NetBSD/sys/arch/arm/arm32/vm_machdep.c

422 lines
11 KiB
C

/* $NetBSD: vm_machdep.c,v 1.30 2003/10/23 08:59:10 scw Exp $ */
/*
* Copyright (c) 1994-1998 Mark Brinicombe.
* Copyright (c) 1994 Brini.
* All rights reserved.
*
* This code is derived from software written for Brini by Mark Brinicombe
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Brini.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* RiscBSD kernel project
*
* vm_machdep.h
*
* vm machine specific bits
*
* Created : 08/10/94
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: vm_machdep.c,v 1.30 2003/10/23 08:59:10 scw Exp $");
#include "opt_armfpe.h"
#include "opt_pmap_debug.h"
#include "opt_perfctrs.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/vnode.h>
#include <sys/buf.h>
#include <sys/pmc.h>
#include <sys/user.h>
#include <sys/exec.h>
#include <sys/syslog.h>
#include <uvm/uvm_extern.h>
#include <machine/cpu.h>
#include <machine/pmap.h>
#include <machine/reg.h>
#include <machine/vmparam.h>
#ifdef ARMFPE
#include <arm/fpe-arm/armfpe.h>
#endif
extern pv_addr_t systempage;
int process_read_regs __P((struct proc *p, struct reg *regs));
int process_read_fpregs __P((struct proc *p, struct fpreg *regs));
void switch_exit __P((struct lwp *l, struct lwp *l0,
void (*)(struct lwp *)));
extern void proc_trampoline __P((void));
/*
* Special compilation symbols:
*
* STACKCHECKS - Fill undefined and supervisor stacks with a known pattern
* on forking and check the pattern on exit, reporting
* the amount of stack used.
*/
void
cpu_proc_fork(p1, p2)
struct proc *p1, *p2;
{
#if defined(PERFCTRS)
if (PMC_ENABLED(p1))
pmc_md_fork(p1, p2);
else {
p2->p_md.pmc_enabled = 0;
p2->p_md.pmc_state = NULL;
}
#endif
}
/*
* Finish a fork operation, with process p2 nearly set up.
* Copy and update the pcb and trap frame, making the child ready to run.
*
* Rig the child's kernel stack so that it will start out in
* proc_trampoline() and call child_return() with p2 as an
* argument. This causes the newly-created child process to go
* directly to user level with an apparent return value of 0 from
* fork(), while the parent process returns normally.
*
* p1 is the process being forked; if p1 == &proc0, we are creating
* a kernel thread, and the return path and argument are specified with
* `func' and `arg'.
*
* If an alternate user-level stack is requested (with non-zero values
* in both the stack and stacksize args), set up the user stack pointer
* accordingly.
*/
void
cpu_lwp_fork(l1, l2, stack, stacksize, func, arg)
struct lwp *l1;
struct lwp *l2;
void *stack;
size_t stacksize;
void (*func) __P((void *));
void *arg;
{
struct pcb *pcb = (struct pcb *)&l2->l_addr->u_pcb;
struct trapframe *tf;
struct switchframe *sf;
#ifdef PMAP_DEBUG
if (pmap_debug_level >= 0)
printf("cpu_lwp_fork: %p %p %p %p\n", l1, l2, curlwp, &lwp0);
#endif /* PMAP_DEBUG */
#if 0 /* XXX */
if (l1 == curlwp) {
/* Sync the PCB before we copy it. */
savectx(curpcb);
}
#endif
/* Copy the pcb */
*pcb = l1->l_addr->u_pcb;
/*
* Set up the undefined stack for the process.
* Note: this stack is not in use if we are forking from p1
*/
pcb->pcb_un.un_32.pcb32_und_sp = (u_int)l2->l_addr +
USPACE_UNDEF_STACK_TOP;
pcb->pcb_un.un_32.pcb32_sp = (u_int)l2->l_addr + USPACE_SVC_STACK_TOP;
#ifdef STACKCHECKS
/* Fill the undefined stack with a known pattern */
memset(((u_char *)l2->l_addr) + USPACE_UNDEF_STACK_BOTTOM, 0xdd,
(USPACE_UNDEF_STACK_TOP - USPACE_UNDEF_STACK_BOTTOM));
/* Fill the kernel stack with a known pattern */
memset(((u_char *)l2->l_addr) + USPACE_SVC_STACK_BOTTOM, 0xdd,
(USPACE_SVC_STACK_TOP - USPACE_SVC_STACK_BOTTOM));
#endif /* STACKCHECKS */
#ifdef PMAP_DEBUG
if (pmap_debug_level >= 0) {
printf("l1->procaddr=%p l1->procaddr->u_pcb=%p pid=%d pmap=%p\n",
l1->l_addr, &l1->l_addr->u_pcb, l1->l_lid,
l1->l_proc->p_vmspace->vm_map.pmap);
printf("l2->procaddr=%p l2->procaddr->u_pcb=%p pid=%d pmap=%p\n",
l2->l_addr, &l2->l_addr->u_pcb, l2->l_lid,
l2->l_proc->p_vmspace->vm_map.pmap);
}
#endif /* PMAP_DEBUG */
pmap_activate(l2);
#ifdef ARMFPE
/* Initialise a new FP context for p2 and copy the context from p1 */
arm_fpe_core_initcontext(FP_CONTEXT(l2));
arm_fpe_copycontext(FP_CONTEXT(l1), FP_CONTEXT(l2));
#endif /* ARMFPE */
l2->l_addr->u_pcb.pcb_tf = tf =
(struct trapframe *)pcb->pcb_un.un_32.pcb32_sp - 1;
*tf = *l1->l_addr->u_pcb.pcb_tf;
/*
* If specified, give the child a different stack.
*/
if (stack != NULL)
tf->tf_usr_sp = (u_int)stack + stacksize;
sf = (struct switchframe *)tf - 1;
sf->sf_r4 = (u_int)func;
sf->sf_r5 = (u_int)arg;
sf->sf_pc = (u_int)proc_trampoline;
pcb->pcb_un.un_32.pcb32_sp = (u_int)sf;
}
void
cpu_setfunc(struct lwp *l, void (*func)(void *), void *arg)
{
struct pcb *pcb = &l->l_addr->u_pcb;
struct trapframe *tf = pcb->pcb_tf;
struct switchframe *sf = (struct switchframe *)tf - 1;
sf->sf_r4 = (u_int)func;
sf->sf_r5 = (u_int)arg;
sf->sf_pc = (u_int)proc_trampoline;
pcb->pcb_un.un_32.pcb32_sp = (u_int)sf;
}
/*
* cpu_exit is called as the last action during exit.
*
* We clean up a little and then call switch_exit() with the old proc as an
* argument. switch_exit() first switches to proc0's context, and finally
* jumps into switch() to wait for another process to wake up.
*/
void
cpu_exit(struct lwp *l, int proc)
{
#ifdef ARMFPE
/* Abort any active FP operation and deactivate the context */
arm_fpe_core_abort(FP_CONTEXT(l), NULL, NULL);
arm_fpe_core_changecontext(0);
#endif /* ARMFPE */
#ifdef STACKCHECKS
/* Report how much stack has been used - debugging */
if (l) {
u_char *ptr;
int loop;
ptr = ((u_char *)p2->p_addr) + USPACE_UNDEF_STACK_BOTTOM;
for (loop = 0; loop < (USPACE_UNDEF_STACK_TOP - USPACE_UNDEF_STACK_BOTTOM)
&& *ptr == 0xdd; ++loop, ++ptr) ;
log(LOG_INFO, "%d bytes of undefined stack fill pattern\n", loop);
ptr = ((u_char *)p2->p_addr) + USPACE_SVC_STACK_BOTTOM;
for (loop = 0; loop < (USPACE_SVC_STACK_TOP - USPACE_SVC_STACK_BOTTOM)
&& *ptr == 0xdd; ++loop, ++ptr) ;
log(LOG_INFO, "%d bytes of svc stack fill pattern\n", loop);
}
#endif /* STACKCHECKS */
uvmexp.swtch++;
switch_exit(l, &lwp0, proc ? exit2 : lwp_exit2);
}
void
cpu_swapin(l)
struct lwp *l;
{
#if 0
struct proc *p = l->l_proc;
/* Don't do this. See the comment in cpu_swapout(). */
#ifdef PMAP_DEBUG
if (pmap_debug_level >= 0)
printf("cpu_swapin(%p, %d, %s, %p)\n", l, l->l_lid,
p->p_comm, p->p_vmspace->vm_map.pmap);
#endif /* PMAP_DEBUG */
if (vector_page < KERNEL_BASE) {
/* Map the vector page */
pmap_enter(p->p_vmspace->vm_map.pmap, vector_page,
systempage.pv_pa, VM_PROT_READ, VM_PROT_READ|PMAP_WIRED);
pmap_update(p->p_vmspace->vm_map.pmap);
}
#endif
}
void
cpu_swapout(l)
struct lwp *l;
{
#if 0
struct proc *p = l->l_proc;
/*
* Don't do this! If the pmap is shared with another process,
* it will loose it's page0 entry. That's bad news indeed.
*/
#ifdef PMAP_DEBUG
if (pmap_debug_level >= 0)
printf("cpu_swapout(%p, %d, %s, %p)\n", l, l->l_lid,
p->p_comm, &p->p_vmspace->vm_map.pmap);
#endif /* PMAP_DEBUG */
if (vector_page < KERNEL_BASE) {
/* Free the system page mapping */
pmap_remove(p->p_vmspace->vm_map.pmap, vector_page,
vector_page + PAGE_SIZE);
pmap_update(p->p_vmspace->vm_map.pmap);
}
#endif
}
/*
* Move pages from one kernel virtual address to another.
* Both addresses are assumed to reside in the Sysmap,
* and size must be a multiple of PAGE_SIZE.
*/
void
pagemove(from, to, size)
caddr_t from, to;
size_t size;
{
paddr_t pa;
boolean_t rv;
if (size % PAGE_SIZE)
panic("pagemove: size=%08lx", (u_long) size);
while (size > 0) {
rv = pmap_extract(pmap_kernel(), (vaddr_t) from, &pa);
#ifdef DEBUG
if (rv == FALSE)
panic("pagemove 2");
if (pmap_extract(pmap_kernel(), (vaddr_t) to, NULL) == TRUE)
panic("pagemove 3");
#endif
pmap_kremove((vaddr_t) from, PAGE_SIZE);
pmap_kenter_pa((vaddr_t) to, pa, VM_PROT_READ|VM_PROT_WRITE);
from += PAGE_SIZE;
to += PAGE_SIZE;
size -= PAGE_SIZE;
}
pmap_update(pmap_kernel());
}
/*
* Map a user I/O request into kernel virtual address space.
* Note: the pages are already locked by uvm_vslock(), so we
* do not need to pass an access_type to pmap_enter().
*/
void
vmapbuf(bp, len)
struct buf *bp;
vsize_t len;
{
vaddr_t faddr, taddr, off;
paddr_t fpa;
#ifdef PMAP_DEBUG
if (pmap_debug_level >= 0)
printf("vmapbuf: bp=%08x buf=%08x len=%08x\n", (u_int)bp,
(u_int)bp->b_data, (u_int)len);
#endif /* PMAP_DEBUG */
if ((bp->b_flags & B_PHYS) == 0)
panic("vmapbuf");
faddr = trunc_page((vaddr_t)bp->b_saveaddr = bp->b_data);
off = (vaddr_t)bp->b_data - faddr;
len = round_page(off + len);
taddr = uvm_km_valloc_wait(phys_map, len);
bp->b_data = (caddr_t)(taddr + off);
/*
* The region is locked, so we expect that pmap_pte() will return
* non-NULL.
*/
while (len) {
(void) pmap_extract(vm_map_pmap(&bp->b_proc->p_vmspace->vm_map),
faddr, &fpa);
pmap_enter(pmap_kernel(), taddr, fpa,
VM_PROT_READ|VM_PROT_WRITE, VM_PROT_READ|VM_PROT_WRITE|PMAP_WIRED);
faddr += PAGE_SIZE;
taddr += PAGE_SIZE;
len -= PAGE_SIZE;
}
pmap_update(pmap_kernel());
}
/*
* Unmap a previously-mapped user I/O request.
*/
void
vunmapbuf(bp, len)
struct buf *bp;
vsize_t len;
{
vaddr_t addr, off;
#ifdef PMAP_DEBUG
if (pmap_debug_level >= 0)
printf("vunmapbuf: bp=%08x buf=%08x len=%08x\n",
(u_int)bp, (u_int)bp->b_data, (u_int)len);
#endif /* PMAP_DEBUG */
if ((bp->b_flags & B_PHYS) == 0)
panic("vunmapbuf");
/*
* Make sure the cache does not have dirty data for the
* pages we had mapped.
*/
addr = trunc_page((vaddr_t)bp->b_data);
off = (vaddr_t)bp->b_data - addr;
len = round_page(off + len);
pmap_remove(pmap_kernel(), addr, addr + len);
pmap_update(pmap_kernel());
uvm_km_free_wakeup(phys_map, addr, len);
bp->b_data = bp->b_saveaddr;
bp->b_saveaddr = 0;
}
/* End of vm_machdep.c */