7f125220f4
idle pool pages to be returned to the system immediately upon becoming de-fragmented. Also, in pool_do_put(), don't free back an idle page unless we are over our minimum page claim.
2113 lines
50 KiB
C
2113 lines
50 KiB
C
/* $NetBSD: subr_pool.c,v 1.90 2004/01/09 19:00:16 thorpej Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
|
|
* Simulation Facility, NASA Ames Research Center.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.90 2004/01/09 19:00:16 thorpej Exp $");
|
|
|
|
#include "opt_pool.h"
|
|
#include "opt_poollog.h"
|
|
#include "opt_lockdebug.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/syslog.h>
|
|
|
|
#include <uvm/uvm.h>
|
|
|
|
/*
|
|
* Pool resource management utility.
|
|
*
|
|
* Memory is allocated in pages which are split into pieces according to
|
|
* the pool item size. Each page is kept on one of three lists in the
|
|
* pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
|
|
* for empty, full and partially-full pages respectively. The individual
|
|
* pool items are on a linked list headed by `ph_itemlist' in each page
|
|
* header. The memory for building the page list is either taken from
|
|
* the allocated pages themselves (for small pool items) or taken from
|
|
* an internal pool of page headers (`phpool').
|
|
*/
|
|
|
|
/* List of all pools */
|
|
TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
|
|
|
|
/* Private pool for page header structures */
|
|
static struct pool phpool;
|
|
|
|
#ifdef POOL_SUBPAGE
|
|
/* Pool of subpages for use by normal pools. */
|
|
static struct pool psppool;
|
|
#endif
|
|
|
|
/* # of seconds to retain page after last use */
|
|
int pool_inactive_time = 10;
|
|
|
|
/* Next candidate for drainage (see pool_drain()) */
|
|
static struct pool *drainpp;
|
|
|
|
/* This spin lock protects both pool_head and drainpp. */
|
|
struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
|
|
|
|
struct pool_item_header {
|
|
/* Page headers */
|
|
LIST_ENTRY(pool_item_header)
|
|
ph_pagelist; /* pool page list */
|
|
TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
|
|
SPLAY_ENTRY(pool_item_header)
|
|
ph_node; /* Off-page page headers */
|
|
unsigned int ph_nmissing; /* # of chunks in use */
|
|
caddr_t ph_page; /* this page's address */
|
|
struct timeval ph_time; /* last referenced */
|
|
};
|
|
|
|
struct pool_item {
|
|
#ifdef DIAGNOSTIC
|
|
u_int pi_magic;
|
|
#endif
|
|
#define PI_MAGIC 0xdeadbeefU
|
|
/* Other entries use only this list entry */
|
|
TAILQ_ENTRY(pool_item) pi_list;
|
|
};
|
|
|
|
#define POOL_NEEDS_CATCHUP(pp) \
|
|
((pp)->pr_nitems < (pp)->pr_minitems)
|
|
|
|
/*
|
|
* Pool cache management.
|
|
*
|
|
* Pool caches provide a way for constructed objects to be cached by the
|
|
* pool subsystem. This can lead to performance improvements by avoiding
|
|
* needless object construction/destruction; it is deferred until absolutely
|
|
* necessary.
|
|
*
|
|
* Caches are grouped into cache groups. Each cache group references
|
|
* up to 16 constructed objects. When a cache allocates an object
|
|
* from the pool, it calls the object's constructor and places it into
|
|
* a cache group. When a cache group frees an object back to the pool,
|
|
* it first calls the object's destructor. This allows the object to
|
|
* persist in constructed form while freed to the cache.
|
|
*
|
|
* Multiple caches may exist for each pool. This allows a single
|
|
* object type to have multiple constructed forms. The pool references
|
|
* each cache, so that when a pool is drained by the pagedaemon, it can
|
|
* drain each individual cache as well. Each time a cache is drained,
|
|
* the most idle cache group is freed to the pool in its entirety.
|
|
*
|
|
* Pool caches are layed on top of pools. By layering them, we can avoid
|
|
* the complexity of cache management for pools which would not benefit
|
|
* from it.
|
|
*/
|
|
|
|
/* The cache group pool. */
|
|
static struct pool pcgpool;
|
|
|
|
static void pool_cache_reclaim(struct pool_cache *);
|
|
|
|
static int pool_catchup(struct pool *);
|
|
static void pool_prime_page(struct pool *, caddr_t,
|
|
struct pool_item_header *);
|
|
static void pool_update_curpage(struct pool *);
|
|
|
|
void *pool_allocator_alloc(struct pool *, int);
|
|
void pool_allocator_free(struct pool *, void *);
|
|
|
|
static void pool_print_pagelist(struct pool_pagelist *,
|
|
void (*)(const char *, ...));
|
|
static void pool_print1(struct pool *, const char *,
|
|
void (*)(const char *, ...));
|
|
|
|
static int pool_chk_page(struct pool *, const char *,
|
|
struct pool_item_header *);
|
|
|
|
/*
|
|
* Pool log entry. An array of these is allocated in pool_init().
|
|
*/
|
|
struct pool_log {
|
|
const char *pl_file;
|
|
long pl_line;
|
|
int pl_action;
|
|
#define PRLOG_GET 1
|
|
#define PRLOG_PUT 2
|
|
void *pl_addr;
|
|
};
|
|
|
|
#ifdef POOL_DIAGNOSTIC
|
|
/* Number of entries in pool log buffers */
|
|
#ifndef POOL_LOGSIZE
|
|
#define POOL_LOGSIZE 10
|
|
#endif
|
|
|
|
int pool_logsize = POOL_LOGSIZE;
|
|
|
|
static __inline void
|
|
pr_log(struct pool *pp, void *v, int action, const char *file, long line)
|
|
{
|
|
int n = pp->pr_curlogentry;
|
|
struct pool_log *pl;
|
|
|
|
if ((pp->pr_roflags & PR_LOGGING) == 0)
|
|
return;
|
|
|
|
/*
|
|
* Fill in the current entry. Wrap around and overwrite
|
|
* the oldest entry if necessary.
|
|
*/
|
|
pl = &pp->pr_log[n];
|
|
pl->pl_file = file;
|
|
pl->pl_line = line;
|
|
pl->pl_action = action;
|
|
pl->pl_addr = v;
|
|
if (++n >= pp->pr_logsize)
|
|
n = 0;
|
|
pp->pr_curlogentry = n;
|
|
}
|
|
|
|
static void
|
|
pr_printlog(struct pool *pp, struct pool_item *pi,
|
|
void (*pr)(const char *, ...))
|
|
{
|
|
int i = pp->pr_logsize;
|
|
int n = pp->pr_curlogentry;
|
|
|
|
if ((pp->pr_roflags & PR_LOGGING) == 0)
|
|
return;
|
|
|
|
/*
|
|
* Print all entries in this pool's log.
|
|
*/
|
|
while (i-- > 0) {
|
|
struct pool_log *pl = &pp->pr_log[n];
|
|
if (pl->pl_action != 0) {
|
|
if (pi == NULL || pi == pl->pl_addr) {
|
|
(*pr)("\tlog entry %d:\n", i);
|
|
(*pr)("\t\taction = %s, addr = %p\n",
|
|
pl->pl_action == PRLOG_GET ? "get" : "put",
|
|
pl->pl_addr);
|
|
(*pr)("\t\tfile: %s at line %lu\n",
|
|
pl->pl_file, pl->pl_line);
|
|
}
|
|
}
|
|
if (++n >= pp->pr_logsize)
|
|
n = 0;
|
|
}
|
|
}
|
|
|
|
static __inline void
|
|
pr_enter(struct pool *pp, const char *file, long line)
|
|
{
|
|
|
|
if (__predict_false(pp->pr_entered_file != NULL)) {
|
|
printf("pool %s: reentrancy at file %s line %ld\n",
|
|
pp->pr_wchan, file, line);
|
|
printf(" previous entry at file %s line %ld\n",
|
|
pp->pr_entered_file, pp->pr_entered_line);
|
|
panic("pr_enter");
|
|
}
|
|
|
|
pp->pr_entered_file = file;
|
|
pp->pr_entered_line = line;
|
|
}
|
|
|
|
static __inline void
|
|
pr_leave(struct pool *pp)
|
|
{
|
|
|
|
if (__predict_false(pp->pr_entered_file == NULL)) {
|
|
printf("pool %s not entered?\n", pp->pr_wchan);
|
|
panic("pr_leave");
|
|
}
|
|
|
|
pp->pr_entered_file = NULL;
|
|
pp->pr_entered_line = 0;
|
|
}
|
|
|
|
static __inline void
|
|
pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
|
|
{
|
|
|
|
if (pp->pr_entered_file != NULL)
|
|
(*pr)("\n\tcurrently entered from file %s line %ld\n",
|
|
pp->pr_entered_file, pp->pr_entered_line);
|
|
}
|
|
#else
|
|
#define pr_log(pp, v, action, file, line)
|
|
#define pr_printlog(pp, pi, pr)
|
|
#define pr_enter(pp, file, line)
|
|
#define pr_leave(pp)
|
|
#define pr_enter_check(pp, pr)
|
|
#endif /* POOL_DIAGNOSTIC */
|
|
|
|
static __inline int
|
|
phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
|
|
{
|
|
if (a->ph_page < b->ph_page)
|
|
return (-1);
|
|
else if (a->ph_page > b->ph_page)
|
|
return (1);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
|
|
SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
|
|
|
|
/*
|
|
* Return the pool page header based on page address.
|
|
*/
|
|
static __inline struct pool_item_header *
|
|
pr_find_pagehead(struct pool *pp, caddr_t page)
|
|
{
|
|
struct pool_item_header *ph, tmp;
|
|
|
|
if ((pp->pr_roflags & PR_PHINPAGE) != 0)
|
|
return ((struct pool_item_header *)(page + pp->pr_phoffset));
|
|
|
|
tmp.ph_page = page;
|
|
ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
|
|
return ph;
|
|
}
|
|
|
|
/*
|
|
* Remove a page from the pool.
|
|
*/
|
|
static __inline void
|
|
pr_rmpage(struct pool *pp, struct pool_item_header *ph,
|
|
struct pool_pagelist *pq)
|
|
{
|
|
int s;
|
|
|
|
/*
|
|
* If the page was idle, decrement the idle page count.
|
|
*/
|
|
if (ph->ph_nmissing == 0) {
|
|
#ifdef DIAGNOSTIC
|
|
if (pp->pr_nidle == 0)
|
|
panic("pr_rmpage: nidle inconsistent");
|
|
if (pp->pr_nitems < pp->pr_itemsperpage)
|
|
panic("pr_rmpage: nitems inconsistent");
|
|
#endif
|
|
pp->pr_nidle--;
|
|
}
|
|
|
|
pp->pr_nitems -= pp->pr_itemsperpage;
|
|
|
|
/*
|
|
* Unlink a page from the pool and release it (or queue it for release).
|
|
*/
|
|
LIST_REMOVE(ph, ph_pagelist);
|
|
if (pq) {
|
|
LIST_INSERT_HEAD(pq, ph, ph_pagelist);
|
|
} else {
|
|
pool_allocator_free(pp, ph->ph_page);
|
|
if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
|
|
SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
|
|
s = splvm();
|
|
pool_put(&phpool, ph);
|
|
splx(s);
|
|
}
|
|
}
|
|
pp->pr_npages--;
|
|
pp->pr_npagefree++;
|
|
|
|
pool_update_curpage(pp);
|
|
}
|
|
|
|
/*
|
|
* Initialize the given pool resource structure.
|
|
*
|
|
* We export this routine to allow other kernel parts to declare
|
|
* static pools that must be initialized before malloc() is available.
|
|
*/
|
|
void
|
|
pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
|
|
const char *wchan, struct pool_allocator *palloc)
|
|
{
|
|
int off, slack;
|
|
|
|
#ifdef POOL_DIAGNOSTIC
|
|
/*
|
|
* Always log if POOL_DIAGNOSTIC is defined.
|
|
*/
|
|
if (pool_logsize != 0)
|
|
flags |= PR_LOGGING;
|
|
#endif
|
|
|
|
#ifdef POOL_SUBPAGE
|
|
/*
|
|
* XXX We don't provide a real `nointr' back-end
|
|
* yet; all sub-pages come from a kmem back-end.
|
|
* maybe some day...
|
|
*/
|
|
if (palloc == NULL) {
|
|
extern struct pool_allocator pool_allocator_kmem_subpage;
|
|
palloc = &pool_allocator_kmem_subpage;
|
|
}
|
|
/*
|
|
* We'll assume any user-specified back-end allocator
|
|
* will deal with sub-pages, or simply don't care.
|
|
*/
|
|
#else
|
|
if (palloc == NULL)
|
|
palloc = &pool_allocator_kmem;
|
|
#endif /* POOL_SUBPAGE */
|
|
if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
|
|
if (palloc->pa_pagesz == 0) {
|
|
#ifdef POOL_SUBPAGE
|
|
if (palloc == &pool_allocator_kmem)
|
|
palloc->pa_pagesz = PAGE_SIZE;
|
|
else
|
|
palloc->pa_pagesz = POOL_SUBPAGE;
|
|
#else
|
|
palloc->pa_pagesz = PAGE_SIZE;
|
|
#endif /* POOL_SUBPAGE */
|
|
}
|
|
|
|
TAILQ_INIT(&palloc->pa_list);
|
|
|
|
simple_lock_init(&palloc->pa_slock);
|
|
palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
|
|
palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
|
|
palloc->pa_flags |= PA_INITIALIZED;
|
|
}
|
|
|
|
if (align == 0)
|
|
align = ALIGN(1);
|
|
|
|
if (size < sizeof(struct pool_item))
|
|
size = sizeof(struct pool_item);
|
|
|
|
size = roundup(size, align);
|
|
#ifdef DIAGNOSTIC
|
|
if (size > palloc->pa_pagesz)
|
|
panic("pool_init: pool item size (%lu) too large",
|
|
(u_long)size);
|
|
#endif
|
|
|
|
/*
|
|
* Initialize the pool structure.
|
|
*/
|
|
LIST_INIT(&pp->pr_emptypages);
|
|
LIST_INIT(&pp->pr_fullpages);
|
|
LIST_INIT(&pp->pr_partpages);
|
|
TAILQ_INIT(&pp->pr_cachelist);
|
|
pp->pr_curpage = NULL;
|
|
pp->pr_npages = 0;
|
|
pp->pr_minitems = 0;
|
|
pp->pr_minpages = 0;
|
|
pp->pr_maxpages = UINT_MAX;
|
|
pp->pr_roflags = flags;
|
|
pp->pr_flags = 0;
|
|
pp->pr_size = size;
|
|
pp->pr_align = align;
|
|
pp->pr_wchan = wchan;
|
|
pp->pr_alloc = palloc;
|
|
pp->pr_nitems = 0;
|
|
pp->pr_nout = 0;
|
|
pp->pr_hardlimit = UINT_MAX;
|
|
pp->pr_hardlimit_warning = NULL;
|
|
pp->pr_hardlimit_ratecap.tv_sec = 0;
|
|
pp->pr_hardlimit_ratecap.tv_usec = 0;
|
|
pp->pr_hardlimit_warning_last.tv_sec = 0;
|
|
pp->pr_hardlimit_warning_last.tv_usec = 0;
|
|
pp->pr_drain_hook = NULL;
|
|
pp->pr_drain_hook_arg = NULL;
|
|
|
|
/*
|
|
* Decide whether to put the page header off page to avoid
|
|
* wasting too large a part of the page. Off-page page headers
|
|
* go on a hash table, so we can match a returned item
|
|
* with its header based on the page address.
|
|
* We use 1/16 of the page size as the threshold (XXX: tune)
|
|
*/
|
|
if (pp->pr_size < palloc->pa_pagesz/16) {
|
|
/* Use the end of the page for the page header */
|
|
pp->pr_roflags |= PR_PHINPAGE;
|
|
pp->pr_phoffset = off = palloc->pa_pagesz -
|
|
ALIGN(sizeof(struct pool_item_header));
|
|
} else {
|
|
/* The page header will be taken from our page header pool */
|
|
pp->pr_phoffset = 0;
|
|
off = palloc->pa_pagesz;
|
|
SPLAY_INIT(&pp->pr_phtree);
|
|
}
|
|
|
|
/*
|
|
* Alignment is to take place at `ioff' within the item. This means
|
|
* we must reserve up to `align - 1' bytes on the page to allow
|
|
* appropriate positioning of each item.
|
|
*
|
|
* Silently enforce `0 <= ioff < align'.
|
|
*/
|
|
pp->pr_itemoffset = ioff = ioff % align;
|
|
pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
|
|
KASSERT(pp->pr_itemsperpage != 0);
|
|
|
|
/*
|
|
* Use the slack between the chunks and the page header
|
|
* for "cache coloring".
|
|
*/
|
|
slack = off - pp->pr_itemsperpage * pp->pr_size;
|
|
pp->pr_maxcolor = (slack / align) * align;
|
|
pp->pr_curcolor = 0;
|
|
|
|
pp->pr_nget = 0;
|
|
pp->pr_nfail = 0;
|
|
pp->pr_nput = 0;
|
|
pp->pr_npagealloc = 0;
|
|
pp->pr_npagefree = 0;
|
|
pp->pr_hiwat = 0;
|
|
pp->pr_nidle = 0;
|
|
|
|
#ifdef POOL_DIAGNOSTIC
|
|
if (flags & PR_LOGGING) {
|
|
if (kmem_map == NULL ||
|
|
(pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
|
|
M_TEMP, M_NOWAIT)) == NULL)
|
|
pp->pr_roflags &= ~PR_LOGGING;
|
|
pp->pr_curlogentry = 0;
|
|
pp->pr_logsize = pool_logsize;
|
|
}
|
|
#endif
|
|
|
|
pp->pr_entered_file = NULL;
|
|
pp->pr_entered_line = 0;
|
|
|
|
simple_lock_init(&pp->pr_slock);
|
|
|
|
/*
|
|
* Initialize private page header pool and cache magazine pool if we
|
|
* haven't done so yet.
|
|
* XXX LOCKING.
|
|
*/
|
|
if (phpool.pr_size == 0) {
|
|
#ifdef POOL_SUBPAGE
|
|
pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 0,
|
|
"phpool", &pool_allocator_kmem);
|
|
pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
|
|
PR_RECURSIVE, "psppool", &pool_allocator_kmem);
|
|
#else
|
|
pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
|
|
0, "phpool", NULL);
|
|
#endif
|
|
pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
|
|
0, "pcgpool", NULL);
|
|
}
|
|
|
|
/* Insert into the list of all pools. */
|
|
simple_lock(&pool_head_slock);
|
|
TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
|
|
simple_unlock(&pool_head_slock);
|
|
|
|
/* Insert this into the list of pools using this allocator. */
|
|
simple_lock(&palloc->pa_slock);
|
|
TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
|
|
simple_unlock(&palloc->pa_slock);
|
|
}
|
|
|
|
/*
|
|
* De-commision a pool resource.
|
|
*/
|
|
void
|
|
pool_destroy(struct pool *pp)
|
|
{
|
|
struct pool_item_header *ph;
|
|
struct pool_cache *pc;
|
|
|
|
/* Locking order: pool_allocator -> pool */
|
|
simple_lock(&pp->pr_alloc->pa_slock);
|
|
TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
|
|
simple_unlock(&pp->pr_alloc->pa_slock);
|
|
|
|
/* Destroy all caches for this pool. */
|
|
while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
|
|
pool_cache_destroy(pc);
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (pp->pr_nout != 0) {
|
|
pr_printlog(pp, NULL, printf);
|
|
panic("pool_destroy: pool busy: still out: %u",
|
|
pp->pr_nout);
|
|
}
|
|
#endif
|
|
|
|
/* Remove all pages */
|
|
while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
|
|
pr_rmpage(pp, ph, NULL);
|
|
KASSERT(LIST_EMPTY(&pp->pr_fullpages));
|
|
KASSERT(LIST_EMPTY(&pp->pr_partpages));
|
|
|
|
/* Remove from global pool list */
|
|
simple_lock(&pool_head_slock);
|
|
TAILQ_REMOVE(&pool_head, pp, pr_poollist);
|
|
if (drainpp == pp) {
|
|
drainpp = NULL;
|
|
}
|
|
simple_unlock(&pool_head_slock);
|
|
|
|
#ifdef POOL_DIAGNOSTIC
|
|
if ((pp->pr_roflags & PR_LOGGING) != 0)
|
|
free(pp->pr_log, M_TEMP);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
|
|
{
|
|
|
|
/* XXX no locking -- must be used just after pool_init() */
|
|
#ifdef DIAGNOSTIC
|
|
if (pp->pr_drain_hook != NULL)
|
|
panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
|
|
#endif
|
|
pp->pr_drain_hook = fn;
|
|
pp->pr_drain_hook_arg = arg;
|
|
}
|
|
|
|
static struct pool_item_header *
|
|
pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
|
|
{
|
|
struct pool_item_header *ph;
|
|
int s;
|
|
|
|
LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
|
|
|
|
if ((pp->pr_roflags & PR_PHINPAGE) != 0)
|
|
ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
|
|
else {
|
|
s = splvm();
|
|
ph = pool_get(&phpool, flags);
|
|
splx(s);
|
|
}
|
|
|
|
return (ph);
|
|
}
|
|
|
|
/*
|
|
* Grab an item from the pool; must be called at appropriate spl level
|
|
*/
|
|
void *
|
|
#ifdef POOL_DIAGNOSTIC
|
|
_pool_get(struct pool *pp, int flags, const char *file, long line)
|
|
#else
|
|
pool_get(struct pool *pp, int flags)
|
|
#endif
|
|
{
|
|
struct pool_item *pi;
|
|
struct pool_item_header *ph;
|
|
void *v;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
|
|
(flags & PR_WAITOK) != 0))
|
|
panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
|
|
|
|
#ifdef LOCKDEBUG
|
|
if (flags & PR_WAITOK)
|
|
simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
|
|
#endif
|
|
#endif /* DIAGNOSTIC */
|
|
|
|
simple_lock(&pp->pr_slock);
|
|
pr_enter(pp, file, line);
|
|
|
|
startover:
|
|
/*
|
|
* Check to see if we've reached the hard limit. If we have,
|
|
* and we can wait, then wait until an item has been returned to
|
|
* the pool.
|
|
*/
|
|
#ifdef DIAGNOSTIC
|
|
if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
|
|
pr_leave(pp);
|
|
simple_unlock(&pp->pr_slock);
|
|
panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
|
|
}
|
|
#endif
|
|
if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
|
|
if (pp->pr_drain_hook != NULL) {
|
|
/*
|
|
* Since the drain hook is going to free things
|
|
* back to the pool, unlock, call the hook, re-lock,
|
|
* and check the hardlimit condition again.
|
|
*/
|
|
pr_leave(pp);
|
|
simple_unlock(&pp->pr_slock);
|
|
(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
|
|
simple_lock(&pp->pr_slock);
|
|
pr_enter(pp, file, line);
|
|
if (pp->pr_nout < pp->pr_hardlimit)
|
|
goto startover;
|
|
}
|
|
|
|
if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
|
|
/*
|
|
* XXX: A warning isn't logged in this case. Should
|
|
* it be?
|
|
*/
|
|
pp->pr_flags |= PR_WANTED;
|
|
pr_leave(pp);
|
|
ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
|
|
pr_enter(pp, file, line);
|
|
goto startover;
|
|
}
|
|
|
|
/*
|
|
* Log a message that the hard limit has been hit.
|
|
*/
|
|
if (pp->pr_hardlimit_warning != NULL &&
|
|
ratecheck(&pp->pr_hardlimit_warning_last,
|
|
&pp->pr_hardlimit_ratecap))
|
|
log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
|
|
|
|
pp->pr_nfail++;
|
|
|
|
pr_leave(pp);
|
|
simple_unlock(&pp->pr_slock);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* The convention we use is that if `curpage' is not NULL, then
|
|
* it points at a non-empty bucket. In particular, `curpage'
|
|
* never points at a page header which has PR_PHINPAGE set and
|
|
* has no items in its bucket.
|
|
*/
|
|
if ((ph = pp->pr_curpage) == NULL) {
|
|
#ifdef DIAGNOSTIC
|
|
if (pp->pr_nitems != 0) {
|
|
simple_unlock(&pp->pr_slock);
|
|
printf("pool_get: %s: curpage NULL, nitems %u\n",
|
|
pp->pr_wchan, pp->pr_nitems);
|
|
panic("pool_get: nitems inconsistent");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Call the back-end page allocator for more memory.
|
|
* Release the pool lock, as the back-end page allocator
|
|
* may block.
|
|
*/
|
|
pr_leave(pp);
|
|
simple_unlock(&pp->pr_slock);
|
|
v = pool_allocator_alloc(pp, flags);
|
|
if (__predict_true(v != NULL))
|
|
ph = pool_alloc_item_header(pp, v, flags);
|
|
simple_lock(&pp->pr_slock);
|
|
pr_enter(pp, file, line);
|
|
|
|
if (__predict_false(v == NULL || ph == NULL)) {
|
|
if (v != NULL)
|
|
pool_allocator_free(pp, v);
|
|
|
|
/*
|
|
* We were unable to allocate a page or item
|
|
* header, but we released the lock during
|
|
* allocation, so perhaps items were freed
|
|
* back to the pool. Check for this case.
|
|
*/
|
|
if (pp->pr_curpage != NULL)
|
|
goto startover;
|
|
|
|
if ((flags & PR_WAITOK) == 0) {
|
|
pp->pr_nfail++;
|
|
pr_leave(pp);
|
|
simple_unlock(&pp->pr_slock);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Wait for items to be returned to this pool.
|
|
*
|
|
* XXX: maybe we should wake up once a second and
|
|
* try again?
|
|
*/
|
|
pp->pr_flags |= PR_WANTED;
|
|
/* PA_WANTED is already set on the allocator. */
|
|
pr_leave(pp);
|
|
ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
|
|
pr_enter(pp, file, line);
|
|
goto startover;
|
|
}
|
|
|
|
/* We have more memory; add it to the pool */
|
|
pool_prime_page(pp, v, ph);
|
|
pp->pr_npagealloc++;
|
|
|
|
/* Start the allocation process over. */
|
|
goto startover;
|
|
}
|
|
if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
|
|
pr_leave(pp);
|
|
simple_unlock(&pp->pr_slock);
|
|
panic("pool_get: %s: page empty", pp->pr_wchan);
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
if (__predict_false(pp->pr_nitems == 0)) {
|
|
pr_leave(pp);
|
|
simple_unlock(&pp->pr_slock);
|
|
printf("pool_get: %s: items on itemlist, nitems %u\n",
|
|
pp->pr_wchan, pp->pr_nitems);
|
|
panic("pool_get: nitems inconsistent");
|
|
}
|
|
#endif
|
|
|
|
#ifdef POOL_DIAGNOSTIC
|
|
pr_log(pp, v, PRLOG_GET, file, line);
|
|
#endif
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (__predict_false(pi->pi_magic != PI_MAGIC)) {
|
|
pr_printlog(pp, pi, printf);
|
|
panic("pool_get(%s): free list modified: magic=%x; page %p;"
|
|
" item addr %p\n",
|
|
pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Remove from item list.
|
|
*/
|
|
TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
|
|
pp->pr_nitems--;
|
|
pp->pr_nout++;
|
|
if (ph->ph_nmissing == 0) {
|
|
#ifdef DIAGNOSTIC
|
|
if (__predict_false(pp->pr_nidle == 0))
|
|
panic("pool_get: nidle inconsistent");
|
|
#endif
|
|
pp->pr_nidle--;
|
|
|
|
/*
|
|
* This page was previously empty. Move it to the list of
|
|
* partially-full pages. This page is already curpage.
|
|
*/
|
|
LIST_REMOVE(ph, ph_pagelist);
|
|
LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
|
|
}
|
|
ph->ph_nmissing++;
|
|
if (TAILQ_EMPTY(&ph->ph_itemlist)) {
|
|
#ifdef DIAGNOSTIC
|
|
if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
|
|
pr_leave(pp);
|
|
simple_unlock(&pp->pr_slock);
|
|
panic("pool_get: %s: nmissing inconsistent",
|
|
pp->pr_wchan);
|
|
}
|
|
#endif
|
|
/*
|
|
* This page is now full. Move it to the full list
|
|
* and select a new current page.
|
|
*/
|
|
LIST_REMOVE(ph, ph_pagelist);
|
|
LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
|
|
pool_update_curpage(pp);
|
|
}
|
|
|
|
pp->pr_nget++;
|
|
|
|
/*
|
|
* If we have a low water mark and we are now below that low
|
|
* water mark, add more items to the pool.
|
|
*/
|
|
if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
|
|
/*
|
|
* XXX: Should we log a warning? Should we set up a timeout
|
|
* to try again in a second or so? The latter could break
|
|
* a caller's assumptions about interrupt protection, etc.
|
|
*/
|
|
}
|
|
|
|
pr_leave(pp);
|
|
simple_unlock(&pp->pr_slock);
|
|
return (v);
|
|
}
|
|
|
|
/*
|
|
* Internal version of pool_put(). Pool is already locked/entered.
|
|
*/
|
|
static void
|
|
pool_do_put(struct pool *pp, void *v)
|
|
{
|
|
struct pool_item *pi = v;
|
|
struct pool_item_header *ph;
|
|
caddr_t page;
|
|
int s;
|
|
|
|
LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
|
|
|
|
page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (__predict_false(pp->pr_nout == 0)) {
|
|
printf("pool %s: putting with none out\n",
|
|
pp->pr_wchan);
|
|
panic("pool_put");
|
|
}
|
|
#endif
|
|
|
|
if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
|
|
pr_printlog(pp, NULL, printf);
|
|
panic("pool_put: %s: page header missing", pp->pr_wchan);
|
|
}
|
|
|
|
#ifdef LOCKDEBUG
|
|
/*
|
|
* Check if we're freeing a locked simple lock.
|
|
*/
|
|
simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
|
|
#endif
|
|
|
|
/*
|
|
* Return to item list.
|
|
*/
|
|
#ifdef DIAGNOSTIC
|
|
pi->pi_magic = PI_MAGIC;
|
|
#endif
|
|
#ifdef DEBUG
|
|
{
|
|
int i, *ip = v;
|
|
|
|
for (i = 0; i < pp->pr_size / sizeof(int); i++) {
|
|
*ip++ = PI_MAGIC;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
|
|
KDASSERT(ph->ph_nmissing != 0);
|
|
ph->ph_nmissing--;
|
|
pp->pr_nput++;
|
|
pp->pr_nitems++;
|
|
pp->pr_nout--;
|
|
|
|
/* Cancel "pool empty" condition if it exists */
|
|
if (pp->pr_curpage == NULL)
|
|
pp->pr_curpage = ph;
|
|
|
|
if (pp->pr_flags & PR_WANTED) {
|
|
pp->pr_flags &= ~PR_WANTED;
|
|
if (ph->ph_nmissing == 0)
|
|
pp->pr_nidle++;
|
|
wakeup((caddr_t)pp);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If this page is now empty, do one of two things:
|
|
*
|
|
* (1) If we have more pages than the page high water mark,
|
|
* or if we are flagged as immediately freeing back idle
|
|
* pages, free the page back to the system. ONLY CONSIDER
|
|
* FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
|
|
* CLAIM.
|
|
*
|
|
* (2) Otherwise, move the page to the empty page list.
|
|
*
|
|
* Either way, select a new current page (so we use a partially-full
|
|
* page if one is available).
|
|
*/
|
|
if (ph->ph_nmissing == 0) {
|
|
pp->pr_nidle++;
|
|
if (pp->pr_npages > pp->pr_minpages &&
|
|
(pp->pr_npages > pp->pr_maxpages ||
|
|
(pp->pr_roflags & PR_IMMEDRELEASE) != 0 ||
|
|
(pp->pr_alloc->pa_flags & PA_WANT) != 0)) {
|
|
pr_rmpage(pp, ph, NULL);
|
|
} else {
|
|
LIST_REMOVE(ph, ph_pagelist);
|
|
LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
|
|
|
|
/*
|
|
* Update the timestamp on the page. A page must
|
|
* be idle for some period of time before it can
|
|
* be reclaimed by the pagedaemon. This minimizes
|
|
* ping-pong'ing for memory.
|
|
*/
|
|
s = splclock();
|
|
ph->ph_time = mono_time;
|
|
splx(s);
|
|
}
|
|
pool_update_curpage(pp);
|
|
}
|
|
|
|
/*
|
|
* If the page was previously completely full, move it to the
|
|
* partially-full list and make it the current page. The next
|
|
* allocation will get the item from this page, instead of
|
|
* further fragmenting the pool.
|
|
*/
|
|
else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
|
|
LIST_REMOVE(ph, ph_pagelist);
|
|
LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
|
|
pp->pr_curpage = ph;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return resource to the pool; must be called at appropriate spl level
|
|
*/
|
|
#ifdef POOL_DIAGNOSTIC
|
|
void
|
|
_pool_put(struct pool *pp, void *v, const char *file, long line)
|
|
{
|
|
|
|
simple_lock(&pp->pr_slock);
|
|
pr_enter(pp, file, line);
|
|
|
|
pr_log(pp, v, PRLOG_PUT, file, line);
|
|
|
|
pool_do_put(pp, v);
|
|
|
|
pr_leave(pp);
|
|
simple_unlock(&pp->pr_slock);
|
|
}
|
|
#undef pool_put
|
|
#endif /* POOL_DIAGNOSTIC */
|
|
|
|
void
|
|
pool_put(struct pool *pp, void *v)
|
|
{
|
|
|
|
simple_lock(&pp->pr_slock);
|
|
|
|
pool_do_put(pp, v);
|
|
|
|
simple_unlock(&pp->pr_slock);
|
|
}
|
|
|
|
#ifdef POOL_DIAGNOSTIC
|
|
#define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
|
|
#endif
|
|
|
|
/*
|
|
* Add N items to the pool.
|
|
*/
|
|
int
|
|
pool_prime(struct pool *pp, int n)
|
|
{
|
|
struct pool_item_header *ph = NULL;
|
|
caddr_t cp;
|
|
int newpages;
|
|
|
|
simple_lock(&pp->pr_slock);
|
|
|
|
newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
|
|
|
|
while (newpages-- > 0) {
|
|
simple_unlock(&pp->pr_slock);
|
|
cp = pool_allocator_alloc(pp, PR_NOWAIT);
|
|
if (__predict_true(cp != NULL))
|
|
ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
|
|
simple_lock(&pp->pr_slock);
|
|
|
|
if (__predict_false(cp == NULL || ph == NULL)) {
|
|
if (cp != NULL)
|
|
pool_allocator_free(pp, cp);
|
|
break;
|
|
}
|
|
|
|
pool_prime_page(pp, cp, ph);
|
|
pp->pr_npagealloc++;
|
|
pp->pr_minpages++;
|
|
}
|
|
|
|
if (pp->pr_minpages >= pp->pr_maxpages)
|
|
pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
|
|
|
|
simple_unlock(&pp->pr_slock);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Add a page worth of items to the pool.
|
|
*
|
|
* Note, we must be called with the pool descriptor LOCKED.
|
|
*/
|
|
static void
|
|
pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
|
|
{
|
|
struct pool_item *pi;
|
|
caddr_t cp = storage;
|
|
unsigned int align = pp->pr_align;
|
|
unsigned int ioff = pp->pr_itemoffset;
|
|
int n;
|
|
int s;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
|
|
panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
|
|
#endif
|
|
|
|
/*
|
|
* Insert page header.
|
|
*/
|
|
LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
|
|
TAILQ_INIT(&ph->ph_itemlist);
|
|
ph->ph_page = storage;
|
|
ph->ph_nmissing = 0;
|
|
s = splclock();
|
|
ph->ph_time = mono_time;
|
|
splx(s);
|
|
if ((pp->pr_roflags & PR_PHINPAGE) == 0)
|
|
SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
|
|
|
|
pp->pr_nidle++;
|
|
|
|
/*
|
|
* Color this page.
|
|
*/
|
|
cp = (caddr_t)(cp + pp->pr_curcolor);
|
|
if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
|
|
pp->pr_curcolor = 0;
|
|
|
|
/*
|
|
* Adjust storage to apply aligment to `pr_itemoffset' in each item.
|
|
*/
|
|
if (ioff != 0)
|
|
cp = (caddr_t)(cp + (align - ioff));
|
|
|
|
/*
|
|
* Insert remaining chunks on the bucket list.
|
|
*/
|
|
n = pp->pr_itemsperpage;
|
|
pp->pr_nitems += n;
|
|
|
|
while (n--) {
|
|
pi = (struct pool_item *)cp;
|
|
|
|
KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
|
|
|
|
/* Insert on page list */
|
|
TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
|
|
#ifdef DIAGNOSTIC
|
|
pi->pi_magic = PI_MAGIC;
|
|
#endif
|
|
cp = (caddr_t)(cp + pp->pr_size);
|
|
}
|
|
|
|
/*
|
|
* If the pool was depleted, point at the new page.
|
|
*/
|
|
if (pp->pr_curpage == NULL)
|
|
pp->pr_curpage = ph;
|
|
|
|
if (++pp->pr_npages > pp->pr_hiwat)
|
|
pp->pr_hiwat = pp->pr_npages;
|
|
}
|
|
|
|
/*
|
|
* Used by pool_get() when nitems drops below the low water mark. This
|
|
* is used to catch up pr_nitems with the low water mark.
|
|
*
|
|
* Note 1, we never wait for memory here, we let the caller decide what to do.
|
|
*
|
|
* Note 2, we must be called with the pool already locked, and we return
|
|
* with it locked.
|
|
*/
|
|
static int
|
|
pool_catchup(struct pool *pp)
|
|
{
|
|
struct pool_item_header *ph = NULL;
|
|
caddr_t cp;
|
|
int error = 0;
|
|
|
|
while (POOL_NEEDS_CATCHUP(pp)) {
|
|
/*
|
|
* Call the page back-end allocator for more memory.
|
|
*
|
|
* XXX: We never wait, so should we bother unlocking
|
|
* the pool descriptor?
|
|
*/
|
|
simple_unlock(&pp->pr_slock);
|
|
cp = pool_allocator_alloc(pp, PR_NOWAIT);
|
|
if (__predict_true(cp != NULL))
|
|
ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
|
|
simple_lock(&pp->pr_slock);
|
|
if (__predict_false(cp == NULL || ph == NULL)) {
|
|
if (cp != NULL)
|
|
pool_allocator_free(pp, cp);
|
|
error = ENOMEM;
|
|
break;
|
|
}
|
|
pool_prime_page(pp, cp, ph);
|
|
pp->pr_npagealloc++;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
pool_update_curpage(struct pool *pp)
|
|
{
|
|
|
|
pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
|
|
if (pp->pr_curpage == NULL) {
|
|
pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
|
|
}
|
|
}
|
|
|
|
void
|
|
pool_setlowat(struct pool *pp, int n)
|
|
{
|
|
|
|
simple_lock(&pp->pr_slock);
|
|
|
|
pp->pr_minitems = n;
|
|
pp->pr_minpages = (n == 0)
|
|
? 0
|
|
: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
|
|
|
|
/* Make sure we're caught up with the newly-set low water mark. */
|
|
if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
|
|
/*
|
|
* XXX: Should we log a warning? Should we set up a timeout
|
|
* to try again in a second or so? The latter could break
|
|
* a caller's assumptions about interrupt protection, etc.
|
|
*/
|
|
}
|
|
|
|
simple_unlock(&pp->pr_slock);
|
|
}
|
|
|
|
void
|
|
pool_sethiwat(struct pool *pp, int n)
|
|
{
|
|
|
|
simple_lock(&pp->pr_slock);
|
|
|
|
pp->pr_maxpages = (n == 0)
|
|
? 0
|
|
: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
|
|
|
|
simple_unlock(&pp->pr_slock);
|
|
}
|
|
|
|
void
|
|
pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
|
|
{
|
|
|
|
simple_lock(&pp->pr_slock);
|
|
|
|
pp->pr_hardlimit = n;
|
|
pp->pr_hardlimit_warning = warnmess;
|
|
pp->pr_hardlimit_ratecap.tv_sec = ratecap;
|
|
pp->pr_hardlimit_warning_last.tv_sec = 0;
|
|
pp->pr_hardlimit_warning_last.tv_usec = 0;
|
|
|
|
/*
|
|
* In-line version of pool_sethiwat(), because we don't want to
|
|
* release the lock.
|
|
*/
|
|
pp->pr_maxpages = (n == 0)
|
|
? 0
|
|
: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
|
|
|
|
simple_unlock(&pp->pr_slock);
|
|
}
|
|
|
|
/*
|
|
* Release all complete pages that have not been used recently.
|
|
*/
|
|
int
|
|
#ifdef POOL_DIAGNOSTIC
|
|
_pool_reclaim(struct pool *pp, const char *file, long line)
|
|
#else
|
|
pool_reclaim(struct pool *pp)
|
|
#endif
|
|
{
|
|
struct pool_item_header *ph, *phnext;
|
|
struct pool_cache *pc;
|
|
struct timeval curtime;
|
|
struct pool_pagelist pq;
|
|
struct timeval diff;
|
|
int s;
|
|
|
|
if (pp->pr_drain_hook != NULL) {
|
|
/*
|
|
* The drain hook must be called with the pool unlocked.
|
|
*/
|
|
(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
|
|
}
|
|
|
|
if (simple_lock_try(&pp->pr_slock) == 0)
|
|
return (0);
|
|
pr_enter(pp, file, line);
|
|
|
|
LIST_INIT(&pq);
|
|
|
|
/*
|
|
* Reclaim items from the pool's caches.
|
|
*/
|
|
TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
|
|
pool_cache_reclaim(pc);
|
|
|
|
s = splclock();
|
|
curtime = mono_time;
|
|
splx(s);
|
|
|
|
for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
|
|
phnext = LIST_NEXT(ph, ph_pagelist);
|
|
|
|
/* Check our minimum page claim */
|
|
if (pp->pr_npages <= pp->pr_minpages)
|
|
break;
|
|
|
|
KASSERT(ph->ph_nmissing == 0);
|
|
timersub(&curtime, &ph->ph_time, &diff);
|
|
if (diff.tv_sec < pool_inactive_time)
|
|
continue;
|
|
|
|
/*
|
|
* If freeing this page would put us below
|
|
* the low water mark, stop now.
|
|
*/
|
|
if ((pp->pr_nitems - pp->pr_itemsperpage) <
|
|
pp->pr_minitems)
|
|
break;
|
|
|
|
pr_rmpage(pp, ph, &pq);
|
|
}
|
|
|
|
pr_leave(pp);
|
|
simple_unlock(&pp->pr_slock);
|
|
if (LIST_EMPTY(&pq))
|
|
return (0);
|
|
|
|
while ((ph = LIST_FIRST(&pq)) != NULL) {
|
|
LIST_REMOVE(ph, ph_pagelist);
|
|
pool_allocator_free(pp, ph->ph_page);
|
|
if (pp->pr_roflags & PR_PHINPAGE) {
|
|
continue;
|
|
}
|
|
SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
|
|
s = splvm();
|
|
pool_put(&phpool, ph);
|
|
splx(s);
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Drain pools, one at a time.
|
|
*
|
|
* Note, we must never be called from an interrupt context.
|
|
*/
|
|
void
|
|
pool_drain(void *arg)
|
|
{
|
|
struct pool *pp;
|
|
int s;
|
|
|
|
pp = NULL;
|
|
s = splvm();
|
|
simple_lock(&pool_head_slock);
|
|
if (drainpp == NULL) {
|
|
drainpp = TAILQ_FIRST(&pool_head);
|
|
}
|
|
if (drainpp) {
|
|
pp = drainpp;
|
|
drainpp = TAILQ_NEXT(pp, pr_poollist);
|
|
}
|
|
simple_unlock(&pool_head_slock);
|
|
pool_reclaim(pp);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Diagnostic helpers.
|
|
*/
|
|
void
|
|
pool_print(struct pool *pp, const char *modif)
|
|
{
|
|
int s;
|
|
|
|
s = splvm();
|
|
if (simple_lock_try(&pp->pr_slock) == 0) {
|
|
printf("pool %s is locked; try again later\n",
|
|
pp->pr_wchan);
|
|
splx(s);
|
|
return;
|
|
}
|
|
pool_print1(pp, modif, printf);
|
|
simple_unlock(&pp->pr_slock);
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
|
|
{
|
|
int didlock = 0;
|
|
|
|
if (pp == NULL) {
|
|
(*pr)("Must specify a pool to print.\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Called from DDB; interrupts should be blocked, and all
|
|
* other processors should be paused. We can skip locking
|
|
* the pool in this case.
|
|
*
|
|
* We do a simple_lock_try() just to print the lock
|
|
* status, however.
|
|
*/
|
|
|
|
if (simple_lock_try(&pp->pr_slock) == 0)
|
|
(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
|
|
else
|
|
didlock = 1;
|
|
|
|
pool_print1(pp, modif, pr);
|
|
|
|
if (didlock)
|
|
simple_unlock(&pp->pr_slock);
|
|
}
|
|
|
|
static void
|
|
pool_print_pagelist(struct pool_pagelist *pl, void (*pr)(const char *, ...))
|
|
{
|
|
struct pool_item_header *ph;
|
|
#ifdef DIAGNOSTIC
|
|
struct pool_item *pi;
|
|
#endif
|
|
|
|
LIST_FOREACH(ph, pl, ph_pagelist) {
|
|
(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
|
|
ph->ph_page, ph->ph_nmissing,
|
|
(u_long)ph->ph_time.tv_sec,
|
|
(u_long)ph->ph_time.tv_usec);
|
|
#ifdef DIAGNOSTIC
|
|
TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
|
|
if (pi->pi_magic != PI_MAGIC) {
|
|
(*pr)("\t\t\titem %p, magic 0x%x\n",
|
|
pi, pi->pi_magic);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void
|
|
pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
|
|
{
|
|
struct pool_item_header *ph;
|
|
struct pool_cache *pc;
|
|
struct pool_cache_group *pcg;
|
|
int i, print_log = 0, print_pagelist = 0, print_cache = 0;
|
|
char c;
|
|
|
|
while ((c = *modif++) != '\0') {
|
|
if (c == 'l')
|
|
print_log = 1;
|
|
if (c == 'p')
|
|
print_pagelist = 1;
|
|
if (c == 'c')
|
|
print_cache = 1;
|
|
}
|
|
|
|
(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
|
|
pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
|
|
pp->pr_roflags);
|
|
(*pr)("\talloc %p\n", pp->pr_alloc);
|
|
(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
|
|
pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
|
|
(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
|
|
pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
|
|
|
|
(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
|
|
pp->pr_nget, pp->pr_nfail, pp->pr_nput);
|
|
(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
|
|
pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
|
|
|
|
if (print_pagelist == 0)
|
|
goto skip_pagelist;
|
|
|
|
if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
|
|
(*pr)("\n\tempty page list:\n");
|
|
pool_print_pagelist(&pp->pr_emptypages, pr);
|
|
if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
|
|
(*pr)("\n\tfull page list:\n");
|
|
pool_print_pagelist(&pp->pr_fullpages, pr);
|
|
if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
|
|
(*pr)("\n\tpartial-page list:\n");
|
|
pool_print_pagelist(&pp->pr_partpages, pr);
|
|
|
|
if (pp->pr_curpage == NULL)
|
|
(*pr)("\tno current page\n");
|
|
else
|
|
(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
|
|
|
|
skip_pagelist:
|
|
if (print_log == 0)
|
|
goto skip_log;
|
|
|
|
(*pr)("\n");
|
|
if ((pp->pr_roflags & PR_LOGGING) == 0)
|
|
(*pr)("\tno log\n");
|
|
else
|
|
pr_printlog(pp, NULL, pr);
|
|
|
|
skip_log:
|
|
if (print_cache == 0)
|
|
goto skip_cache;
|
|
|
|
TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
|
|
(*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
|
|
pc->pc_allocfrom, pc->pc_freeto);
|
|
(*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
|
|
pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
|
|
TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
|
|
(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
|
|
for (i = 0; i < PCG_NOBJECTS; i++) {
|
|
if (pcg->pcg_objects[i].pcgo_pa !=
|
|
POOL_PADDR_INVALID) {
|
|
(*pr)("\t\t\t%p, 0x%llx\n",
|
|
pcg->pcg_objects[i].pcgo_va,
|
|
(unsigned long long)
|
|
pcg->pcg_objects[i].pcgo_pa);
|
|
} else {
|
|
(*pr)("\t\t\t%p\n",
|
|
pcg->pcg_objects[i].pcgo_va);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
skip_cache:
|
|
pr_enter_check(pp, pr);
|
|
}
|
|
|
|
static int
|
|
pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
|
|
{
|
|
struct pool_item *pi;
|
|
caddr_t page;
|
|
int n;
|
|
|
|
page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
|
|
if (page != ph->ph_page &&
|
|
(pp->pr_roflags & PR_PHINPAGE) != 0) {
|
|
if (label != NULL)
|
|
printf("%s: ", label);
|
|
printf("pool(%p:%s): page inconsistency: page %p;"
|
|
" at page head addr %p (p %p)\n", pp,
|
|
pp->pr_wchan, ph->ph_page,
|
|
ph, page);
|
|
return 1;
|
|
}
|
|
|
|
for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
|
|
pi != NULL;
|
|
pi = TAILQ_NEXT(pi,pi_list), n++) {
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (pi->pi_magic != PI_MAGIC) {
|
|
if (label != NULL)
|
|
printf("%s: ", label);
|
|
printf("pool(%s): free list modified: magic=%x;"
|
|
" page %p; item ordinal %d;"
|
|
" addr %p (p %p)\n",
|
|
pp->pr_wchan, pi->pi_magic, ph->ph_page,
|
|
n, pi, page);
|
|
panic("pool");
|
|
}
|
|
#endif
|
|
page =
|
|
(caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
|
|
if (page == ph->ph_page)
|
|
continue;
|
|
|
|
if (label != NULL)
|
|
printf("%s: ", label);
|
|
printf("pool(%p:%s): page inconsistency: page %p;"
|
|
" item ordinal %d; addr %p (p %p)\n", pp,
|
|
pp->pr_wchan, ph->ph_page,
|
|
n, pi, page);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
pool_chk(struct pool *pp, const char *label)
|
|
{
|
|
struct pool_item_header *ph;
|
|
int r = 0;
|
|
|
|
simple_lock(&pp->pr_slock);
|
|
LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
|
|
r = pool_chk_page(pp, label, ph);
|
|
if (r) {
|
|
goto out;
|
|
}
|
|
}
|
|
LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
|
|
r = pool_chk_page(pp, label, ph);
|
|
if (r) {
|
|
goto out;
|
|
}
|
|
}
|
|
LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
|
|
r = pool_chk_page(pp, label, ph);
|
|
if (r) {
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
simple_unlock(&pp->pr_slock);
|
|
return (r);
|
|
}
|
|
|
|
/*
|
|
* pool_cache_init:
|
|
*
|
|
* Initialize a pool cache.
|
|
*
|
|
* NOTE: If the pool must be protected from interrupts, we expect
|
|
* to be called at the appropriate interrupt priority level.
|
|
*/
|
|
void
|
|
pool_cache_init(struct pool_cache *pc, struct pool *pp,
|
|
int (*ctor)(void *, void *, int),
|
|
void (*dtor)(void *, void *),
|
|
void *arg)
|
|
{
|
|
|
|
TAILQ_INIT(&pc->pc_grouplist);
|
|
simple_lock_init(&pc->pc_slock);
|
|
|
|
pc->pc_allocfrom = NULL;
|
|
pc->pc_freeto = NULL;
|
|
pc->pc_pool = pp;
|
|
|
|
pc->pc_ctor = ctor;
|
|
pc->pc_dtor = dtor;
|
|
pc->pc_arg = arg;
|
|
|
|
pc->pc_hits = 0;
|
|
pc->pc_misses = 0;
|
|
|
|
pc->pc_ngroups = 0;
|
|
|
|
pc->pc_nitems = 0;
|
|
|
|
simple_lock(&pp->pr_slock);
|
|
TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
|
|
simple_unlock(&pp->pr_slock);
|
|
}
|
|
|
|
/*
|
|
* pool_cache_destroy:
|
|
*
|
|
* Destroy a pool cache.
|
|
*/
|
|
void
|
|
pool_cache_destroy(struct pool_cache *pc)
|
|
{
|
|
struct pool *pp = pc->pc_pool;
|
|
|
|
/* First, invalidate the entire cache. */
|
|
pool_cache_invalidate(pc);
|
|
|
|
/* ...and remove it from the pool's cache list. */
|
|
simple_lock(&pp->pr_slock);
|
|
TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
|
|
simple_unlock(&pp->pr_slock);
|
|
}
|
|
|
|
static __inline void *
|
|
pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
|
|
{
|
|
void *object;
|
|
u_int idx;
|
|
|
|
KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
|
|
KASSERT(pcg->pcg_avail != 0);
|
|
idx = --pcg->pcg_avail;
|
|
|
|
KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
|
|
object = pcg->pcg_objects[idx].pcgo_va;
|
|
if (pap != NULL)
|
|
*pap = pcg->pcg_objects[idx].pcgo_pa;
|
|
pcg->pcg_objects[idx].pcgo_va = NULL;
|
|
|
|
return (object);
|
|
}
|
|
|
|
static __inline void
|
|
pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
|
|
{
|
|
u_int idx;
|
|
|
|
KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
|
|
idx = pcg->pcg_avail++;
|
|
|
|
KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
|
|
pcg->pcg_objects[idx].pcgo_va = object;
|
|
pcg->pcg_objects[idx].pcgo_pa = pa;
|
|
}
|
|
|
|
/*
|
|
* pool_cache_get{,_paddr}:
|
|
*
|
|
* Get an object from a pool cache (optionally returning
|
|
* the physical address of the object).
|
|
*/
|
|
void *
|
|
pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
|
|
{
|
|
struct pool_cache_group *pcg;
|
|
void *object;
|
|
|
|
#ifdef LOCKDEBUG
|
|
if (flags & PR_WAITOK)
|
|
simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
|
|
#endif
|
|
|
|
simple_lock(&pc->pc_slock);
|
|
|
|
if ((pcg = pc->pc_allocfrom) == NULL) {
|
|
TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
|
|
if (pcg->pcg_avail != 0) {
|
|
pc->pc_allocfrom = pcg;
|
|
goto have_group;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* No groups with any available objects. Allocate
|
|
* a new object, construct it, and return it to
|
|
* the caller. We will allocate a group, if necessary,
|
|
* when the object is freed back to the cache.
|
|
*/
|
|
pc->pc_misses++;
|
|
simple_unlock(&pc->pc_slock);
|
|
object = pool_get(pc->pc_pool, flags);
|
|
if (object != NULL && pc->pc_ctor != NULL) {
|
|
if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
|
|
pool_put(pc->pc_pool, object);
|
|
return (NULL);
|
|
}
|
|
}
|
|
if (object != NULL && pap != NULL) {
|
|
#ifdef POOL_VTOPHYS
|
|
*pap = POOL_VTOPHYS(object);
|
|
#else
|
|
*pap = POOL_PADDR_INVALID;
|
|
#endif
|
|
}
|
|
return (object);
|
|
}
|
|
|
|
have_group:
|
|
pc->pc_hits++;
|
|
pc->pc_nitems--;
|
|
object = pcg_get(pcg, pap);
|
|
|
|
if (pcg->pcg_avail == 0)
|
|
pc->pc_allocfrom = NULL;
|
|
|
|
simple_unlock(&pc->pc_slock);
|
|
|
|
return (object);
|
|
}
|
|
|
|
/*
|
|
* pool_cache_put{,_paddr}:
|
|
*
|
|
* Put an object back to the pool cache (optionally caching the
|
|
* physical address of the object).
|
|
*/
|
|
void
|
|
pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
|
|
{
|
|
struct pool_cache_group *pcg;
|
|
int s;
|
|
|
|
simple_lock(&pc->pc_slock);
|
|
|
|
if ((pcg = pc->pc_freeto) == NULL) {
|
|
TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
|
|
if (pcg->pcg_avail != PCG_NOBJECTS) {
|
|
pc->pc_freeto = pcg;
|
|
goto have_group;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* No empty groups to free the object to. Attempt to
|
|
* allocate one.
|
|
*/
|
|
simple_unlock(&pc->pc_slock);
|
|
s = splvm();
|
|
pcg = pool_get(&pcgpool, PR_NOWAIT);
|
|
splx(s);
|
|
if (pcg != NULL) {
|
|
memset(pcg, 0, sizeof(*pcg));
|
|
simple_lock(&pc->pc_slock);
|
|
pc->pc_ngroups++;
|
|
TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
|
|
if (pc->pc_freeto == NULL)
|
|
pc->pc_freeto = pcg;
|
|
goto have_group;
|
|
}
|
|
|
|
/*
|
|
* Unable to allocate a cache group; destruct the object
|
|
* and free it back to the pool.
|
|
*/
|
|
pool_cache_destruct_object(pc, object);
|
|
return;
|
|
}
|
|
|
|
have_group:
|
|
pc->pc_nitems++;
|
|
pcg_put(pcg, object, pa);
|
|
|
|
if (pcg->pcg_avail == PCG_NOBJECTS)
|
|
pc->pc_freeto = NULL;
|
|
|
|
simple_unlock(&pc->pc_slock);
|
|
}
|
|
|
|
/*
|
|
* pool_cache_destruct_object:
|
|
*
|
|
* Force destruction of an object and its release back into
|
|
* the pool.
|
|
*/
|
|
void
|
|
pool_cache_destruct_object(struct pool_cache *pc, void *object)
|
|
{
|
|
|
|
if (pc->pc_dtor != NULL)
|
|
(*pc->pc_dtor)(pc->pc_arg, object);
|
|
pool_put(pc->pc_pool, object);
|
|
}
|
|
|
|
/*
|
|
* pool_cache_do_invalidate:
|
|
*
|
|
* This internal function implements pool_cache_invalidate() and
|
|
* pool_cache_reclaim().
|
|
*/
|
|
static void
|
|
pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
|
|
void (*putit)(struct pool *, void *))
|
|
{
|
|
struct pool_cache_group *pcg, *npcg;
|
|
void *object;
|
|
int s;
|
|
|
|
for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
|
|
pcg = npcg) {
|
|
npcg = TAILQ_NEXT(pcg, pcg_list);
|
|
while (pcg->pcg_avail != 0) {
|
|
pc->pc_nitems--;
|
|
object = pcg_get(pcg, NULL);
|
|
if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
|
|
pc->pc_allocfrom = NULL;
|
|
if (pc->pc_dtor != NULL)
|
|
(*pc->pc_dtor)(pc->pc_arg, object);
|
|
(*putit)(pc->pc_pool, object);
|
|
}
|
|
if (free_groups) {
|
|
pc->pc_ngroups--;
|
|
TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
|
|
if (pc->pc_freeto == pcg)
|
|
pc->pc_freeto = NULL;
|
|
s = splvm();
|
|
pool_put(&pcgpool, pcg);
|
|
splx(s);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* pool_cache_invalidate:
|
|
*
|
|
* Invalidate a pool cache (destruct and release all of the
|
|
* cached objects).
|
|
*/
|
|
void
|
|
pool_cache_invalidate(struct pool_cache *pc)
|
|
{
|
|
|
|
simple_lock(&pc->pc_slock);
|
|
pool_cache_do_invalidate(pc, 0, pool_put);
|
|
simple_unlock(&pc->pc_slock);
|
|
}
|
|
|
|
/*
|
|
* pool_cache_reclaim:
|
|
*
|
|
* Reclaim a pool cache for pool_reclaim().
|
|
*/
|
|
static void
|
|
pool_cache_reclaim(struct pool_cache *pc)
|
|
{
|
|
|
|
simple_lock(&pc->pc_slock);
|
|
pool_cache_do_invalidate(pc, 1, pool_do_put);
|
|
simple_unlock(&pc->pc_slock);
|
|
}
|
|
|
|
/*
|
|
* Pool backend allocators.
|
|
*
|
|
* Each pool has a backend allocator that handles allocation, deallocation,
|
|
* and any additional draining that might be needed.
|
|
*
|
|
* We provide two standard allocators:
|
|
*
|
|
* pool_allocator_kmem - the default when no allocator is specified
|
|
*
|
|
* pool_allocator_nointr - used for pools that will not be accessed
|
|
* in interrupt context.
|
|
*/
|
|
void *pool_page_alloc(struct pool *, int);
|
|
void pool_page_free(struct pool *, void *);
|
|
|
|
struct pool_allocator pool_allocator_kmem = {
|
|
pool_page_alloc, pool_page_free, 0,
|
|
};
|
|
|
|
void *pool_page_alloc_nointr(struct pool *, int);
|
|
void pool_page_free_nointr(struct pool *, void *);
|
|
|
|
struct pool_allocator pool_allocator_nointr = {
|
|
pool_page_alloc_nointr, pool_page_free_nointr, 0,
|
|
};
|
|
|
|
#ifdef POOL_SUBPAGE
|
|
void *pool_subpage_alloc(struct pool *, int);
|
|
void pool_subpage_free(struct pool *, void *);
|
|
|
|
struct pool_allocator pool_allocator_kmem_subpage = {
|
|
pool_subpage_alloc, pool_subpage_free, 0,
|
|
};
|
|
#endif /* POOL_SUBPAGE */
|
|
|
|
/*
|
|
* We have at least three different resources for the same allocation and
|
|
* each resource can be depleted. First, we have the ready elements in the
|
|
* pool. Then we have the resource (typically a vm_map) for this allocator.
|
|
* Finally, we have physical memory. Waiting for any of these can be
|
|
* unnecessary when any other is freed, but the kernel doesn't support
|
|
* sleeping on multiple wait channels, so we have to employ another strategy.
|
|
*
|
|
* The caller sleeps on the pool (so that it can be awakened when an item
|
|
* is returned to the pool), but we set PA_WANT on the allocator. When a
|
|
* page is returned to the allocator and PA_WANT is set, pool_allocator_free
|
|
* will wake up all sleeping pools belonging to this allocator.
|
|
*
|
|
* XXX Thundering herd.
|
|
*/
|
|
void *
|
|
pool_allocator_alloc(struct pool *org, int flags)
|
|
{
|
|
struct pool_allocator *pa = org->pr_alloc;
|
|
struct pool *pp, *start;
|
|
int s, freed;
|
|
void *res;
|
|
|
|
do {
|
|
if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
|
|
return (res);
|
|
if ((flags & PR_WAITOK) == 0) {
|
|
/*
|
|
* We only run the drain hookhere if PR_NOWAIT.
|
|
* In other cases, the hook will be run in
|
|
* pool_reclaim().
|
|
*/
|
|
if (org->pr_drain_hook != NULL) {
|
|
(*org->pr_drain_hook)(org->pr_drain_hook_arg,
|
|
flags);
|
|
if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
|
|
return (res);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Drain all pools, except "org", that use this
|
|
* allocator. We do this to reclaim VA space.
|
|
* pa_alloc is responsible for waiting for
|
|
* physical memory.
|
|
*
|
|
* XXX We risk looping forever if start if someone
|
|
* calls pool_destroy on "start". But there is no
|
|
* other way to have potentially sleeping pool_reclaim,
|
|
* non-sleeping locks on pool_allocator, and some
|
|
* stirring of drained pools in the allocator.
|
|
*
|
|
* XXX Maybe we should use pool_head_slock for locking
|
|
* the allocators?
|
|
*/
|
|
freed = 0;
|
|
|
|
s = splvm();
|
|
simple_lock(&pa->pa_slock);
|
|
pp = start = TAILQ_FIRST(&pa->pa_list);
|
|
do {
|
|
TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
|
|
TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
|
|
if (pp == org)
|
|
continue;
|
|
simple_unlock(&pa->pa_slock);
|
|
freed = pool_reclaim(pp);
|
|
simple_lock(&pa->pa_slock);
|
|
} while ((pp = TAILQ_FIRST(&pa->pa_list)) != start &&
|
|
freed == 0);
|
|
|
|
if (freed == 0) {
|
|
/*
|
|
* We set PA_WANT here, the caller will most likely
|
|
* sleep waiting for pages (if not, this won't hurt
|
|
* that much), and there is no way to set this in
|
|
* the caller without violating locking order.
|
|
*/
|
|
pa->pa_flags |= PA_WANT;
|
|
}
|
|
simple_unlock(&pa->pa_slock);
|
|
splx(s);
|
|
} while (freed);
|
|
return (NULL);
|
|
}
|
|
|
|
void
|
|
pool_allocator_free(struct pool *pp, void *v)
|
|
{
|
|
struct pool_allocator *pa = pp->pr_alloc;
|
|
int s;
|
|
|
|
(*pa->pa_free)(pp, v);
|
|
|
|
s = splvm();
|
|
simple_lock(&pa->pa_slock);
|
|
if ((pa->pa_flags & PA_WANT) == 0) {
|
|
simple_unlock(&pa->pa_slock);
|
|
splx(s);
|
|
return;
|
|
}
|
|
|
|
TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
|
|
simple_lock(&pp->pr_slock);
|
|
if ((pp->pr_flags & PR_WANTED) != 0) {
|
|
pp->pr_flags &= ~PR_WANTED;
|
|
wakeup(pp);
|
|
}
|
|
simple_unlock(&pp->pr_slock);
|
|
}
|
|
pa->pa_flags &= ~PA_WANT;
|
|
simple_unlock(&pa->pa_slock);
|
|
splx(s);
|
|
}
|
|
|
|
void *
|
|
pool_page_alloc(struct pool *pp, int flags)
|
|
{
|
|
boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
|
|
|
|
return ((void *) uvm_km_alloc_poolpage(waitok));
|
|
}
|
|
|
|
void
|
|
pool_page_free(struct pool *pp, void *v)
|
|
{
|
|
|
|
uvm_km_free_poolpage((vaddr_t) v);
|
|
}
|
|
|
|
#ifdef POOL_SUBPAGE
|
|
/* Sub-page allocator, for machines with large hardware pages. */
|
|
void *
|
|
pool_subpage_alloc(struct pool *pp, int flags)
|
|
{
|
|
|
|
return (pool_get(&psppool, flags));
|
|
}
|
|
|
|
void
|
|
pool_subpage_free(struct pool *pp, void *v)
|
|
{
|
|
|
|
pool_put(&psppool, v);
|
|
}
|
|
|
|
/* We don't provide a real nointr allocator. Maybe later. */
|
|
void *
|
|
pool_page_alloc_nointr(struct pool *pp, int flags)
|
|
{
|
|
|
|
return (pool_subpage_alloc(pp, flags));
|
|
}
|
|
|
|
void
|
|
pool_page_free_nointr(struct pool *pp, void *v)
|
|
{
|
|
|
|
pool_subpage_free(pp, v);
|
|
}
|
|
#else
|
|
void *
|
|
pool_page_alloc_nointr(struct pool *pp, int flags)
|
|
{
|
|
boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
|
|
|
|
return ((void *) uvm_km_alloc_poolpage1(kernel_map,
|
|
uvm.kernel_object, waitok));
|
|
}
|
|
|
|
void
|
|
pool_page_free_nointr(struct pool *pp, void *v)
|
|
{
|
|
|
|
uvm_km_free_poolpage1(kernel_map, (vaddr_t) v);
|
|
}
|
|
#endif /* POOL_SUBPAGE */
|