;
{
#if defined(SUN4M)
struct vmebus_softc *sc = (struct vmebus_softc *)self;
struct iommu_attach_args *ia = aux;
struct vme_busattach_args vba;
bus_space_handle_t bh;
int node;
int cline;
if (self->dv_unit > 0) {
printf(" unsupported\n");
return;
}
sc->sc_bustag = ia->iom_bustag;
sc->sc_dmatag = ia->iom_dmatag;
/* VME interrupt entry point */
sc->sc_vmeintr = vmeintr4m;
/*XXX*/ sparc_vme_chipset_tag.cookie = self;
/*XXX*/ sparc_vme4m_dma_tag._cookie = self;
sparc_vme_bus_tag.sparc_bus_barrier = sparc_vme4m_barrier;
vba.vba_bustag = &sparc_vme_bus_tag;
vba.vba_chipset_tag = &sparc_vme_chipset_tag;
vba.vba_dmatag = &sparc_vme4m_dma_tag;
node = ia->iom_node;
/*
* Map VME control space
*/
if (ia->iom_nreg < 2) {
printf("%s: only %d register sets\n", self->dv_xname,
ia->iom_nreg);
return;
}
if (bus_space_map2(ia->iom_bustag,
(bus_type_t)ia->iom_reg[0].ior_iospace,
(bus_addr_t)ia->iom_reg[0].ior_pa,
(bus_size_t)ia->iom_reg[0].ior_size,
BUS_SPACE_MAP_LINEAR,
0, &bh) != 0) {
panic("%s: can't map vmebusreg", self->dv_xname);
}
sc->sc_reg = (struct vmebusreg *)bh;
if (bus_space_map2(ia->iom_bustag,
(bus_type_t)ia->iom_reg[1].ior_iospace,
(bus_addr_t)ia->iom_reg[1].ior_pa,
(bus_size_t)ia->iom_reg[1].ior_size,
BUS_SPACE_MAP_LINEAR,
0, &bh) != 0) {
panic("%s: can't map vmebusvec", self->dv_xname);
}
sc->sc_vec = (struct vmebusvec *)bh;
/*
* Map VME IO cache tags and flush control.
*/
if (bus_space_map2(ia->iom_bustag,
(bus_type_t)ia->iom_reg[1].ior_iospace,
(bus_addr_t)ia->iom_reg[1].ior_pa + VME_IOC_TAGOFFSET,
VME_IOC_SIZE,
BUS_SPACE_MAP_LINEAR,
0, &bh) != 0) {
panic("%s: can't map IOC tags", self->dv_xname);
}
sc->sc_ioctags = (u_int32_t *)bh;
if (bus_space_map2(ia->iom_bustag,
(bus_type_t)ia->iom_reg[1].ior_iospace,
(bus_addr_t)ia->iom_reg[1].ior_pa+VME_IOC_FLUSHOFFSET,
VME_IOC_SIZE,
BUS_SPACE_MAP_LINEAR,
0, &bh) != 0) {
panic("%s: can't map IOC flush registers", self->dv_xname);
}
sc->sc_iocflush = (u_int32_t *)bh;
/*XXX*/ sparc_vme_bus_tag.cookie = sc->sc_reg;
/*
* Get "range" property.
*/
if (getprop(node, "ranges", sizeof(struct rom_range),
&sc->sc_nrange, (void **)&sc->sc_range) != 0) {
panic("%s: can't get ranges property", self->dv_xname);
}
vmebus_sc = sc;
vmeerr_handler = sparc_vme_error;
/*
* Invalidate all IO-cache entries.
*/
for (cline = VME_IOC_SIZE/VME_IOC_LINESZ; cline > 0;) {
sc->sc_ioctags[--cline] = 0;
}
/* Enable IO-cache */
sc->sc_reg->vmebus_cr |= VMEBUS_CR_C;
printf(": version 0x%x\n",
sc->sc_reg->vmebus_cr & VMEBUS_CR_IMPL);
(void)config_search(vmesearch, self, &vba);
#endif
}
#if defined(SUN4M)
static int
sparc_vme_error()
{
struct vmebus_softc *sc = vmebus_sc;
u_int32_t afsr, afpa;
char bits[64];
afsr = sc->sc_reg->vmebus_afsr,
afpa = sc->sc_reg->vmebus_afar;
printf("VME error:\n\tAFSR %s\n",
bitmask_snprintf(afsr, VMEBUS_AFSR_BITS, bits, sizeof(bits)));
printf("\taddress: 0x%x%x\n", afsr, afpa);
return (0);
}
#endif
int
vmebus_translate(sc, mod, addr, btp, bap)
struct vmebus_softc *sc;
vme_mod_t mod;
vme_addr_t addr;
bus_type_t *btp;
bus_addr_t *bap;
{
int i;
for (i = 0; i < sc->sc_nrange; i++) {
if (sc->sc_range[i].cspace != mod)
continue;
/* We've found the connection to the parent bus */
*bap = sc->sc_range[i].poffset + addr;
*btp = sc->sc_range[i].pspace;
return (0);
}
return (ENOENT);
}
int
sparc_vme_probe(cookie, tag, addr, offset, size, mod, callback, arg)
void *cookie;
bus_space_tag_t tag;
vme_addr_t addr;
size_t offset;
vme_size_t size;
int mod;
int (*callback) __P((void *, void *));
void *arg;
{
struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
bus_type_t iospace;
bus_addr_t paddr;
if (vmebus_translate(sc, mod, addr, &iospace, &paddr) != 0)
return (0);
return (bus_space_probe(sc->sc_bustag, iospace, paddr, size, offset,
0, callback, arg));
}
int
sparc_vme_map(cookie, addr, size, mod, tag, hp)
void *cookie;
vme_addr_t addr;
vme_size_t size;
int mod;
bus_space_tag_t tag;
bus_space_handle_t *hp;
{
struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
bus_type_t iospace;
bus_addr_t paddr;
int error;
error = vmebus_translate(sc, mod, addr, &iospace, &paddr);
if (error != 0)
return (error);
return (bus_space_map2(sc->sc_bustag, iospace, paddr, size, 0, 0, hp));
}
int
sparc_vme_mmap_cookie(cookie, addr, mod, tag, hp)
void *cookie;
vme_addr_t addr;
int mod;
bus_space_tag_t tag;
bus_space_handle_t *hp;
{
struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
bus_type_t iospace;
bus_addr_t paddr;
int error;
error = vmebus_translate(sc, mod, addr, &iospace, &paddr);
if (error != 0)
return (error);
return (bus_space_mmap(sc->sc_bustag, iospace, paddr, 0, hp));
}
#if defined(SUN4M)
void
sparc_vme4m_barrier(t, h, offset, size, flags)
bus_space_tag_t t;
bus_space_handle_t h;
bus_size_t offset;
bus_size_t size;
int flags;
{
struct vmebusreg *vbp = (struct vmebusreg *)t->cookie;
/* Read async fault status to flush write-buffers */
(*(volatile int *)&vbp->vmebus_afsr);
}
#endif
/*
* VME Interrupt Priority Level to sparc Processor Interrupt Level.
*/
static int vme_ipl_to_pil[] = {
0,
2,
3,
5,
7,
9,
11,
13
};
/*
* All VME device interrupts go through vmeintr(). This function reads
* the VME vector from the bus, then dispatches the device interrupt
* handler. All handlers for devices that map to the same Processor
* Interrupt Level (according to the table above) are on a linked list
* of `sparc_vme_intr_handle' structures. The head of which is passed
* down as the argument to `vmeintr(void *arg)'.
*/
struct sparc_vme_intr_handle {
struct intrhand ih;
struct sparc_vme_intr_handle *next;
int vec; /* VME interrupt vector */
int pri; /* VME interrupt priority */
struct vmebus_softc *sc;/*XXX*/
};
#if defined(SUN4)
int
vmeintr4(arg)
void *arg;
{
struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
int level, vec;
int i = 0;
level = (ihp->pri << 1) | 1;
vec = ldcontrolb((caddr_t)(AC_VMEINTVEC | level));
if (vec == -1) {
printf("vme: spurious interrupt\n");
return 1; /* XXX - pretend we handled it, for now */
}
for (; ihp; ihp = ihp->next)
if (ihp->vec == vec && ihp->ih.ih_fun)
i += (ihp->ih.ih_fun)(ihp->ih.ih_arg);
return (i);
}
#endif
#if defined(SUN4M)
int
vmeintr4m(arg)
void *arg;
{
struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
int level, vec;
int i = 0;
level = (ihp->pri << 1) | 1;
#if 0
int pending;
/* Flush VME <=> Sbus write buffers */
(*(volatile int *)&ihp->sc->sc_reg->vmebus_afsr);
pending = *((int*)ICR_SI_PEND);
if ((pending & SINTR_VME(ihp->pri)) == 0) {
printf("vmeintr: non pending at pri %x(p 0x%x)\n",
ihp->pri, pending);
return (0);
}
#endif
#if 0
/* Why gives this a bus timeout sometimes? */
vec = ihp->sc->sc_vec->vmebusvec[level];
#else
/* so, arrange to catch the fault... */
{
extern struct user *proc0paddr;
extern int fkbyte __P((caddr_t, struct pcb *));
caddr_t addr = (caddr_t)&ihp->sc->sc_vec->vmebusvec[level];
struct pcb *xpcb;
u_long saveonfault;
int s;
s = splhigh();
if (curproc == NULL)
xpcb = (struct pcb *)proc0paddr;
else
xpcb = &curproc->p_addr->u_pcb;
saveonfault = (u_long)xpcb->pcb_onfault;
vec = fkbyte(addr, xpcb);
xpcb->pcb_onfault = (caddr_t)saveonfault;
splx(s);
}
#endif
if (vec == -1) {
printf("vme: spurious interrupt: ");
printf("SI: 0x%x, VME AFSR: 0x%x, VME AFAR 0x%x\n",
*((int*)ICR_SI_PEND),
ihp->sc->sc_reg->vmebus_afsr,
ihp->sc->sc_reg->vmebus_afar);
return (1); /* XXX - pretend we handled it, for now */
}
for (; ihp; ihp = ihp->next)
if (ihp->vec == vec && ihp->ih.ih_fun)
i += (ihp->ih.ih_fun)(ihp->ih.ih_arg);
return (i);
}
#endif
int
sparc_vme_intr_map(cookie, vec, pri, ihp)
void *cookie;
int vec;
int pri;
vme_intr_handle_t *ihp;
{
struct sparc_vme_intr_handle *ih;
ih = (vme_intr_handle_t)
malloc(sizeof(struct sparc_vme_intr_handle), M_DEVBUF, M_NOWAIT);
ih->pri = pri;
ih->vec = vec;
ih->sc = cookie;/*XXX*/
*ihp = ih;
return (0);
}
void *
sparc_vme_intr_establish(cookie, vih, func, arg)
void *cookie;
vme_intr_handle_t vih;
int (*func) __P((void *));
void *arg;
{
struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
struct sparc_vme_intr_handle *svih =
(struct sparc_vme_intr_handle *)vih;
struct intrhand *ih;
int level;
/* Translate VME priority to processor IPL */
level = vme_ipl_to_pil[svih->pri];
svih->ih.ih_fun = func;
svih->ih.ih_arg = arg;
svih->next = NULL;
/* ensure the interrupt subsystem will call us at this level */
for (ih = intrhand[level]; ih != NULL; ih = ih->ih_next)
if (ih->ih_fun == sc->sc_vmeintr)
break;
if (ih == NULL) {
ih = (struct intrhand *)
malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
if (ih == NULL)
panic("vme_addirq");
bzero(ih, sizeof *ih);
ih->ih_fun = sc->sc_vmeintr;
ih->ih_arg = vih;
intr_establish(level, ih);
} else {
svih->next = (vme_intr_handle_t)ih->ih_arg;
ih->ih_arg = vih;
}
return (NULL);
}
void
sparc_vme_unmap(cookie)
void * cookie;
{
/* Not implemented */
panic("sparc_vme_unmap");
}
void
sparc_vme_intr_disestablish(cookie, a)
void *cookie;
void *a;
{
/* Not implemented */
panic("sparc_vme_intr_disestablish");
}
/*
* VME DMA functions.
*/
#if defined(SUN4)
int
sparc_vme4_dmamap_load(t, map, buf, buflen, p, flags)
bus_dma_tag_t t;
bus_dmamap_t map;
void *buf;
bus_size_t buflen;
struct proc *p;
int flags;
{
bus_addr_t dvmaddr;
bus_size_t sgsize;
vaddr_t vaddr;
pmap_t pmap;
int pagesz = PAGE_SIZE;
int error;
error = extent_alloc(vme_dvmamap, round_page(buflen), NBPG,
map->_dm_boundary,
(flags & BUS_DMA_NOWAIT) == 0
? EX_WAITOK
: EX_NOWAIT,
(u_long *)&dvmaddr);
if (error != 0)
return (error);
vaddr = (vaddr_t)buf;
map->dm_mapsize = buflen;
map->dm_nsegs = 1;
map->dm_segs[0].ds_addr = dvmaddr + (vaddr & PGOFSET);
map->dm_segs[0].ds_len = buflen;
pmap = (p == NULL) ? pmap_kernel() : p->p_vmspace->vm_map.pmap;
for (; buflen > 0; ) {
paddr_t pa;
/*
* Get the physical address for this page.
*/
pa = pmap_extract(pmap, vaddr);
/*
* Compute the segment size, and adjust counts.
*/
sgsize = pagesz - ((u_long)vaddr & (pagesz - 1));
if (buflen < sgsize)
sgsize = buflen;
#ifdef notyet
if (have_iocache)
curaddr |= PG_IOC;
#endif
pmap_enter(pmap_kernel(), dvmaddr,
(pa & ~(pagesz-1)) | PMAP_NC,
VM_PROT_READ|VM_PROT_WRITE, 1, 0);
dvmaddr += pagesz;
vaddr += sgsize;
buflen -= sgsize;
}
/* Adjust DVMA address to VME view */
map->dm_segs[0].ds_addr -= VME4_DVMA_BASE;
return (0);
}
void
sparc_vme4_dmamap_unload(t, map)
bus_dma_tag_t t;
bus_dmamap_t map;
{
bus_addr_t addr;
bus_size_t len;
/* Go from VME to CPU view */
map->dm_segs[0].ds_addr += VME4_DVMA_BASE;
addr = map->dm_segs[0].ds_addr & ~PGOFSET;
len = round_page(map->dm_segs[0].ds_len);
/* Remove double-mapping in DVMA space */
pmap_remove(pmap_kernel(), addr, addr + len);
/* Release DVMA space */
if (extent_free(vme_dvmamap, addr, len, EX_NOWAIT) != 0)
printf("warning: %ld of DVMA space lost\n", len);
/* Mark the mappings as invalid. */
map->dm_mapsize = 0;
map->dm_nsegs = 0;
}
int
sparc_vme4_dmamem_alloc(t, size, alignment, boundary, segs, nsegs, rsegs, flags)
bus_dma_tag_t t;
bus_size_t size, alignment, boundary;
bus_dma_segment_t *segs;
int nsegs;
int *rsegs;
int flags;
{
bus_addr_t dvmaddr;
struct pglist *mlist;
vm_page_t m;
paddr_t pa;
int error;
size = round_page(size);
error = _bus_dmamem_alloc_common(t, size, alignment, boundary,
segs, nsegs, rsegs, flags);
if (error != 0)
return (error);
if (extent_alloc(vme_dvmamap, size, alignment, boundary,
(flags & BUS_DMA_NOWAIT) == 0 ? EX_WAITOK : EX_NOWAIT,
(u_long *)&dvmaddr) != 0)
return (ENOMEM);
/*
* Compute the location, size, and number of segments actually
* returned by the VM code.
*/
segs[0].ds_addr = dvmaddr - VME4_DVMA_BASE;
segs[0].ds_len = size;
*rsegs = 1;
/* Map memory into DVMA space */
mlist = segs[0]._ds_mlist;
for (m = TAILQ_FIRST(mlist); m != NULL; m = TAILQ_NEXT(m,pageq)) {
pa = VM_PAGE_TO_PHYS(m);
#ifdef notyet
if (have_iocache)
pa |= PG_IOC;
#endif
pmap_enter(pmap_kernel(), dvmaddr, pa | PMAP_NC,
VM_PROT_READ|VM_PROT_WRITE, 1, 0);
dvmaddr += PAGE_SIZE;
}
return (0);
}
void
sparc_vme4_dmamem_free(t, segs, nsegs)
bus_dma_tag_t t;
bus_dma_segment_t *segs;
int nsegs;
{
bus_addr_t addr;
bus_size_t len;
addr = segs[0].ds_addr + VME4_DVMA_BASE;
len = round_page(segs[0].ds_len);
/* Remove DVMA kernel map */
pmap_remove(pmap_kernel(), addr, addr + len);
/* Release DVMA address range */
if (extent_free(vme_dvmamap, addr, len, EX_NOWAIT) != 0)
printf("warning: %ld of DVMA space lost\n", len);
/*
* Return the list of pages back to the VM system.
*/
_bus_dmamem_free_common(t, segs, nsegs);
}
void
sparc_vme4_dmamap_sync(t, map, offset, len, ops)
bus_dma_tag_t t;
bus_dmamap_t map;
bus_addr_t offset;
bus_size_t len;
int ops;
{
/*
* XXX Should perform cache flushes as necessary (e.g. 4/200 W/B).
* Currently the cache is flushed in bus_dma_load()...
*/
}
#endif /* SUN4 */
#if defined(SUN4M)
static int
sparc_vme4m_dmamap_create (t, size, nsegments, maxsegsz, boundary, flags, dmamp)
bus_dma_tag_t t;
bus_size_t size;
int nsegments;
bus_size_t maxsegsz;
bus_size_t boundary;
int flags;
bus_dmamap_t *dmamp;
{
struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
int error;
/* XXX - todo: allocate DVMA addresses from assigned ranges:
upper 8MB for A32 space; upper 1MB for A24 space */
error = bus_dmamap_create(sc->sc_dmatag, size, nsegments, maxsegsz,
boundary, flags, dmamp);
if (error != 0)
return (error);
#if 0
/* VME DVMA addresses must always be 8K aligned */
(*dmamp)->_dm_align = 8192;
#endif
return (0);
}
int
sparc_vme4m_dmamap_load(t, map, buf, buflen, p, flags)
bus_dma_tag_t t;
bus_dmamap_t map;
void *buf;
bus_size_t buflen;
struct proc *p;
int flags;
{
struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
volatile u_int32_t *ioctags;
int error;
buflen = (buflen + VME_IOC_PAGESZ - 1) & ~(VME_IOC_PAGESZ - 1);
error = bus_dmamap_load(sc->sc_dmatag, map, buf, buflen, p, flags);
if (error != 0)
return (error);
/* allocate IO cache entries for this range */
ioctags = sc->sc_ioctags + VME_IOC_LINE(map->dm_segs[0].ds_addr);
for (;buflen > 0;) {
*ioctags = VME_IOC_IC | VME_IOC_W;
ioctags += VME_IOC_LINESZ/sizeof(*ioctags);
buflen -= VME_IOC_PAGESZ;
}
return (0);
}
void
sparc_vme4m_dmamap_unload(t, map)
bus_dma_tag_t t;
bus_dmamap_t map;
{
struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
volatile u_int32_t *flushregs;
int len;
/* Flush VME IO cache */
len = map->dm_segs[0].ds_len;
flushregs = sc->sc_iocflush + VME_IOC_LINE(map->dm_segs[0].ds_addr);
for (;len > 0;) {
*flushregs = 0;
flushregs += VME_IOC_LINESZ/sizeof(*flushregs);
len -= VME_IOC_PAGESZ;
}
/* Read a tag to synchronize the IOC flushes */
(*sc->sc_ioctags);
bus_dmamap_unload(sc->sc_dmatag, map);
}
int
sparc_vme4m_dmamem_alloc(t, size, alignmnt, boundary, segs, nsegs, rsegs, flags)
bus_dma_tag_t t;
bus_size_t size, alignmnt, boundary;
bus_dma_segment_t *segs;
int nsegs;
int *rsegs;
int flags;
{
struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
int error;
error = bus_dmamem_alloc(sc->sc_dmatag, size, alignmnt, boundary,
segs, nsegs, rsegs, flags);
if (error != 0)
return (error);
return (0);
}
void
sparc_vme4m_dmamem_free(t, segs, nsegs)
bus_dma_tag_t t;
bus_dma_segment_t *segs;
int nsegs;
{
struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
bus_dmamem_free(sc->sc_dmatag, segs, nsegs);
}
void
sparc_vme4m_dmamap_sync(t, map, offset, len, ops)
bus_dma_tag_t t;
bus_dmamap_t map;
bus_addr_t offset;
bus_size_t len;
int ops;
{
/*
* XXX Should perform cache flushes as necessary.
*/
}
#endif /* SUN4M */
int
sparc_vme_dmamem_map(t, segs, nsegs, size, kvap, flags)
bus_dma_tag_t t;
bus_dma_segment_t *segs;
int nsegs;
size_t size;
caddr_t *kvap;
int flags;
{
struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
return (bus_dmamem_map(sc->sc_dmatag, segs, nsegs, size, kvap, flags));
}