NetBSD/sys/arch/powerpc/booke/booke_machdep.c

689 lines
18 KiB
C

/* $NetBSD: booke_machdep.c,v 1.23 2015/01/23 07:27:05 nonaka Exp $ */
/*-
* Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
* Agency and which was developed by Matt Thomas of 3am Software Foundry.
*
* This material is based upon work supported by the Defense Advanced Research
* Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
* Contract No. N66001-09-C-2073.
* Approved for Public Release, Distribution Unlimited
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#define __INTR_PRIVATE
#define _POWERPC_BUS_DMA_PRIVATE
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: booke_machdep.c,v 1.23 2015/01/23 07:27:05 nonaka Exp $");
#include "opt_modular.h"
#include <sys/param.h>
#include <sys/cpu.h>
#include <sys/device.h>
#include <sys/intr.h>
#include <sys/mount.h>
#include <sys/msgbuf.h>
#include <sys/kernel.h>
#include <sys/reboot.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <uvm/uvm_extern.h>
#include <powerpc/pcb.h>
#include <powerpc/spr.h>
#include <powerpc/booke/spr.h>
#include <powerpc/booke/cpuvar.h>
/*
* Global variables used here and there
*/
paddr_t msgbuf_paddr;
psize_t pmemsize;
struct vm_map *phys_map;
#ifdef MODULAR
register_t cpu_psluserset = PSL_USERSET;
register_t cpu_pslusermod = PSL_USERMOD;
register_t cpu_pslusermask = PSL_USERMASK;
#endif
static bus_addr_t booke_dma_phys_to_bus_mem(bus_dma_tag_t, bus_addr_t);
static bus_addr_t booke_dma_bus_mem_to_phys(bus_dma_tag_t, bus_addr_t);
struct powerpc_bus_dma_tag booke_bus_dma_tag = {
._dmamap_create = _bus_dmamap_create,
._dmamap_destroy = _bus_dmamap_destroy,
._dmamap_load = _bus_dmamap_load,
._dmamap_load_mbuf = _bus_dmamap_load_mbuf,
._dmamap_load_uio = _bus_dmamap_load_uio,
._dmamap_load_raw = _bus_dmamap_load_raw,
._dmamap_unload = _bus_dmamap_unload,
/*
* The caches on BookE are coherent so we don't need to do any special
* cache synchronization.
*/
//._dmamap_sync = _bus_dmamap_sync,
._dmamem_alloc = _bus_dmamem_alloc,
._dmamem_free = _bus_dmamem_free,
._dmamem_map = _bus_dmamem_map,
._dmamem_unmap = _bus_dmamem_unmap,
._dmamem_mmap = _bus_dmamem_mmap,
._dma_phys_to_bus_mem = booke_dma_phys_to_bus_mem,
._dma_bus_mem_to_phys = booke_dma_bus_mem_to_phys,
};
static bus_addr_t
booke_dma_phys_to_bus_mem(bus_dma_tag_t t, bus_addr_t a)
{
return a;
}
static bus_addr_t
booke_dma_bus_mem_to_phys(bus_dma_tag_t t, bus_addr_t a)
{
return a;
}
struct cpu_md_ops cpu_md_ops;
struct cpu_softc cpu_softc[] = {
[0] = {
.cpu_ci = &cpu_info[0],
},
#ifdef MULTIPROCESSOR
[CPU_MAXNUM-1] = {
.cpu_ci = &cpu_info[CPU_MAXNUM-1],
},
#endif
};
struct cpu_info cpu_info[] = {
[0] = {
.ci_curlwp = &lwp0,
.ci_tlb_info = &pmap_tlb0_info,
.ci_softc = &cpu_softc[0],
.ci_cpl = IPL_HIGH,
.ci_idepth = -1,
},
#ifdef MULTIPROCESSOR
[CPU_MAXNUM-1] = {
.ci_curlwp = NULL,
.ci_tlb_info = &pmap_tlb0_info,
.ci_softc = &cpu_softc[CPU_MAXNUM-1],
.ci_cpl = IPL_HIGH,
.ci_idepth = -1,
},
#endif
};
__CTASSERT(__arraycount(cpu_info) == __arraycount(cpu_softc));
/*
* This should probably be in autoconf! XXX
*/
char machine[] = MACHINE; /* from <machine/param.h> */
char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
char bootpath[256];
#if NKSYMS || defined(DDB) || defined(MODULAR)
void *startsym, *endsym;
#endif
#if defined(MULTIPROCESSOR)
volatile struct cpu_hatch_data cpu_hatch_data __cacheline_aligned;
#endif
int fake_mapiodev = 1;
void
booke_cpu_startup(const char *model)
{
vaddr_t minaddr, maxaddr;
char pbuf[9];
cpu_setmodel("%s", model);
printf("%s%s", copyright, version);
format_bytes(pbuf, sizeof(pbuf), ctob((uint64_t)physmem));
printf("total memory = %s\n", pbuf);
minaddr = 0;
/*
* Allocate a submap for physio
*/
phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
VM_PHYS_SIZE, 0, false, NULL);
/*
* No need to allocate an mbuf cluster submap. Mbuf clusters
* are allocated via the pool allocator, and we use direct-mapped
* pool pages.
*/
format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
printf("avail memory = %s\n", pbuf);
/*
* Register the tlb's evcnts
*/
pmap_tlb_info_evcnt_attach(curcpu()->ci_tlb_info);
/*
* Set up the board properties database.
*/
board_info_init();
/*
* Now that we have VM, malloc()s are OK in bus_space.
*/
bus_space_mallocok();
fake_mapiodev = 0;
#ifdef MULTIPROCESSOR
pmap_kernel()->pm_active = kcpuset_running;
pmap_kernel()->pm_onproc = kcpuset_running;
for (size_t i = 1; i < __arraycount(cpu_info); i++) {
struct cpu_info * const ci = &cpu_info[i];
struct cpu_softc * const cpu = &cpu_softc[i];
cpu->cpu_ci = ci;
cpu->cpu_bst = cpu_softc[0].cpu_bst;
cpu->cpu_le_bst = cpu_softc[0].cpu_le_bst;
cpu->cpu_bsh = cpu_softc[0].cpu_bsh;
cpu->cpu_highmem = cpu_softc[0].cpu_highmem;
ci->ci_softc = cpu;
ci->ci_tlb_info = &pmap_tlb0_info;
ci->ci_cpl = IPL_HIGH;
ci->ci_idepth = -1;
ci->ci_pmap_kern_segtab = curcpu()->ci_pmap_kern_segtab;
}
kcpuset_create(&cpuset_info.cpus_running, true);
kcpuset_create(&cpuset_info.cpus_hatched, true);
kcpuset_create(&cpuset_info.cpus_paused, true);
kcpuset_create(&cpuset_info.cpus_resumed, true);
kcpuset_create(&cpuset_info.cpus_halted, true);
kcpuset_set(cpuset_info.cpus_running, cpu_number());
#endif /* MULTIPROCESSOR */
}
static void
dumpsys(void)
{
printf("dumpsys: TBD\n");
}
/*
* Halt or reboot the machine after syncing/dumping according to howto.
*/
void
cpu_reboot(int howto, char *what)
{
static int syncing;
static char str[256];
char *ap = str, *ap1 = ap;
boothowto = howto;
if (!cold && !(howto & RB_NOSYNC) && !syncing) {
syncing = 1;
vfs_shutdown(); /* sync */
resettodr(); /* set wall clock */
}
splhigh();
if (!cold && (howto & RB_DUMP))
dumpsys();
doshutdownhooks();
pmf_system_shutdown(boothowto);
if ((howto & RB_POWERDOWN) == RB_POWERDOWN) {
/* Power off here if we know how...*/
}
if (howto & RB_HALT) {
printf("halted\n\n");
goto reboot; /* XXX for now... */
#ifdef DDB
printf("dropping to debugger\n");
while(1)
Debugger();
#endif
}
printf("rebooting\n\n");
if (what && *what) {
if (strlen(what) > sizeof str - 5)
printf("boot string too large, ignored\n");
else {
strcpy(str, what);
ap1 = ap = str + strlen(str);
*ap++ = ' ';
}
}
*ap++ = '-';
if (howto & RB_SINGLE)
*ap++ = 's';
if (howto & RB_KDB)
*ap++ = 'd';
*ap++ = 0;
if (ap[-2] == '-')
*ap1 = 0;
/* flush cache for msgbuf */
dcache_wb(msgbuf_paddr, round_page(MSGBUFSIZE));
reboot:
__asm volatile("msync; isync");
(*cpu_md_ops.md_cpu_reset)();
printf("%s: md_cpu_reset() failed!\n", __func__);
#ifdef DDB
for (;;)
Debugger();
#else
for (;;)
/* nothing */;
#endif
}
/*
* mapiodev:
*
* Allocate vm space and mapin the I/O address. Use reserved TLB
* mapping if one is found.
*/
void *
mapiodev(paddr_t pa, psize_t len, bool prefetchable)
{
const vsize_t off = pa & PAGE_MASK;
/*
* See if we have reserved TLB entry for the pa. This needs to be
* true for console as we can't use uvm during early bootstrap.
*/
void * const p = tlb_mapiodev(pa, len, prefetchable);
if (p != NULL)
return p;
if (fake_mapiodev)
panic("mapiodev: no TLB entry reserved for %llx+%llx",
(long long)pa, (long long)len);
const paddr_t orig_pa = pa;
const psize_t orig_len = len;
vsize_t align = 0;
pa = trunc_page(pa);
len = round_page(off + len);
/*
* If we are allocating a large amount (>= 1MB) try to get an
* aligned VA region for it so try to do a large mapping for it.
*/
if ((len & (len - 1)) == 0 && len >= 0x100000)
align = len;
vaddr_t va = uvm_km_alloc(kernel_map, len, align, UVM_KMF_VAONLY);
if (va == 0 && align > 0) {
/*
* Large aligned request failed. Let's just get anything.
*/
align = 0;
va = uvm_km_alloc(kernel_map, len, align, UVM_KMF_VAONLY);
}
if (va == 0)
return NULL;
if (align) {
/*
* Now try to map that via one big TLB entry.
*/
pt_entry_t pte = pte_make_kenter_pa(pa, NULL,
VM_PROT_READ|VM_PROT_WRITE,
prefetchable ? 0 : PMAP_NOCACHE);
if (!tlb_ioreserve(va, len, pte)) {
void * const p0 = tlb_mapiodev(orig_pa, orig_len,
prefetchable);
KASSERT(p0 != NULL);
return p0;
}
}
for (va += len, pa += len; len > 0; len -= PAGE_SIZE) {
va -= PAGE_SIZE;
pa -= PAGE_SIZE;
pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE,
prefetchable ? 0 : PMAP_NOCACHE);
}
pmap_update(pmap_kernel());
return (void *)(va + off);
}
void
unmapiodev(vaddr_t va, vsize_t len)
{
/* Nothing to do for reserved (ie. not uvm_km_alloc'd) mappings. */
if (va < VM_MIN_KERNEL_ADDRESS || va > VM_MAX_KERNEL_ADDRESS) {
tlb_unmapiodev(va, len);
return;
}
len = round_page((va & PAGE_MASK) + len);
va = trunc_page(va);
pmap_kremove(va, len);
uvm_km_free(kernel_map, va, len, UVM_KMF_VAONLY);
}
void
cpu_evcnt_attach(struct cpu_info *ci)
{
struct cpu_softc * const cpu = ci->ci_softc;
const char * const xname = ci->ci_data.cpu_name;
evcnt_attach_dynamic_nozero(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
NULL, xname, "clock");
evcnt_attach_dynamic_nozero(&cpu->cpu_ev_late_clock, EVCNT_TYPE_INTR,
NULL, xname, "late clock");
evcnt_attach_dynamic_nozero(&cpu->cpu_ev_exec_trap_sync, EVCNT_TYPE_TRAP,
NULL, xname, "exec pages synced (trap)");
evcnt_attach_dynamic_nozero(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
NULL, xname, "traps");
evcnt_attach_dynamic_nozero(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, xname, "kernel DSI traps");
evcnt_attach_dynamic_nozero(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, xname, "user DSI traps");
evcnt_attach_dynamic_nozero(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
&ci->ci_ev_udsi, xname, "user DSI failures");
evcnt_attach_dynamic_nozero(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, xname, "kernel ISI traps");
evcnt_attach_dynamic_nozero(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, xname, "user ISI traps");
evcnt_attach_dynamic_nozero(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
&ci->ci_ev_isi, xname, "user ISI failures");
evcnt_attach_dynamic_nozero(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, xname, "system call traps");
evcnt_attach_dynamic_nozero(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, xname, "PGM traps");
evcnt_attach_dynamic_nozero(&ci->ci_ev_debug, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, xname, "debug traps");
evcnt_attach_dynamic_nozero(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, xname, "FPU unavailable traps");
evcnt_attach_dynamic_nozero(&ci->ci_ev_fpusw, EVCNT_TYPE_MISC,
&ci->ci_ev_fpu, xname, "FPU context switches");
evcnt_attach_dynamic_nozero(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, xname, "user alignment traps");
evcnt_attach_dynamic_nozero(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
&ci->ci_ev_ali, xname, "user alignment traps");
evcnt_attach_dynamic_nozero(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
&ci->ci_ev_umchk, xname, "user MCHK failures");
evcnt_attach_dynamic_nozero(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, xname, "SPE unavailable");
evcnt_attach_dynamic_nozero(&ci->ci_ev_vecsw, EVCNT_TYPE_MISC,
&ci->ci_ev_vec, xname, "SPE context switches");
evcnt_attach_dynamic_nozero(&ci->ci_ev_ipi, EVCNT_TYPE_INTR,
NULL, xname, "IPIs");
evcnt_attach_dynamic_nozero(&ci->ci_ev_tlbmiss_soft, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, xname, "soft tlb misses");
evcnt_attach_dynamic_nozero(&ci->ci_ev_dtlbmiss_hard, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, xname, "data tlb misses");
evcnt_attach_dynamic_nozero(&ci->ci_ev_itlbmiss_hard, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, xname, "inst tlb misses");
}
#ifdef MULTIPROCESSOR
register_t
cpu_hatch(void)
{
struct cpuset_info * const csi = &cpuset_info;
const size_t id = cpu_number();
/*
* We've hatched so tell the spinup code.
*/
kcpuset_set(csi->cpus_hatched, id);
/*
* Loop until running bit for this cpu is set.
*/
while (!kcpuset_isset(csi->cpus_running, id)) {
continue;
}
/*
* Now that we are active, start the clocks.
*/
cpu_initclocks();
/*
* Return sp of the idlelwp. Which we should be already using but ...
*/
return curcpu()->ci_curpcb->pcb_sp;
}
void
cpu_boot_secondary_processors(void)
{
volatile struct cpuset_info * const csi = &cpuset_info;
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
kcpuset_t *running;
kcpuset_create(&running, true);
for (CPU_INFO_FOREACH(cii, ci)) {
/*
* Skip this CPU if it didn't sucessfully hatch.
*/
if (!kcpuset_isset(csi->cpus_hatched, cpu_index(ci)))
continue;
KASSERT(!CPU_IS_PRIMARY(ci));
KASSERT(ci->ci_data.cpu_idlelwp);
kcpuset_set(running, cpu_index(ci));
}
KASSERT(kcpuset_match(csi->cpus_hatched, running));
if (!kcpuset_iszero(running)) {
kcpuset_merge(csi->cpus_running, running);
}
kcpuset_destroy(running);
}
#endif
uint32_t
cpu_read_4(bus_addr_t a)
{
struct cpu_softc * const cpu = curcpu()->ci_softc;
// printf(" %s(%p, %x, %x)", __func__, cpu->cpu_bst, cpu->cpu_bsh, a);
return bus_space_read_4(cpu->cpu_bst, cpu->cpu_bsh, a);
}
uint8_t
cpu_read_1(bus_addr_t a)
{
struct cpu_softc * const cpu = curcpu()->ci_softc;
// printf(" %s(%p, %x, %x)", __func__, cpu->cpu_bst, cpu->cpu_bsh, a);
return bus_space_read_1(cpu->cpu_bst, cpu->cpu_bsh, a);
}
void
cpu_write_4(bus_addr_t a, uint32_t v)
{
struct cpu_softc * const cpu = curcpu()->ci_softc;
bus_space_write_4(cpu->cpu_bst, cpu->cpu_bsh, a, v);
}
void
cpu_write_1(bus_addr_t a, uint8_t v)
{
struct cpu_softc * const cpu = curcpu()->ci_softc;
bus_space_write_1(cpu->cpu_bst, cpu->cpu_bsh, a, v);
}
void
booke_sstep(struct trapframe *tf)
{
KASSERT(tf->tf_srr1 & PSL_DE);
const uint32_t insn = ufetch_32((const void *)tf->tf_srr0);
register_t dbcr0 = DBCR0_IAC1 | DBCR0_IDM;
register_t dbcr1 = DBCR1_IAC1US_USER | DBCR1_IAC1ER_DS1;
if ((insn >> 28) == 4) {
uint32_t iac2 = 0;
if ((insn >> 26) == 0x12) {
const int32_t off = (((int32_t)insn << 6) >> 6) & ~3;
iac2 = ((insn & 2) ? 0 : tf->tf_srr0) + off;
dbcr0 |= DBCR0_IAC2;
} else if ((insn >> 26) == 0x10) {
const int16_t off = insn & ~3;
iac2 = ((insn & 2) ? 0 : tf->tf_srr0) + off;
dbcr0 |= DBCR0_IAC2;
} else if ((insn & 0xfc00fffe) == 0x4c000420) {
iac2 = tf->tf_ctr;
dbcr0 |= DBCR0_IAC2;
} else if ((insn & 0xfc00fffe) == 0x4c000020) {
iac2 = tf->tf_lr;
dbcr0 |= DBCR0_IAC2;
}
if (dbcr0 & DBCR0_IAC2) {
dbcr1 |= DBCR1_IAC2US_USER | DBCR1_IAC2ER_DS1;
mtspr(SPR_IAC2, iac2);
}
}
mtspr(SPR_IAC1, tf->tf_srr0 + 4);
mtspr(SPR_DBCR1, dbcr1);
mtspr(SPR_DBCR0, dbcr0);
}
#ifdef DIAGNOSTIC
static inline void
swap_data(uint64_t *data, size_t a, size_t b)
{
uint64_t swap = data[a];
data[a] = data[b];
data[b] = swap;
}
static void
sort_data(uint64_t *data, size_t count)
{
#if 0
/*
* Mostly classic bubble sort
*/
do {
size_t new_count = 0;
for (size_t i = 1; i < count; i++) {
if (tbs[i - 1] > tbs[i]) {
swap_tbs(tbs, i - 1, i);
new_count = i;
}
}
count = new_count;
} while (count > 0);
#else
/*
* Comb sort
*/
size_t gap = count;
bool swapped = false;
while (gap > 1 || swapped) {
if (gap > 1) {
/*
* phi = (1 + sqrt(5)) / 2 [golden ratio]
* N = 1 / (1 - e^-phi)) = 1.247330950103979
*
* We want to but can't use floating point to calculate
* gap = (size_t)((double)gap / N)
*
* So we will use the multicative inverse of N
* (module 65536) to achieve the division.
*
* iN = 2^16 / 1.24733... = 52540
* x / N == (x * iN) / 65536
*/
gap = (gap * 52540) / 65536;
}
swapped = false;
for (size_t i = 0; gap + i < count; i++) {
if (data[i] > data[i + gap]) {
swap_data(data, i, i + gap);
swapped = true;
}
}
}
#endif
}
#endif
void
dump_splhist(struct cpu_info *ci, void (*pr)(const char *, ...))
{
#ifdef DIAGNOSTIC
struct cpu_softc * const cpu = ci->ci_softc;
uint64_t tbs[NIPL*NIPL];
size_t ntbs = 0;
for (size_t to = 0; to < NIPL; to++) {
for (size_t from = 0; from < NIPL; from++) {
uint64_t tb = cpu->cpu_spl_tb[to][from];
if (tb == 0)
continue;
tbs[ntbs++] = (tb << 8) | (to << 4) | from;
}
}
sort_data(tbs, ntbs);
if (pr == NULL)
pr = printf;
uint64_t last_tb = 0;
for (size_t i = 0; i < ntbs; i++) {
uint64_t tb = tbs[i];
size_t from = tb & 15;
size_t to = (tb >> 4) & 15;
tb >>= 8;
(*pr)("%s(%zu) from %zu at %"PRId64"",
from < to ? "splraise" : "splx",
to, from, tb);
if (last_tb && from != IPL_NONE)
(*pr)(" (+%"PRId64")", tb - last_tb);
(*pr)("\n");
last_tb = tb;
}
#endif
}