NetBSD/sys/dev/sysmon/sysmon_envsys.c
pgoyette 6d6a30996f Permit creation of an event-monitor for alarm limits even if the limits
are not currently set (and, in case of battery capacity sensors, if there
is no value_max).  Ensure that such an event-monitor does not trigger the
delivery of any actual events.

Provide a mechanism for sensors to set their limits at time other than
system startup (for example, when a battery is inserted).

This allows us to boot a system with a battery missing, install the
battery some time later, and automatically monitor it without requiring
any user intervention to create the event-monitor.  (The actual changes
for battery sensors to use this new capability will come later.)
2010-04-01 12:16:14 +00:00

2039 lines
49 KiB
C

/* $NetBSD: sysmon_envsys.c,v 1.104 2010/04/01 12:16:14 pgoyette Exp $ */
/*-
* Copyright (c) 2007, 2008 Juan Romero Pardines.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 2000 Zembu Labs, Inc.
* All rights reserved.
*
* Author: Jason R. Thorpe <thorpej@zembu.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Zembu Labs, Inc.
* 4. Neither the name of Zembu Labs nor the names of its employees may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY ZEMBU LABS, INC. ``AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
* RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
* CLAIMED. IN NO EVENT SHALL ZEMBU LABS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Environmental sensor framework for sysmon, exported to userland
* with proplib(3).
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: sysmon_envsys.c,v 1.104 2010/04/01 12:16:14 pgoyette Exp $");
#include <sys/param.h>
#include <sys/types.h>
#include <sys/conf.h>
#include <sys/errno.h>
#include <sys/fcntl.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/mutex.h>
#include <sys/kmem.h>
/* #define ENVSYS_DEBUG */
#include <dev/sysmon/sysmonvar.h>
#include <dev/sysmon/sysmon_envsysvar.h>
#include <dev/sysmon/sysmon_taskq.h>
kmutex_t sme_global_mtx;
prop_dictionary_t sme_propd;
static uint32_t sysmon_envsys_next_sensor_index;
static struct sysmon_envsys *sysmon_envsys_find_40(u_int);
static void sysmon_envsys_destroy_plist(prop_array_t);
static void sme_remove_userprops(void);
static int sme_add_property_dictionary(struct sysmon_envsys *, prop_array_t,
prop_dictionary_t);
static sme_event_drv_t * sme_add_sensor_dictionary(struct sysmon_envsys *,
prop_array_t, prop_dictionary_t, envsys_data_t *);
static void sme_initial_refresh(void *);
static uint32_t sme_get_max_value(struct sysmon_envsys *,
bool (*)(const envsys_data_t*), bool);
/*
* sysmon_envsys_init:
*
* + Initialize global mutex, dictionary and the linked list.
*/
void
sysmon_envsys_init(void)
{
LIST_INIT(&sysmon_envsys_list);
mutex_init(&sme_global_mtx, MUTEX_DEFAULT, IPL_NONE);
sme_propd = prop_dictionary_create();
}
/*
* sysmonopen_envsys:
*
* + Open the system monitor device.
*/
int
sysmonopen_envsys(dev_t dev, int flag, int mode, struct lwp *l)
{
return 0;
}
/*
* sysmonclose_envsys:
*
* + Close the system monitor device.
*/
int
sysmonclose_envsys(dev_t dev, int flag, int mode, struct lwp *l)
{
return 0;
}
/*
* sysmonioctl_envsys:
*
* + Perform a sysmon envsys control request.
*/
int
sysmonioctl_envsys(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
{
struct sysmon_envsys *sme = NULL;
int error = 0;
u_int oidx;
switch (cmd) {
/*
* To update the global dictionary with latest data from devices.
*/
case ENVSYS_GETDICTIONARY:
{
struct plistref *plist = (struct plistref *)data;
/*
* Update dictionaries on all sysmon envsys devices
* registered.
*/
mutex_enter(&sme_global_mtx);
LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
sysmon_envsys_acquire(sme, false);
error = sme_update_dictionary(sme);
if (error) {
DPRINTF(("%s: sme_update_dictionary, "
"error=%d\n", __func__, error));
sysmon_envsys_release(sme, false);
mutex_exit(&sme_global_mtx);
return error;
}
sysmon_envsys_release(sme, false);
}
mutex_exit(&sme_global_mtx);
/*
* Copy global dictionary to userland.
*/
error = prop_dictionary_copyout_ioctl(plist, cmd, sme_propd);
break;
}
/*
* To set properties on multiple devices.
*/
case ENVSYS_SETDICTIONARY:
{
const struct plistref *plist = (const struct plistref *)data;
prop_dictionary_t udict;
prop_object_iterator_t iter, iter2;
prop_object_t obj, obj2;
prop_array_t array_u, array_k;
const char *devname = NULL;
if ((flag & FWRITE) == 0)
return EPERM;
/*
* Get dictionary from userland.
*/
error = prop_dictionary_copyin_ioctl(plist, cmd, &udict);
if (error) {
DPRINTF(("%s: copyin_ioctl error=%d\n",
__func__, error));
break;
}
iter = prop_dictionary_iterator(udict);
if (!iter) {
prop_object_release(udict);
return ENOMEM;
}
/*
* Iterate over the userland dictionary and process
* the list of devices.
*/
while ((obj = prop_object_iterator_next(iter))) {
array_u = prop_dictionary_get_keysym(udict, obj);
if (prop_object_type(array_u) != PROP_TYPE_ARRAY) {
prop_object_iterator_release(iter);
prop_object_release(udict);
return EINVAL;
}
devname = prop_dictionary_keysym_cstring_nocopy(obj);
DPRINTF(("%s: processing the '%s' array requests\n",
__func__, devname));
/*
* find the correct sme device.
*/
sme = sysmon_envsys_find(devname);
if (!sme) {
DPRINTF(("%s: NULL sme\n", __func__));
prop_object_iterator_release(iter);
prop_object_release(udict);
return EINVAL;
}
/*
* Find the correct array object with the string
* supplied by the userland dictionary.
*/
array_k = prop_dictionary_get(sme_propd, devname);
if (prop_object_type(array_k) != PROP_TYPE_ARRAY) {
DPRINTF(("%s: array device failed\n",
__func__));
sysmon_envsys_release(sme, false);
prop_object_iterator_release(iter);
prop_object_release(udict);
return EINVAL;
}
iter2 = prop_array_iterator(array_u);
if (!iter2) {
sysmon_envsys_release(sme, false);
prop_object_iterator_release(iter);
prop_object_release(udict);
return ENOMEM;
}
/*
* Iterate over the array of dictionaries to
* process the list of sensors and properties.
*/
while ((obj2 = prop_object_iterator_next(iter2))) {
/*
* do the real work now.
*/
error = sme_userset_dictionary(sme,
obj2,
array_k);
if (error) {
sysmon_envsys_release(sme, false);
prop_object_iterator_release(iter2);
prop_object_iterator_release(iter);
prop_object_release(udict);
return error;
}
}
sysmon_envsys_release(sme, false);
prop_object_iterator_release(iter2);
}
prop_object_iterator_release(iter);
prop_object_release(udict);
break;
}
/*
* To remove all properties from all devices registered.
*/
case ENVSYS_REMOVEPROPS:
{
const struct plistref *plist = (const struct plistref *)data;
prop_dictionary_t udict;
prop_object_t obj;
if ((flag & FWRITE) == 0)
return EPERM;
error = prop_dictionary_copyin_ioctl(plist, cmd, &udict);
if (error) {
DPRINTF(("%s: copyin_ioctl error=%d\n",
__func__, error));
break;
}
obj = prop_dictionary_get(udict, "envsys-remove-props");
if (!obj || !prop_bool_true(obj)) {
DPRINTF(("%s: invalid 'envsys-remove-props'\n",
__func__));
return EINVAL;
}
prop_object_release(udict);
sme_remove_userprops();
break;
}
/*
* Compatibility ioctls with the old interface, only implemented
* ENVSYS_GTREDATA and ENVSYS_GTREINFO; enough to make old
* applications work.
*/
case ENVSYS_GTREDATA:
{
struct envsys_tre_data *tred = (void *)data;
envsys_data_t *edata = NULL;
bool found = false;
tred->validflags = 0;
sme = sysmon_envsys_find_40(tred->sensor);
if (!sme)
break;
oidx = tred->sensor;
tred->sensor = SME_SENSOR_IDX(sme, tred->sensor);
DPRINTFOBJ(("%s: sensor=%d oidx=%d dev=%s nsensors=%d\n",
__func__, tred->sensor, oidx, sme->sme_name,
sme->sme_nsensors));
TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
if (edata->sensor == tred->sensor) {
found = true;
break;
}
}
if (!found) {
sysmon_envsys_release(sme, false);
error = ENODEV;
break;
}
if (tred->sensor < sme->sme_nsensors) {
if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0 &&
(sme->sme_flags & SME_POLL_ONLY) == 0) {
mutex_enter(&sme->sme_mtx);
(*sme->sme_refresh)(sme, edata);
mutex_exit(&sme->sme_mtx);
}
/*
* copy required values to the old interface.
*/
tred->sensor = edata->sensor;
tred->cur.data_us = edata->value_cur;
tred->cur.data_s = edata->value_cur;
tred->max.data_us = edata->value_max;
tred->max.data_s = edata->value_max;
tred->min.data_us = edata->value_min;
tred->min.data_s = edata->value_min;
tred->avg.data_us = edata->value_avg;
tred->avg.data_s = edata->value_avg;
if (edata->units == ENVSYS_BATTERY_CHARGE)
tred->units = ENVSYS_INDICATOR;
else
tred->units = edata->units;
tred->validflags |= ENVSYS_FVALID;
tred->validflags |= ENVSYS_FCURVALID;
if (edata->flags & ENVSYS_FPERCENT) {
tred->validflags |= ENVSYS_FMAXVALID;
tred->validflags |= ENVSYS_FFRACVALID;
}
if (edata->state == ENVSYS_SINVALID) {
tred->validflags &= ~ENVSYS_FCURVALID;
tred->cur.data_us = tred->cur.data_s = 0;
}
DPRINTFOBJ(("%s: sensor=%s tred->cur.data_s=%d\n",
__func__, edata->desc, tred->cur.data_s));
DPRINTFOBJ(("%s: tred->validflags=%d tred->units=%d"
" tred->sensor=%d\n", __func__, tred->validflags,
tred->units, tred->sensor));
}
tred->sensor = oidx;
sysmon_envsys_release(sme, false);
break;
}
case ENVSYS_GTREINFO:
{
struct envsys_basic_info *binfo = (void *)data;
envsys_data_t *edata = NULL;
bool found = false;
binfo->validflags = 0;
sme = sysmon_envsys_find_40(binfo->sensor);
if (!sme)
break;
oidx = binfo->sensor;
binfo->sensor = SME_SENSOR_IDX(sme, binfo->sensor);
TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
if (edata->sensor == binfo->sensor) {
found = true;
break;
}
}
if (!found) {
sysmon_envsys_release(sme, false);
error = ENODEV;
break;
}
binfo->validflags |= ENVSYS_FVALID;
if (binfo->sensor < sme->sme_nsensors) {
if (edata->units == ENVSYS_BATTERY_CHARGE)
binfo->units = ENVSYS_INDICATOR;
else
binfo->units = edata->units;
/*
* previously, the ACPI sensor names included the
* device name. Include that in compatibility code.
*/
if (strncmp(sme->sme_name, "acpi", 4) == 0)
(void)snprintf(binfo->desc, sizeof(binfo->desc),
"%s %s", sme->sme_name, edata->desc);
else
(void)strlcpy(binfo->desc, edata->desc,
sizeof(binfo->desc));
}
DPRINTFOBJ(("%s: binfo->units=%d binfo->validflags=%d\n",
__func__, binfo->units, binfo->validflags));
DPRINTFOBJ(("%s: binfo->desc=%s binfo->sensor=%d\n",
__func__, binfo->desc, binfo->sensor));
binfo->sensor = oidx;
sysmon_envsys_release(sme, false);
break;
}
default:
error = ENOTTY;
break;
}
return error;
}
/*
* sysmon_envsys_create:
*
* + Allocates a new sysmon_envsys object and initializes the
* stuff for sensors and events.
*/
struct sysmon_envsys *
sysmon_envsys_create(void)
{
struct sysmon_envsys *sme;
sme = kmem_zalloc(sizeof(*sme), KM_SLEEP);
TAILQ_INIT(&sme->sme_sensors_list);
LIST_INIT(&sme->sme_events_list);
mutex_init(&sme->sme_mtx, MUTEX_DEFAULT, IPL_NONE);
cv_init(&sme->sme_condvar, "sme_wait");
return sme;
}
/*
* sysmon_envsys_destroy:
*
* + Removes all sensors from the tail queue, destroys the callout
* and frees the sysmon_envsys object.
*/
void
sysmon_envsys_destroy(struct sysmon_envsys *sme)
{
envsys_data_t *edata;
KASSERT(sme != NULL);
while (!TAILQ_EMPTY(&sme->sme_sensors_list)) {
edata = TAILQ_FIRST(&sme->sme_sensors_list);
TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
}
mutex_destroy(&sme->sme_mtx);
cv_destroy(&sme->sme_condvar);
kmem_free(sme, sizeof(*sme));
}
/*
* sysmon_envsys_sensor_attach:
*
* + Attachs a sensor into a sysmon_envsys device checking that units
* is set to a valid type and description is unique and not empty.
*/
int
sysmon_envsys_sensor_attach(struct sysmon_envsys *sme, envsys_data_t *edata)
{
const struct sme_description_table *sdt_units;
envsys_data_t *oedata;
int i;
KASSERT(sme != NULL || edata != NULL);
/*
* Find the correct units for this sensor.
*/
sdt_units = sme_get_description_table(SME_DESC_UNITS);
for (i = 0; sdt_units[i].type != -1; i++)
if (sdt_units[i].type == edata->units)
break;
if (strcmp(sdt_units[i].desc, "unknown") == 0)
return EINVAL;
/*
* Check that description is not empty or duplicate.
*/
if (strlen(edata->desc) == 0)
return EINVAL;
mutex_enter(&sme->sme_mtx);
sysmon_envsys_acquire(sme, true);
TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) {
if (strcmp(oedata->desc, edata->desc) == 0) {
sysmon_envsys_release(sme, true);
mutex_exit(&sme->sme_mtx);
return EEXIST;
}
}
/*
* Ok, the sensor has been added into the device queue.
*/
TAILQ_INSERT_TAIL(&sme->sme_sensors_list, edata, sensors_head);
/*
* Give the sensor a index position.
*/
edata->sensor = sme->sme_nsensors;
sme->sme_nsensors++;
sysmon_envsys_release(sme, true);
mutex_exit(&sme->sme_mtx);
DPRINTF(("%s: attached #%d (%s), units=%d (%s)\n",
__func__, edata->sensor, edata->desc,
sdt_units[i].type, sdt_units[i].desc));
return 0;
}
/*
* sysmon_envsys_sensor_detach:
*
* + Detachs a sensor from a sysmon_envsys device and decrements the
* sensors count on success.
*/
int
sysmon_envsys_sensor_detach(struct sysmon_envsys *sme, envsys_data_t *edata)
{
envsys_data_t *oedata;
bool found = false;
KASSERT(sme != NULL || edata != NULL);
/*
* Check the sensor is already on the list.
*/
mutex_enter(&sme->sme_mtx);
sysmon_envsys_acquire(sme, true);
TAILQ_FOREACH(oedata, &sme->sme_sensors_list, sensors_head) {
if (oedata->sensor == edata->sensor) {
found = true;
break;
}
}
if (!found) {
sysmon_envsys_release(sme, true);
mutex_exit(&sme->sme_mtx);
return EINVAL;
}
/*
* remove it and decrement the sensors count.
*/
TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
sme->sme_nsensors--;
sysmon_envsys_release(sme, true);
mutex_exit(&sme->sme_mtx);
return 0;
}
/*
* sysmon_envsys_register:
*
* + Register a sysmon envsys device.
* + Create array of dictionaries for a device.
*/
int
sysmon_envsys_register(struct sysmon_envsys *sme)
{
struct sme_evdrv {
SLIST_ENTRY(sme_evdrv) evdrv_head;
sme_event_drv_t *evdrv;
};
SLIST_HEAD(, sme_evdrv) sme_evdrv_list;
struct sme_evdrv *evdv = NULL;
struct sysmon_envsys *lsme;
prop_array_t array = NULL;
prop_dictionary_t dict, dict2;
envsys_data_t *edata = NULL;
sme_event_drv_t *this_evdrv;
int nevent;
int error = 0;
KASSERT(sme != NULL);
KASSERT(sme->sme_name != NULL);
/*
* Check if requested sysmon_envsys device is valid
* and does not exist already in the list.
*/
mutex_enter(&sme_global_mtx);
LIST_FOREACH(lsme, &sysmon_envsys_list, sme_list) {
if (strcmp(lsme->sme_name, sme->sme_name) == 0) {
mutex_exit(&sme_global_mtx);
return EEXIST;
}
}
mutex_exit(&sme_global_mtx);
/*
* sanity check: if SME_DISABLE_REFRESH is not set,
* the sme_refresh function callback must be non NULL.
*/
if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0)
if (!sme->sme_refresh)
return EINVAL;
/*
* If the list of sensors is empty, there's no point to continue...
*/
if (TAILQ_EMPTY(&sme->sme_sensors_list)) {
DPRINTF(("%s: sensors list empty for %s\n", __func__,
sme->sme_name));
return ENOTSUP;
}
/*
* Initialize the singly linked list for driver events.
*/
SLIST_INIT(&sme_evdrv_list);
array = prop_array_create();
if (!array)
return ENOMEM;
/*
* Iterate over all sensors and create a dictionary per sensor.
* We must respect the order in which the sensors were added.
*/
TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
dict = prop_dictionary_create();
if (!dict) {
error = ENOMEM;
goto out2;
}
/*
* Create all objects in sensor's dictionary.
*/
this_evdrv = sme_add_sensor_dictionary(sme, array,
dict, edata);
if (this_evdrv) {
evdv = kmem_zalloc(sizeof(*evdv), KM_SLEEP);
evdv->evdrv = this_evdrv;
SLIST_INSERT_HEAD(&sme_evdrv_list, evdv, evdrv_head);
}
}
/*
* If the array does not contain any object (sensor), there's
* no need to attach the driver.
*/
if (prop_array_count(array) == 0) {
error = EINVAL;
DPRINTF(("%s: empty array for '%s'\n", __func__,
sme->sme_name));
goto out;
}
/*
* Add the dictionary for the global properties of this device.
*/
dict2 = prop_dictionary_create();
if (!dict2) {
error = ENOMEM;
goto out;
}
error = sme_add_property_dictionary(sme, array, dict2);
if (error) {
prop_object_release(dict2);
goto out;
}
/*
* Add the array into the global dictionary for the driver.
*
* <dict>
* <key>foo0</key>
* <array>
* ...
*/
mutex_enter(&sme_global_mtx);
if (!prop_dictionary_set(sme_propd, sme->sme_name, array)) {
error = EINVAL;
DPRINTF(("%s: prop_dictionary_set for '%s'\n", __func__,
sme->sme_name));
goto out;
}
/*
* Add the device into the list.
*/
LIST_INSERT_HEAD(&sysmon_envsys_list, sme, sme_list);
sme->sme_fsensor = sysmon_envsys_next_sensor_index;
sysmon_envsys_next_sensor_index += sme->sme_nsensors;
mutex_exit(&sme_global_mtx);
out:
/*
* No errors? Make an initial data refresh if was requested,
* then register the events that were set in the driver. Do
* the refresh first in case it is needed to establish the
* limits or max_value needed by some events.
*/
if (error == 0) {
nevent = 0;
sysmon_task_queue_init();
if (sme->sme_flags & SME_INIT_REFRESH) {
sysmon_task_queue_sched(0, sme_initial_refresh, sme);
DPRINTF(("%s: scheduled initial refresh for '%s'\n",
__func__, sme->sme_name));
}
SLIST_FOREACH(evdv, &sme_evdrv_list, evdrv_head) {
sysmon_task_queue_sched(0,
sme_event_drvadd, evdv->evdrv);
nevent++;
}
DPRINTF(("%s: driver '%s' registered (nsens=%d nevent=%d)\n",
__func__, sme->sme_name, sme->sme_nsensors, nevent));
}
out2:
while (!SLIST_EMPTY(&sme_evdrv_list)) {
evdv = SLIST_FIRST(&sme_evdrv_list);
SLIST_REMOVE_HEAD(&sme_evdrv_list, evdrv_head);
kmem_free(evdv, sizeof(*evdv));
}
if (!error)
return 0;
/*
* Ugh... something wasn't right; unregister all events and sensors
* previously assigned and destroy the array with all its objects.
*/
DPRINTF(("%s: failed to register '%s' (%d)\n", __func__,
sme->sme_name, error));
sme_event_unregister_all(sme);
while (!TAILQ_EMPTY(&sme->sme_sensors_list)) {
edata = TAILQ_FIRST(&sme->sme_sensors_list);
TAILQ_REMOVE(&sme->sme_sensors_list, edata, sensors_head);
}
sysmon_envsys_destroy_plist(array);
return error;
}
/*
* sysmon_envsys_destroy_plist:
*
* + Remove all objects from the array of dictionaries that is
* created in a sysmon envsys device.
*/
static void
sysmon_envsys_destroy_plist(prop_array_t array)
{
prop_object_iterator_t iter, iter2;
prop_dictionary_t dict;
prop_object_t obj;
KASSERT(array != NULL);
KASSERT(prop_object_type(array) == PROP_TYPE_ARRAY);
DPRINTFOBJ(("%s: objects in array=%d\n", __func__,
prop_array_count(array)));
iter = prop_array_iterator(array);
if (!iter)
return;
while ((dict = prop_object_iterator_next(iter))) {
KASSERT(prop_object_type(dict) == PROP_TYPE_DICTIONARY);
iter2 = prop_dictionary_iterator(dict);
if (!iter2)
goto out;
DPRINTFOBJ(("%s: iterating over dictionary\n", __func__));
while ((obj = prop_object_iterator_next(iter2)) != NULL) {
DPRINTFOBJ(("%s: obj=%s\n", __func__,
prop_dictionary_keysym_cstring_nocopy(obj)));
prop_dictionary_remove(dict,
prop_dictionary_keysym_cstring_nocopy(obj));
prop_object_iterator_reset(iter2);
}
prop_object_iterator_release(iter2);
DPRINTFOBJ(("%s: objects in dictionary:%d\n",
__func__, prop_dictionary_count(dict)));
prop_object_release(dict);
}
out:
prop_object_iterator_release(iter);
prop_object_release(array);
}
/*
* sysmon_envsys_unregister:
*
* + Unregister a sysmon envsys device.
*/
void
sysmon_envsys_unregister(struct sysmon_envsys *sme)
{
prop_array_t array;
KASSERT(sme != NULL);
/*
* Unregister all events associated with device.
*/
sme_event_unregister_all(sme);
/*
* Decrement global sensors counter (only used for compatibility
* with previous API) and remove the device from the list.
*/
mutex_enter(&sme_global_mtx);
sysmon_envsys_next_sensor_index -= sme->sme_nsensors;
LIST_REMOVE(sme, sme_list);
mutex_exit(&sme_global_mtx);
/*
* Remove the device (and all its objects) from the global dictionary.
*/
array = prop_dictionary_get(sme_propd, sme->sme_name);
if (array && prop_object_type(array) == PROP_TYPE_ARRAY) {
mutex_enter(&sme_global_mtx);
prop_dictionary_remove(sme_propd, sme->sme_name);
mutex_exit(&sme_global_mtx);
sysmon_envsys_destroy_plist(array);
}
/*
* And finally destroy the sysmon_envsys object.
*/
sysmon_envsys_destroy(sme);
}
/*
* sysmon_envsys_find:
*
* + Find a sysmon envsys device and mark it as busy
* once it's available.
*/
struct sysmon_envsys *
sysmon_envsys_find(const char *name)
{
struct sysmon_envsys *sme;
mutex_enter(&sme_global_mtx);
LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
if (strcmp(sme->sme_name, name) == 0) {
sysmon_envsys_acquire(sme, false);
break;
}
}
mutex_exit(&sme_global_mtx);
return sme;
}
/*
* Compatibility function with the old API.
*/
struct sysmon_envsys *
sysmon_envsys_find_40(u_int idx)
{
struct sysmon_envsys *sme;
mutex_enter(&sme_global_mtx);
LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
if (idx >= sme->sme_fsensor &&
idx < (sme->sme_fsensor + sme->sme_nsensors)) {
sysmon_envsys_acquire(sme, false);
break;
}
}
mutex_exit(&sme_global_mtx);
return sme;
}
/*
* sysmon_envsys_acquire:
*
* + Wait until a sysmon envsys device is available and mark
* it as busy.
*/
void
sysmon_envsys_acquire(struct sysmon_envsys *sme, bool locked)
{
KASSERT(sme != NULL);
if (locked) {
while (sme->sme_flags & SME_FLAG_BUSY)
cv_wait(&sme->sme_condvar, &sme->sme_mtx);
sme->sme_flags |= SME_FLAG_BUSY;
} else {
mutex_enter(&sme->sme_mtx);
while (sme->sme_flags & SME_FLAG_BUSY)
cv_wait(&sme->sme_condvar, &sme->sme_mtx);
sme->sme_flags |= SME_FLAG_BUSY;
mutex_exit(&sme->sme_mtx);
}
}
/*
* sysmon_envsys_release:
*
* + Unmark a sysmon envsys device as busy, and notify
* waiters.
*/
void
sysmon_envsys_release(struct sysmon_envsys *sme, bool locked)
{
KASSERT(sme != NULL);
if (locked) {
sme->sme_flags &= ~SME_FLAG_BUSY;
cv_broadcast(&sme->sme_condvar);
} else {
mutex_enter(&sme->sme_mtx);
sme->sme_flags &= ~SME_FLAG_BUSY;
cv_broadcast(&sme->sme_condvar);
mutex_exit(&sme->sme_mtx);
}
}
/*
* sme_initial_refresh:
*
* + Do an initial refresh of the sensors in a device just after
* interrupts are enabled in the autoconf(9) process.
*
*/
static void
sme_initial_refresh(void *arg)
{
struct sysmon_envsys *sme = arg;
envsys_data_t *edata;
mutex_enter(&sme->sme_mtx);
sysmon_envsys_acquire(sme, true);
TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head)
if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0)
(*sme->sme_refresh)(sme, edata);
sysmon_envsys_release(sme, true);
mutex_exit(&sme->sme_mtx);
}
/*
* sme_sensor_dictionary_get:
*
* + Returns a dictionary of a device specified by its index
* position.
*/
prop_dictionary_t
sme_sensor_dictionary_get(prop_array_t array, const char *index)
{
prop_object_iterator_t iter;
prop_dictionary_t dict;
prop_object_t obj;
KASSERT(array != NULL || index != NULL);
iter = prop_array_iterator(array);
if (!iter)
return NULL;
while ((dict = prop_object_iterator_next(iter))) {
obj = prop_dictionary_get(dict, "index");
if (prop_string_equals_cstring(obj, index))
break;
}
prop_object_iterator_release(iter);
return dict;
}
/*
* sme_remove_userprops:
*
* + Remove all properties from all devices that were set by
* the ENVSYS_SETDICTIONARY ioctl.
*/
static void
sme_remove_userprops(void)
{
struct sysmon_envsys *sme;
prop_array_t array;
prop_dictionary_t sdict;
envsys_data_t *edata = NULL;
char tmp[ENVSYS_DESCLEN];
int ptype;
mutex_enter(&sme_global_mtx);
LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
sysmon_envsys_acquire(sme, false);
array = prop_dictionary_get(sme_propd, sme->sme_name);
TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
(void)snprintf(tmp, sizeof(tmp), "sensor%d",
edata->sensor);
sdict = sme_sensor_dictionary_get(array, tmp);
KASSERT(sdict != NULL);
ptype = 0;
if (edata->upropset & PROP_BATTCAP) {
prop_dictionary_remove(sdict,
"critical-capacity");
ptype = PENVSYS_EVENT_CAPACITY;
}
if (edata->upropset & PROP_BATTWARN) {
prop_dictionary_remove(sdict,
"warning-capacity");
ptype = PENVSYS_EVENT_CAPACITY;
}
if (edata->upropset & PROP_BATTHIGH) {
prop_dictionary_remove(sdict,
"high-capacity");
ptype = PENVSYS_EVENT_CAPACITY;
}
if (edata->upropset & PROP_BATTMAX) {
prop_dictionary_remove(sdict,
"maximum-capacity");
ptype = PENVSYS_EVENT_CAPACITY;
}
if (ptype != 0)
sme_event_unregister(sme, edata->desc, ptype);
ptype = 0;
if (edata->upropset & PROP_WARNMAX) {
prop_dictionary_remove(sdict, "warning-max");
ptype = PENVSYS_EVENT_LIMITS;
}
if (edata->upropset & PROP_WARNMIN) {
prop_dictionary_remove(sdict, "warning-min");
ptype = PENVSYS_EVENT_LIMITS;
}
if (edata->upropset & PROP_CRITMAX) {
prop_dictionary_remove(sdict, "critical-max");
ptype = PENVSYS_EVENT_LIMITS;
}
if (edata->upropset & PROP_CRITMIN) {
prop_dictionary_remove(sdict, "critical-min");
ptype = PENVSYS_EVENT_LIMITS;
}
if (ptype != 0)
sme_event_unregister(sme, edata->desc, ptype);
if (edata->upropset & PROP_RFACT) {
(void)sme_sensor_upint32(sdict, "rfact", 0);
edata->rfact = 0;
}
if (edata->upropset & PROP_DESC)
(void)sme_sensor_upstring(sdict,
"description", edata->desc);
if (edata->upropset)
edata->upropset = 0;
}
/*
* Restore default timeout value.
*/
sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT;
sysmon_envsys_release(sme, false);
}
mutex_exit(&sme_global_mtx);
}
/*
* sme_add_property_dictionary:
*
* + Add global properties into a device.
*/
static int
sme_add_property_dictionary(struct sysmon_envsys *sme, prop_array_t array,
prop_dictionary_t dict)
{
prop_dictionary_t pdict;
const char *class;
int error = 0;
pdict = prop_dictionary_create();
if (!pdict)
return EINVAL;
/*
* Add the 'refresh-timeout' and 'dev-class' objects into the
* 'device-properties' dictionary.
*
* ...
* <dict>
* <key>device-properties</key>
* <dict>
* <key>refresh-timeout</key>
* <integer>120</integer<
* <key>device-class</key>
* <string>class_name</string>
* </dict>
* </dict>
* ...
*
*/
if (!sme->sme_events_timeout)
sme->sme_events_timeout = SME_EVENTS_DEFTIMEOUT;
if (!prop_dictionary_set_uint64(pdict, "refresh-timeout",
sme->sme_events_timeout)) {
error = EINVAL;
goto out;
}
if (sme->sme_class == SME_CLASS_BATTERY)
class = "battery";
else if (sme->sme_class == SME_CLASS_ACADAPTER)
class = "ac-adapter";
else
class = "other";
if (!prop_dictionary_set_cstring_nocopy(pdict, "device-class", class)) {
error = EINVAL;
goto out;
}
if (!prop_dictionary_set(dict, "device-properties", pdict)) {
error = EINVAL;
goto out;
}
/*
* Add the device dictionary into the sysmon envsys array.
*/
if (!prop_array_add(array, dict))
error = EINVAL;
out:
prop_object_release(pdict);
return error;
}
/*
* sme_add_sensor_dictionary:
*
* + Adds the sensor objects into the dictionary and returns a pointer
* to a sme_event_drv_t object if a monitoring flag was set
* (or NULL otherwise).
*/
static sme_event_drv_t *
sme_add_sensor_dictionary(struct sysmon_envsys *sme, prop_array_t array,
prop_dictionary_t dict, envsys_data_t *edata)
{
const struct sme_description_table *sdt, *sdt_units;
sme_event_drv_t *sme_evdrv_t = NULL;
int i, j;
char indexstr[ENVSYS_DESCLEN];
/*
* Find the correct units for this sensor.
*/
sdt_units = sme_get_description_table(SME_DESC_UNITS);
for (i = 0; sdt_units[i].type != -1; i++)
if (sdt_units[i].type == edata->units)
break;
/*
* Add the index sensor string.
*
* ...
* <key>index</eyr
* <string>sensor0</string>
* ...
*/
(void)snprintf(indexstr, sizeof(indexstr), "sensor%d", edata->sensor);
if (sme_sensor_upstring(dict, "index", indexstr))
goto bad;
/*
* ...
* <key>type</key>
* <string>foo</string>
* <key>description</key>
* <string>blah blah</string>
* ...
*/
if (sme_sensor_upstring(dict, "type", sdt_units[i].desc))
goto bad;
if (sme_sensor_upstring(dict, "description", edata->desc))
goto bad;
/*
* Add sensor's state description.
*
* ...
* <key>state</key>
* <string>valid</string>
* ...
*/
sdt = sme_get_description_table(SME_DESC_STATES);
for (j = 0; sdt[j].type != -1; j++)
if (sdt[j].type == edata->state)
break;
DPRINTF(("%s: sensor desc=%s type=%d state=%d\n",
__func__, edata->desc, edata->units, edata->state));
if (sme_sensor_upstring(dict, "state", sdt[j].desc))
goto bad;
/*
* Add the monitoring boolean object:
*
* ...
* <key>monitoring-supported</key>
* <true/>
* ...
*
* always false on Battery {capacity,charge}, Drive and Indicator types.
* They cannot be monitored.
*
*/
if ((edata->flags & ENVSYS_FMONNOTSUPP) ||
(edata->units == ENVSYS_INDICATOR) ||
(edata->units == ENVSYS_DRIVE) ||
(edata->units == ENVSYS_BATTERY_CAPACITY) ||
(edata->units == ENVSYS_BATTERY_CHARGE)) {
if (sme_sensor_upbool(dict, "monitoring-supported", false))
goto out;
} else {
if (sme_sensor_upbool(dict, "monitoring-supported", true))
goto out;
}
/*
* Add the percentage boolean object, true if ENVSYS_FPERCENT
* is set or false otherwise.
*
* ...
* <key>want-percentage</key>
* <true/>
* ...
*/
if (edata->flags & ENVSYS_FPERCENT)
if (sme_sensor_upbool(dict, "want-percentage", true))
goto out;
/*
* Add the allow-rfact boolean object, true if
* ENVSYS_FCHANGERFACT if set or false otherwise.
*
* ...
* <key>allow-rfact</key>
* <true/>
* ...
*/
if (edata->units == ENVSYS_SVOLTS_DC ||
edata->units == ENVSYS_SVOLTS_AC) {
if (edata->flags & ENVSYS_FCHANGERFACT) {
if (sme_sensor_upbool(dict, "allow-rfact", true))
goto out;
} else {
if (sme_sensor_upbool(dict, "allow-rfact", false))
goto out;
}
}
/*
* Add the object for battery capacity sensors:
*
* ...
* <key>battery-capacity</key>
* <string>NORMAL</string>
* ...
*/
if (edata->units == ENVSYS_BATTERY_CAPACITY) {
sdt = sme_get_description_table(SME_DESC_BATTERY_CAPACITY);
for (j = 0; sdt[j].type != -1; j++)
if (sdt[j].type == edata->value_cur)
break;
if (sme_sensor_upstring(dict, "battery-capacity", sdt[j].desc))
goto out;
}
/*
* Add the drive-state object for drive sensors:
*
* ...
* <key>drive-state</key>
* <string>drive is online</string>
* ...
*/
if (edata->units == ENVSYS_DRIVE) {
sdt = sme_get_description_table(SME_DESC_DRIVE_STATES);
for (j = 0; sdt[j].type != -1; j++)
if (sdt[j].type == edata->value_cur)
break;
if (sme_sensor_upstring(dict, "drive-state", sdt[j].desc))
goto out;
}
/*
* Add the following objects if sensor is enabled...
*/
if (edata->state == ENVSYS_SVALID) {
/*
* Add the following objects:
*
* ...
* <key>rpms</key>
* <integer>2500</integer>
* <key>rfact</key>
* <integer>10000</integer>
* <key>cur-value</key>
* <integer>1250</integer>
* <key>min-value</key>
* <integer>800</integer>
* <key>max-value</integer>
* <integer>3000</integer>
* <key>avg-value</integer>
* <integer>1400</integer>
* ...
*/
if (edata->units == ENVSYS_SFANRPM)
if (sme_sensor_upuint32(dict, "rpms", edata->rpms))
goto out;
if (edata->units == ENVSYS_SVOLTS_AC ||
edata->units == ENVSYS_SVOLTS_DC)
if (sme_sensor_upint32(dict, "rfact", edata->rfact))
goto out;
if (sme_sensor_upint32(dict, "cur-value", edata->value_cur))
goto out;
if (edata->flags & ENVSYS_FVALID_MIN) {
if (sme_sensor_upint32(dict,
"min-value",
edata->value_min))
goto out;
}
if (edata->flags & ENVSYS_FVALID_MAX) {
if (sme_sensor_upint32(dict,
"max-value",
edata->value_max))
goto out;
}
if (edata->flags & ENVSYS_FVALID_AVG) {
if (sme_sensor_upint32(dict,
"avg-value",
edata->value_avg))
goto out;
}
}
/*
* ...
* </dict>
*
* Add the dictionary into the array.
*
*/
if (!prop_array_add(array, dict)) {
DPRINTF(("%s: prop_array_add\n", __func__));
goto bad;
}
/*
* Register new event(s) if any monitoring flag was set.
*/
if (edata->flags & ENVSYS_FMONANY) {
sme_evdrv_t = kmem_zalloc(sizeof(*sme_evdrv_t), KM_SLEEP);
sme_evdrv_t->sed_sdict = dict;
sme_evdrv_t->sed_edata = edata;
sme_evdrv_t->sed_sme = sme;
sme_evdrv_t->sed_powertype = sdt_units[i].crittype;
}
out:
return sme_evdrv_t;
bad:
prop_object_release(dict);
return NULL;
}
/*
* Find the maximum of all currently reported values.
* The provided callback decides wether a sensor is part of the
* maximum calculation (by returning true) or ignored (callback
* returns false). Example usage: callback selects temperature
* sensors in a given thermal zone, the function calculates the
* maximum currently reported temperature in this zone.
* If the parameter "refresh" is true, new values will be aquired
* from the hardware, if not, the last reported value will be used.
*/
uint32_t
sysmon_envsys_get_max_value(bool (*predicate)(const envsys_data_t*),
bool refresh)
{
struct sysmon_envsys *sme;
uint32_t maxv, v;
maxv = 0;
mutex_enter(&sme_global_mtx);
LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
sysmon_envsys_acquire(sme, false);
v = sme_get_max_value(sme, predicate, refresh);
sysmon_envsys_release(sme, false);
if (v > maxv)
maxv = v;
}
mutex_exit(&sme_global_mtx);
return maxv;
}
static uint32_t
sme_get_max_value(struct sysmon_envsys *sme,
bool (*predicate)(const envsys_data_t*),
bool refresh)
{
envsys_data_t *edata;
uint32_t maxv, v;
/*
* Iterate over all sensors that match the predicate
*/
maxv = 0;
TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
if (!(*predicate)(edata))
continue;
/*
* refresh sensor data via sme_refresh only if the
* flag is not set.
*/
if (refresh && (sme->sme_flags & SME_DISABLE_REFRESH) == 0) {
mutex_enter(&sme->sme_mtx);
(*sme->sme_refresh)(sme, edata);
mutex_exit(&sme->sme_mtx);
}
v = edata->value_cur;
if (v > maxv)
maxv = v;
}
return maxv;
}
/*
* sme_update_dictionary:
*
* + Update per-sensor dictionaries with new values if there were
* changes, otherwise the object in dictionary is untouched.
*/
int
sme_update_dictionary(struct sysmon_envsys *sme)
{
const struct sme_description_table *sdt;
envsys_data_t *edata;
prop_object_t array, dict, obj, obj2;
int j, error = 0;
/*
* Retrieve the array of dictionaries in device.
*/
array = prop_dictionary_get(sme_propd, sme->sme_name);
if (prop_object_type(array) != PROP_TYPE_ARRAY) {
DPRINTF(("%s: not an array (%s)\n", __func__, sme->sme_name));
return EINVAL;
}
/*
* Get the last dictionary on the array, this contains the
* 'device-properties' sub-dictionary.
*/
obj = prop_array_get(array, prop_array_count(array) - 1);
if (!obj || prop_object_type(obj) != PROP_TYPE_DICTIONARY) {
DPRINTF(("%s: not a device-properties dictionary\n", __func__));
return EINVAL;
}
obj2 = prop_dictionary_get(obj, "device-properties");
if (!obj2)
return EINVAL;
/*
* Update the 'refresh-timeout' property.
*/
if (!prop_dictionary_set_uint64(obj2, "refresh-timeout",
sme->sme_events_timeout))
return EINVAL;
/*
* - iterate over all sensors.
* - fetch new data.
* - check if data in dictionary is different than new data.
* - update dictionary if there were changes.
*/
DPRINTF(("%s: updating '%s' with nsensors=%d\n", __func__,
sme->sme_name, sme->sme_nsensors));
/*
* Don't bother with locking when traversing the queue,
* the device is already marked as busy; if a sensor
* is going to be removed or added it will have to wait.
*/
TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
/*
* refresh sensor data via sme_refresh only if the
* flag is not set.
*/
if ((sme->sme_flags & SME_DISABLE_REFRESH) == 0) {
mutex_enter(&sme->sme_mtx);
(*sme->sme_refresh)(sme, edata);
mutex_exit(&sme->sme_mtx);
}
/*
* retrieve sensor's dictionary.
*/
dict = prop_array_get(array, edata->sensor);
if (prop_object_type(dict) != PROP_TYPE_DICTIONARY) {
DPRINTF(("%s: not a dictionary (%d:%s)\n",
__func__, edata->sensor, sme->sme_name));
return EINVAL;
}
/*
* update sensor's state.
*/
sdt = sme_get_description_table(SME_DESC_STATES);
for (j = 0; sdt[j].type != -1; j++)
if (sdt[j].type == edata->state)
break;
DPRINTFOBJ(("%s: sensor #%d type=%d (%s) flags=%d\n",
__func__, edata->sensor, sdt[j].type, sdt[j].desc,
edata->flags));
error = sme_sensor_upstring(dict, "state", sdt[j].desc);
if (error)
break;
/*
* update sensor's type.
*/
sdt = sme_get_description_table(SME_DESC_UNITS);
for (j = 0; sdt[j].type != -1; j++)
if (sdt[j].type == edata->units)
break;
DPRINTFOBJ(("%s: sensor #%d units=%d (%s)\n",
__func__, edata->sensor, sdt[j].type, sdt[j].desc));
error = sme_sensor_upstring(dict, "type", sdt[j].desc);
if (error)
break;
/*
* update sensor's current value.
*/
error = sme_sensor_upint32(dict,
"cur-value",
edata->value_cur);
if (error)
break;
/*
* Battery charge, Integer and Indicator types do not
* need the following objects, so skip them.
*/
if (edata->units == ENVSYS_INTEGER ||
edata->units == ENVSYS_INDICATOR ||
edata->units == ENVSYS_BATTERY_CHARGE)
continue;
/*
* update sensor flags.
*/
if (edata->flags & ENVSYS_FPERCENT) {
error = sme_sensor_upbool(dict,
"want-percentage",
true);
if (error)
break;
}
/*
* update sensor's {avg,max,min}-value.
*/
if (edata->flags & ENVSYS_FVALID_MAX) {
error = sme_sensor_upint32(dict,
"max-value",
edata->value_max);
if (error)
break;
}
if (edata->flags & ENVSYS_FVALID_MIN) {
error = sme_sensor_upint32(dict,
"min-value",
edata->value_min);
if (error)
break;
}
if (edata->flags & ENVSYS_FVALID_AVG) {
error = sme_sensor_upint32(dict,
"avg-value",
edata->value_avg);
if (error)
break;
}
/*
* update 'rpms' only for ENVSYS_SFANRPM sensors.
*/
if (edata->units == ENVSYS_SFANRPM) {
error = sme_sensor_upuint32(dict,
"rpms",
edata->rpms);
if (error)
break;
}
/*
* update 'rfact' only for ENVSYS_SVOLTS_[AD]C sensors.
*/
if (edata->units == ENVSYS_SVOLTS_AC ||
edata->units == ENVSYS_SVOLTS_DC) {
error = sme_sensor_upint32(dict,
"rfact",
edata->rfact);
if (error)
break;
}
/*
* update 'drive-state' only for ENVSYS_DRIVE sensors.
*/
if (edata->units == ENVSYS_DRIVE) {
sdt = sme_get_description_table(SME_DESC_DRIVE_STATES);
for (j = 0; sdt[j].type != -1; j++)
if (sdt[j].type == edata->value_cur)
break;
error = sme_sensor_upstring(dict,
"drive-state",
sdt[j].desc);
if (error)
break;
}
/*
* update 'battery-capacity' only for ENVSYS_BATTERY_CAPACITY
* sensors.
*/
if (edata->units == ENVSYS_BATTERY_CAPACITY) {
sdt =
sme_get_description_table(SME_DESC_BATTERY_CAPACITY);
for (j = 0; sdt[j].type != -1; j++)
if (sdt[j].type == edata->value_cur)
break;
error = sme_sensor_upstring(dict,
"battery-capacity",
sdt[j].desc);
if (error)
break;
}
}
return error;
}
/*
* sme_userset_dictionary:
*
* + Parse the userland dictionary and run the appropiate tasks
* that were specified.
*/
int
sme_userset_dictionary(struct sysmon_envsys *sme, prop_dictionary_t udict,
prop_array_t array)
{
const struct sme_description_table *sdt;
envsys_data_t *edata;
prop_dictionary_t dict, tdict = NULL;
prop_object_t obj, obj1, obj2, tobj = NULL;
uint32_t props;
uint64_t refresh_timo = 0;
sysmon_envsys_lim_t lims;
int i, error = 0;
const char *blah;
bool targetfound = false;
/*
* The user wanted to change the refresh timeout value for this
* device.
*
* Get the 'device-properties' object from the userland dictionary.
*/
obj = prop_dictionary_get(udict, "device-properties");
if (obj && prop_object_type(obj) == PROP_TYPE_DICTIONARY) {
/*
* Get the 'refresh-timeout' property for this device.
*/
obj1 = prop_dictionary_get(obj, "refresh-timeout");
if (obj1 && prop_object_type(obj1) == PROP_TYPE_NUMBER) {
targetfound = true;
refresh_timo =
prop_number_unsigned_integer_value(obj1);
if (refresh_timo < 1)
error = EINVAL;
else {
mutex_enter(&sme->sme_mtx);
sme->sme_events_timeout = refresh_timo;
mutex_exit(&sme->sme_mtx);
}
}
return error;
} else if (!obj) {
/*
* Get sensor's index from userland dictionary.
*/
obj = prop_dictionary_get(udict, "index");
if (!obj)
return EINVAL;
if (prop_object_type(obj) != PROP_TYPE_STRING) {
DPRINTF(("%s: 'index' not a string\n", __func__));
return EINVAL;
}
} else
return EINVAL;
/*
* Don't bother with locking when traversing the queue,
* the device is already marked as busy; if a sensor
* is going to be removed or added it will have to wait.
*/
TAILQ_FOREACH(edata, &sme->sme_sensors_list, sensors_head) {
/*
* Get a dictionary and check if it's our sensor by checking
* at its index position.
*/
dict = prop_array_get(array, edata->sensor);
obj1 = prop_dictionary_get(dict, "index");
/*
* is it our sensor?
*/
if (!prop_string_equals(obj1, obj))
continue;
props = 0;
/*
* Check if a new description operation was
* requested by the user and set new description.
*/
obj2 = prop_dictionary_get(udict, "description");
if (obj2 && prop_object_type(obj2) == PROP_TYPE_STRING) {
targetfound = true;
blah = prop_string_cstring_nocopy(obj2);
/*
* Check for duplicate description.
*/
for (i = 0; i < sme->sme_nsensors; i++) {
if (i == edata->sensor)
continue;
tdict = prop_array_get(array, i);
tobj =
prop_dictionary_get(tdict, "description");
if (prop_string_equals(obj2, tobj)) {
error = EEXIST;
goto out;
}
}
/*
* Update the object in dictionary.
*/
mutex_enter(&sme->sme_mtx);
error = sme_sensor_upstring(dict,
"description",
blah);
if (error) {
mutex_exit(&sme->sme_mtx);
goto out;
}
DPRINTF(("%s: sensor%d changed desc to: %s\n",
__func__, edata->sensor, blah));
edata->upropset |= PROP_DESC;
mutex_exit(&sme->sme_mtx);
}
/*
* did the user want to change the rfact?
*/
obj2 = prop_dictionary_get(udict, "rfact");
if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
targetfound = true;
if (edata->flags & ENVSYS_FCHANGERFACT) {
mutex_enter(&sme->sme_mtx);
edata->rfact = prop_number_integer_value(obj2);
edata->upropset |= PROP_RFACT;
mutex_exit(&sme->sme_mtx);
DPRINTF(("%s: sensor%d changed rfact to %d\n",
__func__, edata->sensor, edata->rfact));
} else {
error = ENOTSUP;
goto out;
}
}
sdt = sme_get_description_table(SME_DESC_UNITS);
for (i = 0; sdt[i].type != -1; i++)
if (sdt[i].type == edata->units)
break;
/*
* did the user want to set a critical capacity event?
*/
obj2 = prop_dictionary_get(udict, "critical-capacity");
if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
targetfound = true;
lims.sel_critmin = prop_number_integer_value(obj2);
props |= PROP_BATTCAP;
}
/*
* did the user want to set a warning capacity event?
*/
obj2 = prop_dictionary_get(udict, "warning-capacity");
if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
targetfound = true;
lims.sel_warnmin = prop_number_integer_value(obj2);
props |= PROP_BATTWARN;
}
/*
* did the user want to set a high capacity event?
*/
obj2 = prop_dictionary_get(udict, "high-capacity");
if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
targetfound = true;
lims.sel_warnmin = prop_number_integer_value(obj2);
props |= PROP_BATTHIGH;
}
/*
* did the user want to set a maximum capacity event?
*/
obj2 = prop_dictionary_get(udict, "maximum-capacity");
if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
targetfound = true;
lims.sel_warnmin = prop_number_integer_value(obj2);
props |= PROP_BATTMAX;
}
/*
* did the user want to set a critical max event?
*/
obj2 = prop_dictionary_get(udict, "critical-max");
if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
targetfound = true;
lims.sel_critmax = prop_number_integer_value(obj2);
props |= PROP_CRITMAX;
}
/*
* did the user want to set a warning max event?
*/
obj2 = prop_dictionary_get(udict, "warning-max");
if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
targetfound = true;
lims.sel_warnmax = prop_number_integer_value(obj2);
props |= PROP_WARNMAX;
}
/*
* did the user want to set a critical min event?
*/
obj2 = prop_dictionary_get(udict, "critical-min");
if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
targetfound = true;
lims.sel_critmin = prop_number_integer_value(obj2);
props |= PROP_CRITMIN;
}
/*
* did the user want to set a warning min event?
*/
obj2 = prop_dictionary_get(udict, "warning-min");
if (obj2 && prop_object_type(obj2) == PROP_TYPE_NUMBER) {
targetfound = true;
lims.sel_warnmin = prop_number_integer_value(obj2);
props |= PROP_WARNMIN;
}
if (props) {
if (edata->flags & ENVSYS_FMONNOTSUPP) {
error = ENOTSUP;
goto out;
}
error = sme_event_register(dict, edata, sme, &lims,
props,
(edata->flags & ENVSYS_FPERCENT)?
PENVSYS_EVENT_CAPACITY:
PENVSYS_EVENT_LIMITS,
sdt[i].crittype);
if (error == EEXIST)
error = 0;
if (error)
goto out;
}
/*
* All objects in dictionary were processed.
*/
break;
}
out:
/*
* invalid target? return the error.
*/
if (!targetfound)
error = EINVAL;
return error;
}
/*
* + sysmon_envsys_foreach_sensor
*
* Walk through the devices' sensor lists and execute the callback.
* If the callback returns false, the remainder of the current
* device's sensors are skipped.
*/
void
sysmon_envsys_foreach_sensor(bool(*func)(const struct sysmon_envsys *,
const envsys_data_t *, void*),
void *arg, bool refresh)
{
struct sysmon_envsys *sme;
envsys_data_t *sensor;
mutex_enter(&sme_global_mtx);
LIST_FOREACH(sme, &sysmon_envsys_list, sme_list) {
sysmon_envsys_acquire(sme, false);
TAILQ_FOREACH(sensor, &sme->sme_sensors_list, sensors_head) {
if (refresh &&
(sme->sme_flags & SME_DISABLE_REFRESH) == 0) {
mutex_enter(&sme->sme_mtx);
(*sme->sme_refresh)(sme, sensor);
mutex_exit(&sme->sme_mtx);
}
if (!(*func)(sme, sensor, arg))
break;
}
sysmon_envsys_release(sme, false);
}
mutex_exit(&sme_global_mtx);
}