fd34ea77eb
kmem_alloc() with KM_SLEEP kmem_zalloc() with KM_SLEEP percpu_alloc() pserialize_create() psref_class_create() all of these paths include an assertion that the allocation has not failed, so callers should not assert that again.
389 lines
9.8 KiB
C
389 lines
9.8 KiB
C
/* $NetBSD: pktqueue.c,v 1.9 2017/06/01 02:45:14 chs Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2014 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Mindaugas Rasiukevicius.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* The packet queue (pktqueue) interface is a lockless IP input queue
|
|
* which also abstracts and handles network ISR scheduling. It provides
|
|
* a mechanism to enable receiver-side packet steering (RPS).
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: pktqueue.c,v 1.9 2017/06/01 02:45:14 chs Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/atomic.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/pcq.h>
|
|
#include <sys/intr.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/percpu.h>
|
|
|
|
#include <net/pktqueue.h>
|
|
|
|
/*
|
|
* WARNING: update this if struct pktqueue changes.
|
|
*/
|
|
#define PKTQ_CLPAD \
|
|
MAX(COHERENCY_UNIT, COHERENCY_UNIT - sizeof(kmutex_t) - sizeof(u_int))
|
|
|
|
struct pktqueue {
|
|
/*
|
|
* The lock used for a barrier mechanism. The barrier counter,
|
|
* as well as the drop counter, are managed atomically though.
|
|
* Ensure this group is in a separate cache line.
|
|
*/
|
|
kmutex_t pq_lock;
|
|
volatile u_int pq_barrier;
|
|
uint8_t _pad[PKTQ_CLPAD];
|
|
|
|
/* The size of the queue, counters and the interrupt handler. */
|
|
u_int pq_maxlen;
|
|
percpu_t * pq_counters;
|
|
void * pq_sih;
|
|
|
|
/* Finally, per-CPU queues. */
|
|
pcq_t * pq_queue[];
|
|
};
|
|
|
|
/* The counters of the packet queue. */
|
|
#define PQCNT_ENQUEUE 0
|
|
#define PQCNT_DEQUEUE 1
|
|
#define PQCNT_DROP 2
|
|
#define PQCNT_NCOUNTERS 3
|
|
|
|
typedef struct {
|
|
uint64_t count[PQCNT_NCOUNTERS];
|
|
} pktq_counters_t;
|
|
|
|
/* Special marker value used by pktq_barrier() mechanism. */
|
|
#define PKTQ_MARKER ((void *)(~0ULL))
|
|
|
|
/*
|
|
* The total size of pktqueue_t which depends on the number of CPUs.
|
|
*/
|
|
#define PKTQUEUE_STRUCT_LEN(ncpu) \
|
|
roundup2(offsetof(pktqueue_t, pq_queue[ncpu]), coherency_unit)
|
|
|
|
pktqueue_t *
|
|
pktq_create(size_t maxlen, void (*intrh)(void *), void *sc)
|
|
{
|
|
const u_int sflags = SOFTINT_NET | SOFTINT_MPSAFE | SOFTINT_RCPU;
|
|
const size_t len = PKTQUEUE_STRUCT_LEN(ncpu);
|
|
pktqueue_t *pq;
|
|
percpu_t *pc;
|
|
void *sih;
|
|
|
|
pc = percpu_alloc(sizeof(pktq_counters_t));
|
|
if ((sih = softint_establish(sflags, intrh, sc)) == NULL) {
|
|
percpu_free(pc, sizeof(pktq_counters_t));
|
|
return NULL;
|
|
}
|
|
|
|
pq = kmem_zalloc(len, KM_SLEEP);
|
|
for (u_int i = 0; i < ncpu; i++) {
|
|
pq->pq_queue[i] = pcq_create(maxlen, KM_SLEEP);
|
|
}
|
|
mutex_init(&pq->pq_lock, MUTEX_DEFAULT, IPL_NONE);
|
|
pq->pq_maxlen = maxlen;
|
|
pq->pq_counters = pc;
|
|
pq->pq_sih = sih;
|
|
|
|
return pq;
|
|
}
|
|
|
|
void
|
|
pktq_destroy(pktqueue_t *pq)
|
|
{
|
|
const size_t len = PKTQUEUE_STRUCT_LEN(ncpu);
|
|
|
|
for (u_int i = 0; i < ncpu; i++) {
|
|
pcq_t *q = pq->pq_queue[i];
|
|
KASSERT(pcq_peek(q) == NULL);
|
|
pcq_destroy(q);
|
|
}
|
|
percpu_free(pq->pq_counters, sizeof(pktq_counters_t));
|
|
softint_disestablish(pq->pq_sih);
|
|
mutex_destroy(&pq->pq_lock);
|
|
kmem_free(pq, len);
|
|
}
|
|
|
|
/*
|
|
* - pktq_inc_counter: increment the counter given an ID.
|
|
* - pktq_collect_counts: handler to sum up the counts from each CPU.
|
|
* - pktq_getcount: return the effective count given an ID.
|
|
*/
|
|
|
|
static inline void
|
|
pktq_inc_count(pktqueue_t *pq, u_int i)
|
|
{
|
|
percpu_t *pc = pq->pq_counters;
|
|
pktq_counters_t *c;
|
|
|
|
c = percpu_getref(pc);
|
|
c->count[i]++;
|
|
percpu_putref(pc);
|
|
}
|
|
|
|
static void
|
|
pktq_collect_counts(void *mem, void *arg, struct cpu_info *ci)
|
|
{
|
|
const pktq_counters_t *c = mem;
|
|
pktq_counters_t *sum = arg;
|
|
|
|
for (u_int i = 0; i < PQCNT_NCOUNTERS; i++) {
|
|
sum->count[i] += c->count[i];
|
|
}
|
|
}
|
|
|
|
uint64_t
|
|
pktq_get_count(pktqueue_t *pq, pktq_count_t c)
|
|
{
|
|
pktq_counters_t sum;
|
|
|
|
if (c != PKTQ_MAXLEN) {
|
|
memset(&sum, 0, sizeof(sum));
|
|
percpu_foreach(pq->pq_counters, pktq_collect_counts, &sum);
|
|
}
|
|
switch (c) {
|
|
case PKTQ_NITEMS:
|
|
return sum.count[PQCNT_ENQUEUE] - sum.count[PQCNT_DEQUEUE];
|
|
case PKTQ_DROPS:
|
|
return sum.count[PQCNT_DROP];
|
|
case PKTQ_MAXLEN:
|
|
return pq->pq_maxlen;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uint32_t
|
|
pktq_rps_hash(const struct mbuf *m __unused)
|
|
{
|
|
/*
|
|
* XXX: No distribution yet; the softnet_lock contention
|
|
* XXX: must be eliminated first.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* pktq_enqueue: inject the packet into the end of the queue.
|
|
*
|
|
* => Must be called from the interrupt or with the preemption disabled.
|
|
* => Consumes the packet and returns true on success.
|
|
* => Returns false on failure; caller is responsible to free the packet.
|
|
*/
|
|
bool
|
|
pktq_enqueue(pktqueue_t *pq, struct mbuf *m, const u_int hash __unused)
|
|
{
|
|
#if defined(_RUMPKERNEL) || defined(_RUMP_NATIVE_ABI)
|
|
const unsigned cpuid = curcpu()->ci_index;
|
|
#else
|
|
const unsigned cpuid = hash % ncpu;
|
|
#endif
|
|
|
|
KASSERT(kpreempt_disabled());
|
|
|
|
if (__predict_false(!pcq_put(pq->pq_queue[cpuid], m))) {
|
|
pktq_inc_count(pq, PQCNT_DROP);
|
|
return false;
|
|
}
|
|
softint_schedule_cpu(pq->pq_sih, cpu_lookup(cpuid));
|
|
pktq_inc_count(pq, PQCNT_ENQUEUE);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* pktq_dequeue: take a packet from the queue.
|
|
*
|
|
* => Must be called with preemption disabled.
|
|
* => Must ensure there are not concurrent dequeue calls.
|
|
*/
|
|
struct mbuf *
|
|
pktq_dequeue(pktqueue_t *pq)
|
|
{
|
|
const struct cpu_info *ci = curcpu();
|
|
const unsigned cpuid = cpu_index(ci);
|
|
struct mbuf *m;
|
|
|
|
m = pcq_get(pq->pq_queue[cpuid]);
|
|
if (__predict_false(m == PKTQ_MARKER)) {
|
|
/* Note the marker entry. */
|
|
atomic_inc_uint(&pq->pq_barrier);
|
|
return NULL;
|
|
}
|
|
if (__predict_true(m != NULL)) {
|
|
pktq_inc_count(pq, PQCNT_DEQUEUE);
|
|
}
|
|
return m;
|
|
}
|
|
|
|
/*
|
|
* pktq_barrier: waits for a grace period when all packets enqueued at
|
|
* the moment of calling this routine will be processed. This is used
|
|
* to ensure that e.g. packets referencing some interface were drained.
|
|
*/
|
|
void
|
|
pktq_barrier(pktqueue_t *pq)
|
|
{
|
|
u_int pending = 0;
|
|
|
|
mutex_enter(&pq->pq_lock);
|
|
KASSERT(pq->pq_barrier == 0);
|
|
|
|
for (u_int i = 0; i < ncpu; i++) {
|
|
pcq_t *q = pq->pq_queue[i];
|
|
|
|
/* If the queue is empty - nothing to do. */
|
|
if (pcq_peek(q) == NULL) {
|
|
continue;
|
|
}
|
|
/* Otherwise, put the marker and entry. */
|
|
while (!pcq_put(q, PKTQ_MARKER)) {
|
|
kpause("pktqsync", false, 1, NULL);
|
|
}
|
|
kpreempt_disable();
|
|
softint_schedule_cpu(pq->pq_sih, cpu_lookup(i));
|
|
kpreempt_enable();
|
|
pending++;
|
|
}
|
|
|
|
/* Wait for each queue to process the markers. */
|
|
while (pq->pq_barrier != pending) {
|
|
kpause("pktqsync", false, 1, NULL);
|
|
}
|
|
pq->pq_barrier = 0;
|
|
mutex_exit(&pq->pq_lock);
|
|
}
|
|
|
|
/*
|
|
* pktq_flush: free mbufs in all queues.
|
|
*
|
|
* => The caller must ensure there are no concurrent writers or flush calls.
|
|
*/
|
|
void
|
|
pktq_flush(pktqueue_t *pq)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
for (u_int i = 0; i < ncpu; i++) {
|
|
while ((m = pcq_get(pq->pq_queue[i])) != NULL) {
|
|
pktq_inc_count(pq, PQCNT_DEQUEUE);
|
|
m_freem(m);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* pktq_set_maxlen: create per-CPU queues using a new size and replace
|
|
* the existing queues without losing any packets.
|
|
*/
|
|
int
|
|
pktq_set_maxlen(pktqueue_t *pq, size_t maxlen)
|
|
{
|
|
const u_int slotbytes = ncpu * sizeof(pcq_t *);
|
|
pcq_t **qs;
|
|
|
|
if (!maxlen || maxlen > PCQ_MAXLEN)
|
|
return EINVAL;
|
|
if (pq->pq_maxlen == maxlen)
|
|
return 0;
|
|
|
|
/* First, allocate the new queues and replace them. */
|
|
qs = kmem_zalloc(slotbytes, KM_SLEEP);
|
|
for (u_int i = 0; i < ncpu; i++) {
|
|
qs[i] = pcq_create(maxlen, KM_SLEEP);
|
|
}
|
|
mutex_enter(&pq->pq_lock);
|
|
for (u_int i = 0; i < ncpu; i++) {
|
|
/* Swap: store of a word is atomic. */
|
|
pcq_t *q = pq->pq_queue[i];
|
|
pq->pq_queue[i] = qs[i];
|
|
qs[i] = q;
|
|
}
|
|
pq->pq_maxlen = maxlen;
|
|
mutex_exit(&pq->pq_lock);
|
|
|
|
/*
|
|
* At this point, the new packets are flowing into the new
|
|
* queues. However, the old queues may have some packets
|
|
* present which are no longer being processed. We are going
|
|
* to re-enqueue them. This may change the order of packet
|
|
* arrival, but it is not considered an issue.
|
|
*
|
|
* There may be in-flight interrupts calling pktq_dequeue()
|
|
* which reference the old queues. Issue a barrier to ensure
|
|
* that we are going to be the only pcq_get() callers on the
|
|
* old queues.
|
|
*/
|
|
pktq_barrier(pq);
|
|
|
|
for (u_int i = 0; i < ncpu; i++) {
|
|
struct mbuf *m;
|
|
|
|
while ((m = pcq_get(qs[i])) != NULL) {
|
|
while (!pcq_put(pq->pq_queue[i], m)) {
|
|
kpause("pktqrenq", false, 1, NULL);
|
|
}
|
|
}
|
|
pcq_destroy(qs[i]);
|
|
}
|
|
|
|
/* Well, that was fun. */
|
|
kmem_free(qs, slotbytes);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
sysctl_pktq_maxlen(SYSCTLFN_ARGS, pktqueue_t *pq)
|
|
{
|
|
u_int nmaxlen = pktq_get_count(pq, PKTQ_MAXLEN);
|
|
struct sysctlnode node = *rnode;
|
|
int error;
|
|
|
|
node.sysctl_data = &nmaxlen;
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
if (error || newp == NULL)
|
|
return error;
|
|
return pktq_set_maxlen(pq, nmaxlen);
|
|
}
|
|
|
|
int
|
|
sysctl_pktq_count(SYSCTLFN_ARGS, pktqueue_t *pq, u_int count_id)
|
|
{
|
|
int count = pktq_get_count(pq, count_id);
|
|
struct sysctlnode node = *rnode;
|
|
node.sysctl_data = &count;
|
|
return sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
}
|