e66ef34b75
attribure, and add a diagnostic assertion to config_search_loc() which ensures that a supplied attribute name is correct
1455 lines
35 KiB
C
1455 lines
35 KiB
C
/* $NetBSD: subr_autoconf.c,v 1.91 2004/08/30 09:48:05 drochner Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1996, 2000 Christopher G. Demetriou
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed for the
|
|
* NetBSD Project. See http://www.NetBSD.org/ for
|
|
* information about NetBSD.
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This software was developed by the Computer Systems Engineering group
|
|
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
|
|
* contributed to Berkeley.
|
|
*
|
|
* All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Lawrence Berkeley Laboratories.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
|
|
*
|
|
* @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.91 2004/08/30 09:48:05 drochner Exp $");
|
|
|
|
#include "opt_ddb.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/device.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/reboot.h>
|
|
#include <machine/limits.h>
|
|
|
|
#include "opt_userconf.h"
|
|
#ifdef USERCONF
|
|
#include <sys/userconf.h>
|
|
#endif
|
|
|
|
/*
|
|
* Autoconfiguration subroutines.
|
|
*/
|
|
|
|
/*
|
|
* ioconf.c exports exactly two names: cfdata and cfroots. All system
|
|
* devices and drivers are found via these tables.
|
|
*/
|
|
extern struct cfdata cfdata[];
|
|
extern const short cfroots[];
|
|
|
|
/*
|
|
* List of all cfdriver structures. We use this to detect duplicates
|
|
* when other cfdrivers are loaded.
|
|
*/
|
|
struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
|
|
extern struct cfdriver * const cfdriver_list_initial[];
|
|
|
|
/*
|
|
* Initial list of cfattach's.
|
|
*/
|
|
extern const struct cfattachinit cfattachinit[];
|
|
|
|
/*
|
|
* List of cfdata tables. We always have one such list -- the one
|
|
* built statically when the kernel was configured.
|
|
*/
|
|
struct cftablelist allcftables;
|
|
static struct cftable initcftable;
|
|
|
|
/*
|
|
* Database of device properties.
|
|
*/
|
|
propdb_t dev_propdb;
|
|
|
|
#define ROOT ((struct device *)NULL)
|
|
|
|
struct matchinfo {
|
|
cfmatch_t fn;
|
|
cfmatch_loc_t fn_loc;
|
|
struct device *parent;
|
|
const locdesc_t *ldesc;
|
|
void *aux;
|
|
struct cfdata *match;
|
|
int pri;
|
|
};
|
|
|
|
static char *number(char *, int);
|
|
static void mapply(struct matchinfo *, struct cfdata *);
|
|
|
|
struct deferred_config {
|
|
TAILQ_ENTRY(deferred_config) dc_queue;
|
|
struct device *dc_dev;
|
|
void (*dc_func)(struct device *);
|
|
};
|
|
|
|
TAILQ_HEAD(deferred_config_head, deferred_config);
|
|
|
|
struct deferred_config_head deferred_config_queue;
|
|
struct deferred_config_head interrupt_config_queue;
|
|
|
|
static void config_process_deferred(struct deferred_config_head *,
|
|
struct device *);
|
|
|
|
/* Hooks to finalize configuration once all real devices have been found. */
|
|
struct finalize_hook {
|
|
TAILQ_ENTRY(finalize_hook) f_list;
|
|
int (*f_func)(struct device *);
|
|
struct device *f_dev;
|
|
};
|
|
static TAILQ_HEAD(, finalize_hook) config_finalize_list;
|
|
static int config_finalize_done;
|
|
|
|
/* list of all devices */
|
|
struct devicelist alldevs;
|
|
|
|
__volatile int config_pending; /* semaphore for mountroot */
|
|
|
|
#define STREQ(s1, s2) \
|
|
(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
|
|
|
|
static int config_initialized; /* config_init() has been called. */
|
|
|
|
static int config_do_twiddle;
|
|
|
|
/*
|
|
* Initialize the autoconfiguration data structures. Normally this
|
|
* is done by configure(), but some platforms need to do this very
|
|
* early (to e.g. initialize the console).
|
|
*/
|
|
void
|
|
config_init(void)
|
|
{
|
|
const struct cfattachinit *cfai;
|
|
int i, j;
|
|
|
|
if (config_initialized)
|
|
return;
|
|
|
|
/* allcfdrivers is statically initialized. */
|
|
for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
|
|
if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
|
|
panic("configure: duplicate `%s' drivers",
|
|
cfdriver_list_initial[i]->cd_name);
|
|
}
|
|
|
|
for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
|
|
for (j = 0; cfai->cfai_list[j] != NULL; j++) {
|
|
if (config_cfattach_attach(cfai->cfai_name,
|
|
cfai->cfai_list[j]) != 0)
|
|
panic("configure: duplicate `%s' attachment "
|
|
"of `%s' driver",
|
|
cfai->cfai_list[j]->ca_name,
|
|
cfai->cfai_name);
|
|
}
|
|
}
|
|
|
|
TAILQ_INIT(&allcftables);
|
|
initcftable.ct_cfdata = cfdata;
|
|
TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
|
|
|
|
TAILQ_INIT(&deferred_config_queue);
|
|
TAILQ_INIT(&interrupt_config_queue);
|
|
TAILQ_INIT(&config_finalize_list);
|
|
TAILQ_INIT(&alldevs);
|
|
|
|
config_initialized = 1;
|
|
}
|
|
|
|
/*
|
|
* Configure the system's hardware.
|
|
*/
|
|
void
|
|
configure(void)
|
|
{
|
|
int errcnt;
|
|
|
|
/* Initialize data structures. */
|
|
config_init();
|
|
|
|
/* Initialize the device property database. */
|
|
dev_propdb = propdb_create("device properties");
|
|
if (dev_propdb == NULL)
|
|
panic("unable to create device property database");
|
|
|
|
#ifdef USERCONF
|
|
if (boothowto & RB_USERCONF)
|
|
user_config();
|
|
#endif
|
|
|
|
if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
|
|
config_do_twiddle = 1;
|
|
printf_nolog("Detecting hardware...");
|
|
}
|
|
|
|
/*
|
|
* Do the machine-dependent portion of autoconfiguration. This
|
|
* sets the configuration machinery here in motion by "finding"
|
|
* the root bus. When this function returns, we expect interrupts
|
|
* to be enabled.
|
|
*/
|
|
cpu_configure();
|
|
|
|
/*
|
|
* Now that we've found all the hardware, start the real time
|
|
* and statistics clocks.
|
|
*/
|
|
initclocks();
|
|
|
|
cold = 0; /* clocks are running, we're warm now! */
|
|
|
|
/*
|
|
* Now callback to finish configuration for devices which want
|
|
* to do this once interrupts are enabled.
|
|
*/
|
|
config_process_deferred(&interrupt_config_queue, NULL);
|
|
|
|
errcnt = aprint_get_error_count();
|
|
if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
|
|
(boothowto & AB_VERBOSE) == 0) {
|
|
if (config_do_twiddle) {
|
|
config_do_twiddle = 0;
|
|
printf_nolog("done.\n");
|
|
}
|
|
if (errcnt != 0) {
|
|
printf("WARNING: %d error%s while detecting hardware; "
|
|
"check system log.\n", errcnt,
|
|
errcnt == 1 ? "" : "s");
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add a cfdriver to the system.
|
|
*/
|
|
int
|
|
config_cfdriver_attach(struct cfdriver *cd)
|
|
{
|
|
struct cfdriver *lcd;
|
|
|
|
/* Make sure this driver isn't already in the system. */
|
|
LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
|
|
if (STREQ(lcd->cd_name, cd->cd_name))
|
|
return (EEXIST);
|
|
}
|
|
|
|
LIST_INIT(&cd->cd_attach);
|
|
LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Remove a cfdriver from the system.
|
|
*/
|
|
int
|
|
config_cfdriver_detach(struct cfdriver *cd)
|
|
{
|
|
int i;
|
|
|
|
/* Make sure there are no active instances. */
|
|
for (i = 0; i < cd->cd_ndevs; i++) {
|
|
if (cd->cd_devs[i] != NULL)
|
|
return (EBUSY);
|
|
}
|
|
|
|
/* ...and no attachments loaded. */
|
|
if (LIST_EMPTY(&cd->cd_attach) == 0)
|
|
return (EBUSY);
|
|
|
|
LIST_REMOVE(cd, cd_list);
|
|
|
|
KASSERT(cd->cd_devs == NULL);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Look up a cfdriver by name.
|
|
*/
|
|
struct cfdriver *
|
|
config_cfdriver_lookup(const char *name)
|
|
{
|
|
struct cfdriver *cd;
|
|
|
|
LIST_FOREACH(cd, &allcfdrivers, cd_list) {
|
|
if (STREQ(cd->cd_name, name))
|
|
return (cd);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Add a cfattach to the specified driver.
|
|
*/
|
|
int
|
|
config_cfattach_attach(const char *driver, struct cfattach *ca)
|
|
{
|
|
struct cfattach *lca;
|
|
struct cfdriver *cd;
|
|
|
|
cd = config_cfdriver_lookup(driver);
|
|
if (cd == NULL)
|
|
return (ESRCH);
|
|
|
|
/* Make sure this attachment isn't already on this driver. */
|
|
LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
|
|
if (STREQ(lca->ca_name, ca->ca_name))
|
|
return (EEXIST);
|
|
}
|
|
|
|
LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Remove a cfattach from the specified driver.
|
|
*/
|
|
int
|
|
config_cfattach_detach(const char *driver, struct cfattach *ca)
|
|
{
|
|
struct cfdriver *cd;
|
|
struct device *dev;
|
|
int i;
|
|
|
|
cd = config_cfdriver_lookup(driver);
|
|
if (cd == NULL)
|
|
return (ESRCH);
|
|
|
|
/* Make sure there are no active instances. */
|
|
for (i = 0; i < cd->cd_ndevs; i++) {
|
|
if ((dev = cd->cd_devs[i]) == NULL)
|
|
continue;
|
|
if (dev->dv_cfattach == ca)
|
|
return (EBUSY);
|
|
}
|
|
|
|
LIST_REMOVE(ca, ca_list);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Look up a cfattach by name.
|
|
*/
|
|
static struct cfattach *
|
|
config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
|
|
{
|
|
struct cfattach *ca;
|
|
|
|
LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
|
|
if (STREQ(ca->ca_name, atname))
|
|
return (ca);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Look up a cfattach by driver/attachment name.
|
|
*/
|
|
struct cfattach *
|
|
config_cfattach_lookup(const char *name, const char *atname)
|
|
{
|
|
struct cfdriver *cd;
|
|
|
|
cd = config_cfdriver_lookup(name);
|
|
if (cd == NULL)
|
|
return (NULL);
|
|
|
|
return (config_cfattach_lookup_cd(cd, atname));
|
|
}
|
|
|
|
/*
|
|
* Apply the matching function and choose the best. This is used
|
|
* a few times and we want to keep the code small.
|
|
*/
|
|
static void
|
|
mapply(struct matchinfo *m, struct cfdata *cf)
|
|
{
|
|
int pri;
|
|
|
|
if (m->fn != NULL) {
|
|
KASSERT(m->fn_loc == NULL);
|
|
pri = (*m->fn)(m->parent, cf, m->aux);
|
|
} else if (m->fn_loc != NULL) {
|
|
pri = (*m->fn_loc)(m->parent, cf, m->ldesc, m->aux);
|
|
} else {
|
|
struct cfattach *ca;
|
|
|
|
ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
|
|
if (ca == NULL) {
|
|
/* No attachment for this entry, oh well. */
|
|
return;
|
|
}
|
|
if (ca->ca_match == NULL) {
|
|
panic("mapply: no match function for '%s' attachment "
|
|
"of '%s'", cf->cf_atname, cf->cf_name);
|
|
}
|
|
pri = (*ca->ca_match)(m->parent, cf, m->aux);
|
|
}
|
|
if (pri > m->pri) {
|
|
m->match = cf;
|
|
m->pri = pri;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Helper function: check whether the driver supports the interface attribute.
|
|
*/
|
|
static int
|
|
cfdriver_has_iattr(const struct cfdriver *cd, const char *ia)
|
|
{
|
|
const char * const *cpp;
|
|
|
|
if (cd->cd_attrs == NULL)
|
|
return (0);
|
|
|
|
for (cpp = cd->cd_attrs; *cpp; cpp++) {
|
|
if (STREQ(*cpp, ia)) {
|
|
/* Match. */
|
|
return (1);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Determine if `parent' is a potential parent for a device spec based
|
|
* on `cfp'.
|
|
*/
|
|
static int
|
|
cfparent_match(const struct device *parent, const struct cfparent *cfp)
|
|
{
|
|
struct cfdriver *pcd;
|
|
|
|
/* We don't match root nodes here. */
|
|
if (cfp == NULL)
|
|
return (0);
|
|
|
|
pcd = parent->dv_cfdriver;
|
|
KASSERT(pcd != NULL);
|
|
|
|
/*
|
|
* First, ensure this parent has the correct interface
|
|
* attribute.
|
|
*/
|
|
if (!cfdriver_has_iattr(pcd, cfp->cfp_iattr))
|
|
return (0);
|
|
|
|
/*
|
|
* If no specific parent device instance was specified (i.e.
|
|
* we're attaching to the attribute only), we're done!
|
|
*/
|
|
if (cfp->cfp_parent == NULL)
|
|
return (1);
|
|
|
|
/*
|
|
* Check the parent device's name.
|
|
*/
|
|
if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
|
|
return (0); /* not the same parent */
|
|
|
|
/*
|
|
* Make sure the unit number matches.
|
|
*/
|
|
if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
|
|
cfp->cfp_unit == parent->dv_unit)
|
|
return (1);
|
|
|
|
/* Unit numbers don't match. */
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Helper for config_cfdata_attach(): check all devices whether it could be
|
|
* parent any attachment in the config data table passed, and rescan.
|
|
*/
|
|
static void
|
|
rescan_with_cfdata(const struct cfdata *cf)
|
|
{
|
|
struct device *d;
|
|
const struct cfdata *cf1;
|
|
|
|
/*
|
|
* "alldevs" is likely longer than an LKM's cfdata, so make it
|
|
* the outer loop.
|
|
*/
|
|
TAILQ_FOREACH(d, &alldevs, dv_list) {
|
|
|
|
if (!(d->dv_cfattach->ca_rescan))
|
|
continue;
|
|
|
|
for (cf1 = cf; cf1->cf_name; cf1++) {
|
|
|
|
if (!cfparent_match(d, cf1->cf_pspec))
|
|
continue;
|
|
|
|
(*d->dv_cfattach->ca_rescan)(d,
|
|
cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Attach a supplemental config data table and rescan potential
|
|
* parent devices if required.
|
|
*/
|
|
int
|
|
config_cfdata_attach(struct cfdata *cf, int scannow)
|
|
{
|
|
struct cftable *ct;
|
|
|
|
ct = malloc(sizeof(struct cftable), M_DEVBUF, M_WAITOK);
|
|
ct->ct_cfdata = cf;
|
|
TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
|
|
|
|
if (scannow)
|
|
rescan_with_cfdata(cf);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Helper for config_cfdata_detach: check whether a device is
|
|
* found through any attachment in the config data table.
|
|
*/
|
|
static int
|
|
dev_in_cfdata(const struct device *d, const struct cfdata *cf)
|
|
{
|
|
const struct cfdata *cf1;
|
|
|
|
for (cf1 = cf; cf1->cf_name; cf1++)
|
|
if (d->dv_cfdata == cf1)
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Detach a supplemental config data table. Detach all devices found
|
|
* through that table (and thus keeping references to it) before.
|
|
*/
|
|
int
|
|
config_cfdata_detach(struct cfdata *cf)
|
|
{
|
|
struct device *d;
|
|
int error;
|
|
struct cftable *ct;
|
|
|
|
again:
|
|
TAILQ_FOREACH(d, &alldevs, dv_list) {
|
|
if (dev_in_cfdata(d, cf)) {
|
|
error = config_detach(d, 0);
|
|
if (error) {
|
|
aprint_error("%s: unable to detach instance\n",
|
|
d->dv_xname);
|
|
return (error);
|
|
}
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
TAILQ_FOREACH(ct, &allcftables, ct_list) {
|
|
if (ct->ct_cfdata == cf) {
|
|
TAILQ_REMOVE(&allcftables, ct, ct_list);
|
|
free(ct, M_DEVBUF);
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
/* not found -- shouldn't happen */
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Invoke the "match" routine for a cfdata entry on behalf of
|
|
* an external caller, usually a "submatch" routine.
|
|
*/
|
|
int
|
|
config_match(struct device *parent, struct cfdata *cf, void *aux)
|
|
{
|
|
struct cfattach *ca;
|
|
|
|
ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
|
|
if (ca == NULL) {
|
|
/* No attachment for this entry, oh well. */
|
|
return (0);
|
|
}
|
|
|
|
return ((*ca->ca_match)(parent, cf, aux));
|
|
}
|
|
|
|
/*
|
|
* Iterate over all potential children of some device, calling the given
|
|
* function (default being the child's match function) for each one.
|
|
* Nonzero returns are matches; the highest value returned is considered
|
|
* the best match. Return the `found child' if we got a match, or NULL
|
|
* otherwise. The `aux' pointer is simply passed on through.
|
|
*
|
|
* Note that this function is designed so that it can be used to apply
|
|
* an arbitrary function to all potential children (its return value
|
|
* can be ignored).
|
|
*/
|
|
struct cfdata *
|
|
config_search(cfmatch_t fn, struct device *parent, void *aux)
|
|
{
|
|
struct cftable *ct;
|
|
struct cfdata *cf;
|
|
struct matchinfo m;
|
|
|
|
KASSERT(config_initialized);
|
|
|
|
m.fn = fn;
|
|
m.fn_loc = NULL;
|
|
m.parent = parent;
|
|
m.aux = aux;
|
|
m.match = NULL;
|
|
m.pri = 0;
|
|
|
|
TAILQ_FOREACH(ct, &allcftables, ct_list) {
|
|
for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
|
|
/*
|
|
* Skip cf if no longer eligible, otherwise scan
|
|
* through parents for one matching `parent', and
|
|
* try match function.
|
|
*/
|
|
if (cf->cf_fstate == FSTATE_FOUND)
|
|
continue;
|
|
if (cf->cf_fstate == FSTATE_DNOTFOUND ||
|
|
cf->cf_fstate == FSTATE_DSTAR)
|
|
continue;
|
|
if (cfparent_match(parent, cf->cf_pspec))
|
|
mapply(&m, cf);
|
|
}
|
|
}
|
|
return (m.match);
|
|
}
|
|
|
|
/* same as above, with real locators passed */
|
|
struct cfdata *
|
|
config_search_loc(cfmatch_loc_t fn, struct device *parent,
|
|
const char *ifattr, const locdesc_t *ldesc, void *aux)
|
|
{
|
|
struct cftable *ct;
|
|
struct cfdata *cf;
|
|
struct matchinfo m;
|
|
|
|
KASSERT(config_initialized);
|
|
KASSERT(!ifattr || cfdriver_has_iattr(parent->dv_cfdriver, ifattr));
|
|
|
|
m.fn = NULL;
|
|
m.fn_loc = fn;
|
|
m.parent = parent;
|
|
m.ldesc = ldesc;
|
|
m.aux = aux;
|
|
m.match = NULL;
|
|
m.pri = 0;
|
|
|
|
TAILQ_FOREACH(ct, &allcftables, ct_list) {
|
|
for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
|
|
|
|
/* We don't match root nodes here. */
|
|
if (!cf->cf_pspec)
|
|
continue;
|
|
|
|
/*
|
|
* Skip cf if no longer eligible, otherwise scan
|
|
* through parents for one matching `parent', and
|
|
* try match function.
|
|
*/
|
|
if (cf->cf_fstate == FSTATE_FOUND)
|
|
continue;
|
|
if (cf->cf_fstate == FSTATE_DNOTFOUND ||
|
|
cf->cf_fstate == FSTATE_DSTAR)
|
|
continue;
|
|
|
|
/*
|
|
* If an interface attribute was specified,
|
|
* consider only children which attach to
|
|
* that attribute.
|
|
*/
|
|
if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
|
|
continue;
|
|
|
|
if (cfparent_match(parent, cf->cf_pspec))
|
|
mapply(&m, cf);
|
|
}
|
|
}
|
|
return (m.match);
|
|
}
|
|
|
|
/*
|
|
* Find the given root device.
|
|
* This is much like config_search, but there is no parent.
|
|
* Don't bother with multiple cfdata tables; the root node
|
|
* must always be in the initial table.
|
|
*/
|
|
struct cfdata *
|
|
config_rootsearch(cfmatch_t fn, const char *rootname, void *aux)
|
|
{
|
|
struct cfdata *cf;
|
|
const short *p;
|
|
struct matchinfo m;
|
|
|
|
m.fn = fn;
|
|
m.fn_loc = NULL;
|
|
m.parent = ROOT;
|
|
m.aux = aux;
|
|
m.match = NULL;
|
|
m.pri = 0;
|
|
/*
|
|
* Look at root entries for matching name. We do not bother
|
|
* with found-state here since only one root should ever be
|
|
* searched (and it must be done first).
|
|
*/
|
|
for (p = cfroots; *p >= 0; p++) {
|
|
cf = &cfdata[*p];
|
|
if (strcmp(cf->cf_name, rootname) == 0)
|
|
mapply(&m, cf);
|
|
}
|
|
return (m.match);
|
|
}
|
|
|
|
static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
|
|
|
|
/*
|
|
* The given `aux' argument describes a device that has been found
|
|
* on the given parent, but not necessarily configured. Locate the
|
|
* configuration data for that device (using the submatch function
|
|
* provided, or using candidates' cd_match configuration driver
|
|
* functions) and attach it, and return true. If the device was
|
|
* not configured, call the given `print' function and return 0.
|
|
*/
|
|
struct device *
|
|
config_found_sm(struct device *parent, void *aux, cfprint_t print,
|
|
cfmatch_t submatch)
|
|
{
|
|
struct cfdata *cf;
|
|
|
|
if ((cf = config_search(submatch, parent, aux)) != NULL)
|
|
return (config_attach(parent, cf, aux, print));
|
|
if (print) {
|
|
if (config_do_twiddle)
|
|
twiddle();
|
|
aprint_normal("%s", msgs[(*print)(aux, parent->dv_xname)]);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/* same as above, with real locators passed */
|
|
struct device *
|
|
config_found_sm_loc(struct device *parent,
|
|
const char *ifattr, const locdesc_t *ldesc, void *aux,
|
|
cfprint_t print, cfmatch_loc_t submatch)
|
|
{
|
|
struct cfdata *cf;
|
|
|
|
if ((cf = config_search_loc(submatch, parent, ifattr, ldesc, aux)))
|
|
return(config_attach_loc(parent, cf, ldesc, aux, print));
|
|
if (print) {
|
|
if (config_do_twiddle)
|
|
twiddle();
|
|
aprint_normal("%s", msgs[(*print)(aux, parent->dv_xname)]);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* As above, but for root devices.
|
|
*/
|
|
struct device *
|
|
config_rootfound(const char *rootname, void *aux)
|
|
{
|
|
struct cfdata *cf;
|
|
|
|
if ((cf = config_rootsearch((cfmatch_t)NULL, rootname, aux)) != NULL)
|
|
return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
|
|
aprint_error("root device %s not configured\n", rootname);
|
|
return (NULL);
|
|
}
|
|
|
|
/* just like sprintf(buf, "%d") except that it works from the end */
|
|
static char *
|
|
number(char *ep, int n)
|
|
{
|
|
|
|
*--ep = 0;
|
|
while (n >= 10) {
|
|
*--ep = (n % 10) + '0';
|
|
n /= 10;
|
|
}
|
|
*--ep = n + '0';
|
|
return (ep);
|
|
}
|
|
|
|
/*
|
|
* Expand the size of the cd_devs array if necessary.
|
|
*/
|
|
void
|
|
config_makeroom(int n, struct cfdriver *cd)
|
|
{
|
|
int old, new;
|
|
void **nsp;
|
|
|
|
if (n < cd->cd_ndevs)
|
|
return;
|
|
|
|
/*
|
|
* Need to expand the array.
|
|
*/
|
|
old = cd->cd_ndevs;
|
|
if (old == 0)
|
|
new = MINALLOCSIZE / sizeof(void *);
|
|
else
|
|
new = old * 2;
|
|
while (new <= n)
|
|
new *= 2;
|
|
cd->cd_ndevs = new;
|
|
nsp = malloc(new * sizeof(void *), M_DEVBUF,
|
|
cold ? M_NOWAIT : M_WAITOK);
|
|
if (nsp == NULL)
|
|
panic("config_attach: %sing dev array",
|
|
old != 0 ? "expand" : "creat");
|
|
memset(nsp + old, 0, (new - old) * sizeof(void *));
|
|
if (old != 0) {
|
|
memcpy(nsp, cd->cd_devs, old * sizeof(void *));
|
|
free(cd->cd_devs, M_DEVBUF);
|
|
}
|
|
cd->cd_devs = nsp;
|
|
}
|
|
|
|
/*
|
|
* Attach a found device. Allocates memory for device variables.
|
|
*/
|
|
struct device *
|
|
config_attach_loc(struct device *parent, struct cfdata *cf,
|
|
const locdesc_t *ldesc, void *aux, cfprint_t print)
|
|
{
|
|
struct device *dev;
|
|
struct cftable *ct;
|
|
struct cfdriver *cd;
|
|
struct cfattach *ca;
|
|
size_t lname, lunit;
|
|
const char *xunit;
|
|
int myunit;
|
|
char num[10];
|
|
|
|
cd = config_cfdriver_lookup(cf->cf_name);
|
|
KASSERT(cd != NULL);
|
|
|
|
ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
|
|
KASSERT(ca != NULL);
|
|
|
|
if (ca->ca_devsize < sizeof(struct device))
|
|
panic("config_attach");
|
|
|
|
#ifndef __BROKEN_CONFIG_UNIT_USAGE
|
|
if (cf->cf_fstate == FSTATE_STAR) {
|
|
for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
|
|
if (cd->cd_devs[myunit] == NULL)
|
|
break;
|
|
/*
|
|
* myunit is now the unit of the first NULL device pointer,
|
|
* or max(cd->cd_ndevs,cf->cf_unit).
|
|
*/
|
|
} else {
|
|
myunit = cf->cf_unit;
|
|
KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
|
|
cf->cf_fstate = FSTATE_FOUND;
|
|
}
|
|
#else
|
|
myunit = cf->cf_unit;
|
|
if (cf->cf_fstate == FSTATE_STAR)
|
|
cf->cf_unit++;
|
|
else {
|
|
KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
|
|
cf->cf_fstate = FSTATE_FOUND;
|
|
}
|
|
#endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
|
|
|
|
/* compute length of name and decimal expansion of unit number */
|
|
lname = strlen(cd->cd_name);
|
|
xunit = number(&num[sizeof(num)], myunit);
|
|
lunit = &num[sizeof(num)] - xunit;
|
|
if (lname + lunit > sizeof(dev->dv_xname))
|
|
panic("config_attach: device name too long");
|
|
|
|
/* get memory for all device vars */
|
|
dev = (struct device *)malloc(ca->ca_devsize, M_DEVBUF,
|
|
cold ? M_NOWAIT : M_WAITOK);
|
|
if (!dev)
|
|
panic("config_attach: memory allocation for device softc failed");
|
|
memset(dev, 0, ca->ca_devsize);
|
|
TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */
|
|
dev->dv_class = cd->cd_class;
|
|
dev->dv_cfdata = cf;
|
|
dev->dv_cfdriver = cd;
|
|
dev->dv_cfattach = ca;
|
|
dev->dv_unit = myunit;
|
|
memcpy(dev->dv_xname, cd->cd_name, lname);
|
|
memcpy(dev->dv_xname + lname, xunit, lunit);
|
|
dev->dv_parent = parent;
|
|
dev->dv_flags = DVF_ACTIVE; /* always initially active */
|
|
if (ldesc) {
|
|
dev->dv_locators = malloc(ldesc->len * sizeof(int),
|
|
M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
|
|
memcpy(dev->dv_locators, ldesc->locs, ldesc->len * sizeof(int));
|
|
}
|
|
|
|
if (config_do_twiddle)
|
|
twiddle();
|
|
else
|
|
aprint_naive("Found ");
|
|
/*
|
|
* We want the next two printfs for normal, verbose, and quiet,
|
|
* but not silent (in which case, we're twiddling, instead).
|
|
*/
|
|
if (parent == ROOT) {
|
|
aprint_naive("%s (root)", dev->dv_xname);
|
|
aprint_normal("%s (root)", dev->dv_xname);
|
|
} else {
|
|
aprint_naive("%s at %s", dev->dv_xname, parent->dv_xname);
|
|
aprint_normal("%s at %s", dev->dv_xname, parent->dv_xname);
|
|
if (print)
|
|
(void) (*print)(aux, NULL);
|
|
}
|
|
|
|
/* put this device in the devices array */
|
|
config_makeroom(dev->dv_unit, cd);
|
|
if (cd->cd_devs[dev->dv_unit])
|
|
panic("config_attach: duplicate %s", dev->dv_xname);
|
|
cd->cd_devs[dev->dv_unit] = dev;
|
|
|
|
/*
|
|
* Before attaching, clobber any unfound devices that are
|
|
* otherwise identical.
|
|
*/
|
|
TAILQ_FOREACH(ct, &allcftables, ct_list) {
|
|
for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
|
|
if (STREQ(cf->cf_name, cd->cd_name) &&
|
|
cf->cf_unit == dev->dv_unit) {
|
|
if (cf->cf_fstate == FSTATE_NOTFOUND)
|
|
cf->cf_fstate = FSTATE_FOUND;
|
|
#ifdef __BROKEN_CONFIG_UNIT_USAGE
|
|
/*
|
|
* Bump the unit number on all starred cfdata
|
|
* entries for this device.
|
|
*/
|
|
if (cf->cf_fstate == FSTATE_STAR)
|
|
cf->cf_unit++;
|
|
#endif /* __BROKEN_CONFIG_UNIT_USAGE */
|
|
}
|
|
}
|
|
}
|
|
#ifdef __HAVE_DEVICE_REGISTER
|
|
device_register(dev, aux);
|
|
#endif
|
|
(*ca->ca_attach)(parent, dev, aux);
|
|
config_process_deferred(&deferred_config_queue, dev);
|
|
return (dev);
|
|
}
|
|
|
|
/*
|
|
* As above, but for pseudo-devices. Pseudo-devices attached in this
|
|
* way are silently inserted into the device tree, and their children
|
|
* attached.
|
|
*
|
|
* Note that because pseudo-devices are attached silently, any information
|
|
* the attach routine wishes to print should be prefixed with the device
|
|
* name by the attach routine.
|
|
*/
|
|
struct device *
|
|
config_attach_pseudo(const char *name, int unit)
|
|
{
|
|
struct device *dev;
|
|
struct cfdriver *cd;
|
|
struct cfattach *ca;
|
|
size_t lname, lunit;
|
|
const char *xunit;
|
|
int myunit;
|
|
char num[10];
|
|
|
|
cd = config_cfdriver_lookup(name);
|
|
if (cd == NULL)
|
|
return (NULL);
|
|
|
|
ca = config_cfattach_lookup_cd(cd, name);
|
|
if (ca == NULL)
|
|
return (NULL);
|
|
|
|
if (ca->ca_devsize < sizeof(struct device))
|
|
panic("config_attach_pseudo");
|
|
|
|
if (unit == DVUNIT_ANY) {
|
|
for (myunit = 0; myunit < cd->cd_ndevs; myunit++)
|
|
if (cd->cd_devs[myunit] == NULL)
|
|
break;
|
|
/*
|
|
* myunit is now the unit of the first NULL device pointer.
|
|
*/
|
|
} else {
|
|
myunit = unit;
|
|
if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
|
|
return (NULL);
|
|
}
|
|
|
|
/* compute length of name and decimal expansion of unit number */
|
|
lname = strlen(cd->cd_name);
|
|
xunit = number(&num[sizeof(num)], myunit);
|
|
lunit = &num[sizeof(num)] - xunit;
|
|
if (lname + lunit > sizeof(dev->dv_xname))
|
|
panic("config_attach_pseudo: device name too long");
|
|
|
|
/* get memory for all device vars */
|
|
dev = (struct device *)malloc(ca->ca_devsize, M_DEVBUF,
|
|
cold ? M_NOWAIT : M_WAITOK);
|
|
if (!dev)
|
|
panic("config_attach_pseudo: memory allocation for device "
|
|
"softc failed");
|
|
memset(dev, 0, ca->ca_devsize);
|
|
TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */
|
|
dev->dv_class = cd->cd_class;
|
|
dev->dv_cfdata = NULL;
|
|
dev->dv_cfdriver = cd;
|
|
dev->dv_cfattach = ca;
|
|
dev->dv_unit = myunit;
|
|
memcpy(dev->dv_xname, cd->cd_name, lname);
|
|
memcpy(dev->dv_xname + lname, xunit, lunit);
|
|
dev->dv_parent = ROOT;
|
|
dev->dv_flags = DVF_ACTIVE; /* always initially active */
|
|
|
|
/* put this device in the devices array */
|
|
config_makeroom(dev->dv_unit, cd);
|
|
if (cd->cd_devs[dev->dv_unit])
|
|
panic("config_attach_pseudo: duplicate %s", dev->dv_xname);
|
|
cd->cd_devs[dev->dv_unit] = dev;
|
|
|
|
#if 0 /* XXXJRT not yet */
|
|
#ifdef __HAVE_DEVICE_REGISTER
|
|
device_register(dev, NULL); /* like a root node */
|
|
#endif
|
|
#endif
|
|
(*ca->ca_attach)(ROOT, dev, NULL);
|
|
config_process_deferred(&deferred_config_queue, dev);
|
|
return (dev);
|
|
}
|
|
|
|
/*
|
|
* Detach a device. Optionally forced (e.g. because of hardware
|
|
* removal) and quiet. Returns zero if successful, non-zero
|
|
* (an error code) otherwise.
|
|
*
|
|
* Note that this code wants to be run from a process context, so
|
|
* that the detach can sleep to allow processes which have a device
|
|
* open to run and unwind their stacks.
|
|
*/
|
|
int
|
|
config_detach(struct device *dev, int flags)
|
|
{
|
|
struct cftable *ct;
|
|
struct cfdata *cf;
|
|
const struct cfattach *ca;
|
|
struct cfdriver *cd;
|
|
#ifdef DIAGNOSTIC
|
|
struct device *d;
|
|
#endif
|
|
int rv = 0, i;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (dev->dv_cfdata != NULL &&
|
|
dev->dv_cfdata->cf_fstate != FSTATE_FOUND &&
|
|
dev->dv_cfdata->cf_fstate != FSTATE_STAR)
|
|
panic("config_detach: bad device fstate");
|
|
#endif
|
|
cd = dev->dv_cfdriver;
|
|
KASSERT(cd != NULL);
|
|
|
|
ca = dev->dv_cfattach;
|
|
KASSERT(ca != NULL);
|
|
|
|
/*
|
|
* Ensure the device is deactivated. If the device doesn't
|
|
* have an activation entry point, we allow DVF_ACTIVE to
|
|
* remain set. Otherwise, if DVF_ACTIVE is still set, the
|
|
* device is busy, and the detach fails.
|
|
*/
|
|
if (ca->ca_activate != NULL)
|
|
rv = config_deactivate(dev);
|
|
|
|
/*
|
|
* Try to detach the device. If that's not possible, then
|
|
* we either panic() (for the forced but failed case), or
|
|
* return an error.
|
|
*/
|
|
if (rv == 0) {
|
|
if (ca->ca_detach != NULL)
|
|
rv = (*ca->ca_detach)(dev, flags);
|
|
else
|
|
rv = EOPNOTSUPP;
|
|
}
|
|
if (rv != 0) {
|
|
if ((flags & DETACH_FORCE) == 0)
|
|
return (rv);
|
|
else
|
|
panic("config_detach: forced detach of %s failed (%d)",
|
|
dev->dv_xname, rv);
|
|
}
|
|
|
|
/*
|
|
* The device has now been successfully detached.
|
|
*/
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* Sanity: If you're successfully detached, you should have no
|
|
* children. (Note that because children must be attached
|
|
* after parents, we only need to search the latter part of
|
|
* the list.)
|
|
*/
|
|
for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
|
|
d = TAILQ_NEXT(d, dv_list)) {
|
|
if (d->dv_parent == dev) {
|
|
printf("config_detach: detached device %s"
|
|
" has children %s\n", dev->dv_xname, d->dv_xname);
|
|
panic("config_detach");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* notify the parent that the child is gone */
|
|
if (dev->dv_parent) {
|
|
struct device *p = dev->dv_parent;
|
|
if (p->dv_cfattach->ca_childdetached)
|
|
(*p->dv_cfattach->ca_childdetached)(p, dev);
|
|
}
|
|
|
|
/*
|
|
* Mark cfdata to show that the unit can be reused, if possible.
|
|
*/
|
|
TAILQ_FOREACH(ct, &allcftables, ct_list) {
|
|
for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
|
|
if (STREQ(cf->cf_name, cd->cd_name)) {
|
|
if (cf->cf_fstate == FSTATE_FOUND &&
|
|
cf->cf_unit == dev->dv_unit)
|
|
cf->cf_fstate = FSTATE_NOTFOUND;
|
|
#ifdef __BROKEN_CONFIG_UNIT_USAGE
|
|
/*
|
|
* Note that we can only re-use a starred
|
|
* unit number if the unit being detached
|
|
* had the last assigned unit number.
|
|
*/
|
|
if (cf->cf_fstate == FSTATE_STAR &&
|
|
cf->cf_unit == dev->dv_unit + 1)
|
|
cf->cf_unit--;
|
|
#endif /* __BROKEN_CONFIG_UNIT_USAGE */
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Unlink from device list.
|
|
*/
|
|
TAILQ_REMOVE(&alldevs, dev, dv_list);
|
|
|
|
/*
|
|
* Remove from cfdriver's array, tell the world (unless it was
|
|
* a pseudo-device), and free softc.
|
|
*/
|
|
cd->cd_devs[dev->dv_unit] = NULL;
|
|
if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
|
|
aprint_normal("%s detached\n", dev->dv_xname);
|
|
if (dev->dv_locators)
|
|
free(dev->dv_locators, M_DEVBUF);
|
|
free(dev, M_DEVBUF);
|
|
|
|
/*
|
|
* If the device now has no units in use, deallocate its softc array.
|
|
*/
|
|
for (i = 0; i < cd->cd_ndevs; i++)
|
|
if (cd->cd_devs[i] != NULL)
|
|
break;
|
|
if (i == cd->cd_ndevs) { /* nothing found; deallocate */
|
|
free(cd->cd_devs, M_DEVBUF);
|
|
cd->cd_devs = NULL;
|
|
cd->cd_ndevs = 0;
|
|
}
|
|
|
|
/*
|
|
* Return success.
|
|
*/
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
config_activate(struct device *dev)
|
|
{
|
|
const struct cfattach *ca = dev->dv_cfattach;
|
|
int rv = 0, oflags = dev->dv_flags;
|
|
|
|
if (ca->ca_activate == NULL)
|
|
return (EOPNOTSUPP);
|
|
|
|
if ((dev->dv_flags & DVF_ACTIVE) == 0) {
|
|
dev->dv_flags |= DVF_ACTIVE;
|
|
rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
|
|
if (rv)
|
|
dev->dv_flags = oflags;
|
|
}
|
|
return (rv);
|
|
}
|
|
|
|
int
|
|
config_deactivate(struct device *dev)
|
|
{
|
|
const struct cfattach *ca = dev->dv_cfattach;
|
|
int rv = 0, oflags = dev->dv_flags;
|
|
|
|
if (ca->ca_activate == NULL)
|
|
return (EOPNOTSUPP);
|
|
|
|
if (dev->dv_flags & DVF_ACTIVE) {
|
|
dev->dv_flags &= ~DVF_ACTIVE;
|
|
rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
|
|
if (rv)
|
|
dev->dv_flags = oflags;
|
|
}
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* Defer the configuration of the specified device until all
|
|
* of its parent's devices have been attached.
|
|
*/
|
|
void
|
|
config_defer(struct device *dev, void (*func)(struct device *))
|
|
{
|
|
struct deferred_config *dc;
|
|
|
|
if (dev->dv_parent == NULL)
|
|
panic("config_defer: can't defer config of a root device");
|
|
|
|
#ifdef DIAGNOSTIC
|
|
for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
|
|
dc = TAILQ_NEXT(dc, dc_queue)) {
|
|
if (dc->dc_dev == dev)
|
|
panic("config_defer: deferred twice");
|
|
}
|
|
#endif
|
|
|
|
dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
|
|
if (dc == NULL)
|
|
panic("config_defer: unable to allocate callback");
|
|
|
|
dc->dc_dev = dev;
|
|
dc->dc_func = func;
|
|
TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
|
|
config_pending_incr();
|
|
}
|
|
|
|
/*
|
|
* Defer some autoconfiguration for a device until after interrupts
|
|
* are enabled.
|
|
*/
|
|
void
|
|
config_interrupts(struct device *dev, void (*func)(struct device *))
|
|
{
|
|
struct deferred_config *dc;
|
|
|
|
/*
|
|
* If interrupts are enabled, callback now.
|
|
*/
|
|
if (cold == 0) {
|
|
(*func)(dev);
|
|
return;
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
|
|
dc = TAILQ_NEXT(dc, dc_queue)) {
|
|
if (dc->dc_dev == dev)
|
|
panic("config_interrupts: deferred twice");
|
|
}
|
|
#endif
|
|
|
|
dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
|
|
if (dc == NULL)
|
|
panic("config_interrupts: unable to allocate callback");
|
|
|
|
dc->dc_dev = dev;
|
|
dc->dc_func = func;
|
|
TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
|
|
config_pending_incr();
|
|
}
|
|
|
|
/*
|
|
* Process a deferred configuration queue.
|
|
*/
|
|
static void
|
|
config_process_deferred(struct deferred_config_head *queue,
|
|
struct device *parent)
|
|
{
|
|
struct deferred_config *dc, *ndc;
|
|
|
|
for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
|
|
ndc = TAILQ_NEXT(dc, dc_queue);
|
|
if (parent == NULL || dc->dc_dev->dv_parent == parent) {
|
|
TAILQ_REMOVE(queue, dc, dc_queue);
|
|
(*dc->dc_func)(dc->dc_dev);
|
|
free(dc, M_DEVBUF);
|
|
config_pending_decr();
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Manipulate the config_pending semaphore.
|
|
*/
|
|
void
|
|
config_pending_incr(void)
|
|
{
|
|
|
|
config_pending++;
|
|
}
|
|
|
|
void
|
|
config_pending_decr(void)
|
|
{
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (config_pending == 0)
|
|
panic("config_pending_decr: config_pending == 0");
|
|
#endif
|
|
config_pending--;
|
|
if (config_pending == 0)
|
|
wakeup((void *)&config_pending);
|
|
}
|
|
|
|
/*
|
|
* Register a "finalization" routine. Finalization routines are
|
|
* called iteratively once all real devices have been found during
|
|
* autoconfiguration, for as long as any one finalizer has done
|
|
* any work.
|
|
*/
|
|
int
|
|
config_finalize_register(struct device *dev, int (*fn)(struct device *))
|
|
{
|
|
struct finalize_hook *f;
|
|
|
|
/*
|
|
* If finalization has already been done, invoke the
|
|
* callback function now.
|
|
*/
|
|
if (config_finalize_done) {
|
|
while ((*fn)(dev) != 0)
|
|
/* loop */ ;
|
|
}
|
|
|
|
/* Ensure this isn't already on the list. */
|
|
TAILQ_FOREACH(f, &config_finalize_list, f_list) {
|
|
if (f->f_func == fn && f->f_dev == dev)
|
|
return (EEXIST);
|
|
}
|
|
|
|
f = malloc(sizeof(*f), M_TEMP, M_WAITOK);
|
|
f->f_func = fn;
|
|
f->f_dev = dev;
|
|
TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
config_finalize(void)
|
|
{
|
|
struct finalize_hook *f;
|
|
int rv;
|
|
|
|
/* Run the hooks until none of them does any work. */
|
|
do {
|
|
rv = 0;
|
|
TAILQ_FOREACH(f, &config_finalize_list, f_list)
|
|
rv |= (*f->f_func)(f->f_dev);
|
|
} while (rv != 0);
|
|
|
|
config_finalize_done = 1;
|
|
|
|
/* Now free all the hooks. */
|
|
while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
|
|
TAILQ_REMOVE(&config_finalize_list, f, f_list);
|
|
free(f, M_TEMP);
|
|
}
|
|
}
|
|
|