NetBSD/sys/crypto/rijndael/rijndael-api-fst.c
2005-02-26 22:58:54 +00:00

376 lines
10 KiB
C

/* $NetBSD: rijndael-api-fst.c,v 1.18 2005/02/26 23:04:17 perry Exp $ */
/**
* rijndael-api-fst.c
*
* @version 2.9 (December 2000)
*
* Optimised ANSI C code for the Rijndael cipher (now AES)
*
* @author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>
* @author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>
* @author Paulo Barreto <paulo.barreto@terra.com.br>
*
* This code is hereby placed in the public domain.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Acknowledgements:
*
* We are deeply indebted to the following people for their bug reports,
* fixes, and improvement suggestions to this implementation. Though we
* tried to list all contributions, we apologise in advance for any
* missing reference.
*
* Andrew Bales <Andrew.Bales@Honeywell.com>
* Markus Friedl <markus.friedl@informatik.uni-erlangen.de>
* John Skodon <skodonj@webquill.com>
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rijndael-api-fst.c,v 1.18 2005/02/26 23:04:17 perry Exp $");
#include <sys/param.h>
#ifdef _KERNEL
#include <sys/systm.h>
#else
#include <stdlib.h>
#include <string.h>
#endif
#include <crypto/rijndael/rijndael_local.h>
#include <crypto/rijndael/rijndael-alg-fst.h>
#include <crypto/rijndael/rijndael-api-fst.h>
int rijndael_makeKey(keyInstance *key, BYTE direction, int keyLen, char *keyMaterial) {
u_int8_t cipherKey[RIJNDAEL_MAXKB];
if (key == NULL) {
return BAD_KEY_INSTANCE;
}
if ((direction == DIR_ENCRYPT) || (direction == DIR_DECRYPT)) {
key->direction = direction;
} else {
return BAD_KEY_DIR;
}
if ((keyLen == 128) || (keyLen == 192) || (keyLen == 256)) {
key->keyLen = keyLen;
} else {
return BAD_KEY_MAT;
}
if (keyMaterial != NULL) {
memcpy(key->keyMaterial, keyMaterial, keyLen/8);
}
/* initialize key schedule: */
memcpy(cipherKey, key->keyMaterial, keyLen/8);
if (direction == DIR_ENCRYPT) {
key->Nr = rijndaelKeySetupEnc(key->rk, cipherKey, keyLen);
} else {
key->Nr = rijndaelKeySetupDec(key->rk, cipherKey, keyLen);
}
rijndaelKeySetupEnc(key->ek, cipherKey, keyLen);
return TRUE;
}
int rijndael_cipherInit(cipherInstance *cipher, BYTE mode, char *IV) {
if ((mode == MODE_ECB) || (mode == MODE_CBC) || (mode == MODE_CFB1)) {
cipher->mode = mode;
} else {
return BAD_CIPHER_MODE;
}
if (IV != NULL) {
memcpy(cipher->IV, IV, RIJNDAEL_MAX_IV_SIZE);
} else {
memset(cipher->IV, 0, RIJNDAEL_MAX_IV_SIZE);
}
return TRUE;
}
int rijndael_blockEncrypt(cipherInstance *cipher, keyInstance *key,
BYTE *input, int inputLen, BYTE *outBuffer) {
int i, k, t, numBlocks;
u_int8_t block[16], *iv;
if (cipher == NULL ||
key == NULL ||
key->direction == DIR_DECRYPT) {
return BAD_CIPHER_STATE;
}
if (input == NULL || inputLen <= 0) {
return 0; /* nothing to do */
}
numBlocks = inputLen/128;
switch (cipher->mode) {
case MODE_ECB:
for (i = numBlocks; i > 0; i--) {
rijndaelEncrypt(key->rk, key->Nr, input, outBuffer);
input += 16;
outBuffer += 16;
}
break;
case MODE_CBC:
iv = (u_int8_t *)cipher->IV;
for (i = numBlocks; i > 0; i--) {
((u_int32_t*)block)[0] = ((u_int32_t*)input)[0] ^ ((u_int32_t*)iv)[0];
((u_int32_t*)block)[1] = ((u_int32_t*)input)[1] ^ ((u_int32_t*)iv)[1];
((u_int32_t*)block)[2] = ((u_int32_t*)input)[2] ^ ((u_int32_t*)iv)[2];
((u_int32_t*)block)[3] = ((u_int32_t*)input)[3] ^ ((u_int32_t*)iv)[3];
rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
iv = outBuffer;
input += 16;
outBuffer += 16;
}
break;
case MODE_CFB1:
iv = (u_int8_t *)cipher->IV;
for (i = numBlocks; i > 0; i--) {
memcpy(outBuffer, input, 16);
for (k = 0; k < 128; k++) {
rijndaelEncrypt(key->ek, key->Nr, iv, block);
outBuffer[k >> 3] ^= (block[0] & 0x80U) >> (k & 7);
for (t = 0; t < 15; t++) {
iv[t] = (iv[t] << 1) | (iv[t + 1] >> 7);
}
iv[15] = (iv[15] << 1) | ((outBuffer[k >> 3] >> (7 - (k & 7))) & 1);
}
outBuffer += 16;
input += 16;
}
break;
default:
return BAD_CIPHER_STATE;
}
return 128*numBlocks;
}
/**
* Encrypt data partitioned in octets, using RFC 2040-like padding.
*
* @param input data to be encrypted (octet sequence)
* @param inputOctets input length in octets (not bits)
* @param outBuffer encrypted output data
*
* @return length in octets (not bits) of the encrypted output buffer.
*/
int rijndael_padEncrypt(cipherInstance *cipher, keyInstance *key,
BYTE *input, int inputOctets, BYTE *outBuffer) {
int i, numBlocks, padLen;
u_int8_t block[16], *iv;
if (cipher == NULL ||
key == NULL ||
key->direction == DIR_DECRYPT) {
return BAD_CIPHER_STATE;
}
if (input == NULL || inputOctets <= 0) {
return 0; /* nothing to do */
}
numBlocks = inputOctets/16;
switch (cipher->mode) {
case MODE_ECB:
for (i = numBlocks; i > 0; i--) {
rijndaelEncrypt(key->rk, key->Nr, input, outBuffer);
input += 16;
outBuffer += 16;
}
padLen = 16 - (inputOctets - 16*numBlocks);
memcpy(block, input, 16 - padLen);
memset(block + 16 - padLen, padLen, padLen);
rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
break;
case MODE_CBC:
iv = (u_int8_t *)cipher->IV;
for (i = numBlocks; i > 0; i--) {
((u_int32_t*)block)[0] = ((u_int32_t*)input)[0] ^ ((u_int32_t*)iv)[0];
((u_int32_t*)block)[1] = ((u_int32_t*)input)[1] ^ ((u_int32_t*)iv)[1];
((u_int32_t*)block)[2] = ((u_int32_t*)input)[2] ^ ((u_int32_t*)iv)[2];
((u_int32_t*)block)[3] = ((u_int32_t*)input)[3] ^ ((u_int32_t*)iv)[3];
rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
iv = outBuffer;
input += 16;
outBuffer += 16;
}
padLen = 16 - (inputOctets - 16*numBlocks);
for (i = 0; i < 16 - padLen; i++) {
block[i] = input[i] ^ iv[i];
}
for (i = 16 - padLen; i < 16; i++) {
block[i] = (BYTE)padLen ^ iv[i];
}
rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
break;
default:
return BAD_CIPHER_STATE;
}
return 16*(numBlocks + 1);
}
int rijndael_blockDecrypt(cipherInstance *cipher, keyInstance *key,
BYTE *input, int inputLen, BYTE *outBuffer) {
int i, k, t, numBlocks;
u_int8_t block[16], *iv;
if (cipher == NULL ||
key == NULL ||
(cipher->mode != MODE_CFB1 && key->direction == DIR_ENCRYPT)) {
return BAD_CIPHER_STATE;
}
if (input == NULL || inputLen <= 0) {
return 0; /* nothing to do */
}
numBlocks = inputLen/128;
switch (cipher->mode) {
case MODE_ECB:
for (i = numBlocks; i > 0; i--) {
rijndaelDecrypt(key->rk, key->Nr, input, outBuffer);
input += 16;
outBuffer += 16;
}
break;
case MODE_CBC:
iv = (u_int8_t *)cipher->IV;
for (i = numBlocks; i > 0; i--) {
rijndaelDecrypt(key->rk, key->Nr, input, block);
((u_int32_t*)block)[0] ^= ((u_int32_t*)iv)[0];
((u_int32_t*)block)[1] ^= ((u_int32_t*)iv)[1];
((u_int32_t*)block)[2] ^= ((u_int32_t*)iv)[2];
((u_int32_t*)block)[3] ^= ((u_int32_t*)iv)[3];
memcpy(cipher->IV, input, 16);
memcpy(outBuffer, block, 16);
input += 16;
outBuffer += 16;
}
break;
case MODE_CFB1:
iv = (u_int8_t *)cipher->IV;
for (i = numBlocks; i > 0; i--) {
memcpy(outBuffer, input, 16);
for (k = 0; k < 128; k++) {
rijndaelEncrypt(key->ek, key->Nr, iv, block);
for (t = 0; t < 15; t++) {
iv[t] = (iv[t] << 1) | (iv[t + 1] >> 7);
}
iv[15] = (iv[15] << 1) | ((input[k >> 3] >> (7 - (k & 7))) & 1);
outBuffer[k >> 3] ^= (block[0] & 0x80U) >> (k & 7);
}
outBuffer += 16;
input += 16;
}
break;
default:
return BAD_CIPHER_STATE;
}
return 128*numBlocks;
}
int rijndael_padDecrypt(cipherInstance *cipher, keyInstance *key,
BYTE *input, int inputOctets, BYTE *outBuffer) {
int i, numBlocks, padLen;
u_int8_t block[16];
if (cipher == NULL ||
key == NULL ||
key->direction == DIR_ENCRYPT) {
return BAD_CIPHER_STATE;
}
if (input == NULL || inputOctets <= 0) {
return 0; /* nothing to do */
}
if (inputOctets % 16 != 0) {
return BAD_DATA;
}
numBlocks = inputOctets/16;
switch (cipher->mode) {
case MODE_ECB:
/* all blocks but last */
for (i = numBlocks - 1; i > 0; i--) {
rijndaelDecrypt(key->rk, key->Nr, input, outBuffer);
input += 16;
outBuffer += 16;
}
/* last block */
rijndaelDecrypt(key->rk, key->Nr, input, block);
padLen = block[15];
if (padLen >= 16) {
return BAD_DATA;
}
for (i = 16 - padLen; i < 16; i++) {
if (block[i] != padLen) {
return BAD_DATA;
}
}
memcpy(outBuffer, block, 16 - padLen);
break;
case MODE_CBC:
/* all blocks but last */
for (i = numBlocks - 1; i > 0; i--) {
rijndaelDecrypt(key->rk, key->Nr, input, block);
((u_int32_t*)block)[0] ^= ((u_int32_t*)cipher->IV)[0];
((u_int32_t*)block)[1] ^= ((u_int32_t*)cipher->IV)[1];
((u_int32_t*)block)[2] ^= ((u_int32_t*)cipher->IV)[2];
((u_int32_t*)block)[3] ^= ((u_int32_t*)cipher->IV)[3];
memcpy(cipher->IV, input, 16);
memcpy(outBuffer, block, 16);
input += 16;
outBuffer += 16;
}
/* last block */
rijndaelDecrypt(key->rk, key->Nr, input, block);
((u_int32_t*)block)[0] ^= ((u_int32_t*)cipher->IV)[0];
((u_int32_t*)block)[1] ^= ((u_int32_t*)cipher->IV)[1];
((u_int32_t*)block)[2] ^= ((u_int32_t*)cipher->IV)[2];
((u_int32_t*)block)[3] ^= ((u_int32_t*)cipher->IV)[3];
padLen = block[15];
if (padLen <= 0 || padLen > 16) {
return BAD_DATA;
}
for (i = 16 - padLen; i < 16; i++) {
if (block[i] != padLen) {
return BAD_DATA;
}
}
memcpy(outBuffer, block, 16 - padLen);
break;
default:
return BAD_CIPHER_STATE;
}
return 16*numBlocks - padLen;
}