NetBSD/sys/arch/hp300/dev/scsi.c
1994-10-26 07:22:45 +00:00

1237 lines
30 KiB
C

/* $NetBSD: scsi.c,v 1.4 1994/10/26 07:24:57 cgd Exp $ */
/*
* Copyright (c) 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Van Jacobson of Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)scsi.c 8.2 (Berkeley) 1/12/94
*/
#ifndef DEBUG
#define DEBUG
#endif
/*
* HP9000/3xx 98658 SCSI host adaptor driver.
*/
#include "scsi.h"
#if NSCSI > 0
#ifndef lint
static char rcsid[] = "$Header: /cvsroot/src/sys/arch/hp300/dev/Attic/scsi.c,v 1.4 1994/10/26 07:24:57 cgd Exp $";
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <machine/cpu.h>
#include <hp300/dev/device.h>
#include <hp300/dev/scsivar.h>
#include <hp300/dev/scsireg.h>
#include <hp300/dev/dmavar.h>
#include <hp300/hp300/isr.h>
/*
* SCSI delays
* In u-seconds, primarily for state changes on the SPC.
*/
#define SCSI_CMD_WAIT 1000 /* wait per step of 'immediate' cmds */
#define SCSI_DATA_WAIT 1000 /* wait per data in/out step */
#define SCSI_INIT_WAIT 50000 /* wait per step (both) during init */
extern void isrlink();
extern void _insque();
extern void _remque();
int scsiinit(), scsigo(), scsiintr(), scsixfer();
void scsistart(), scsidone(), scsifree(), scsireset();
struct driver scsidriver = {
scsiinit, "scsi", (int (*)())scsistart, scsigo, scsiintr,
(int (*)())scsidone,
};
struct scsi_softc scsi_softc[NSCSI];
struct isr scsi_isr[NSCSI];
int scsi_cmd_wait = SCSI_CMD_WAIT;
int scsi_data_wait = SCSI_DATA_WAIT;
int scsi_init_wait = SCSI_INIT_WAIT;
int scsi_nosync = 1; /* inhibit sync xfers if 1 */
int scsi_pridma = 0; /* use "priority" dma */
#ifdef DEBUG
int scsi_debug = 0;
#define WAITHIST
#endif
#ifdef WAITHIST
#define MAXWAIT 1022
u_int ixstart_wait[MAXWAIT+2];
u_int ixin_wait[MAXWAIT+2];
u_int ixout_wait[MAXWAIT+2];
u_int mxin_wait[MAXWAIT+2];
u_int mxin2_wait[MAXWAIT+2];
u_int cxin_wait[MAXWAIT+2];
u_int fxfr_wait[MAXWAIT+2];
u_int sgo_wait[MAXWAIT+2];
#define HIST(h,w) (++h[((w)>MAXWAIT? MAXWAIT : ((w) < 0 ? -1 : (w))) + 1]);
#else
#define HIST(h,w)
#endif
#define b_cylin b_resid
static void
scsiabort(hs, hd, where)
register struct scsi_softc *hs;
volatile register struct scsidevice *hd;
char *where;
{
int len;
int maxtries; /* XXX - kludge till I understand whats *supposed* to happen */
int startlen; /* XXX - kludge till I understand whats *supposed* to happen */
u_char junk;
printf("scsi%d: abort from %s: phase=0x%x, ssts=0x%x, ints=0x%x\n",
hs->sc_hc->hp_unit, where, hd->scsi_psns, hd->scsi_ssts,
hd->scsi_ints);
hd->scsi_ints = hd->scsi_ints;
hd->scsi_csr = 0;
if (hd->scsi_psns == 0 || (hd->scsi_ssts & SSTS_INITIATOR) == 0)
/* no longer connected to scsi target */
return;
/* get the number of bytes remaining in current xfer + fudge */
len = (hd->scsi_tch << 16) | (hd->scsi_tcm << 8) | hd->scsi_tcl;
/* for that many bus cycles, try to send an abort msg */
for (startlen = (len += 1024); (hd->scsi_ssts & SSTS_INITIATOR) && --len >= 0; ) {
hd->scsi_scmd = SCMD_SET_ATN;
maxtries = 1000;
while ((hd->scsi_psns & PSNS_REQ) == 0) {
if (! (hd->scsi_ssts & SSTS_INITIATOR))
goto out;
DELAY(1);
if (--maxtries == 0) {
printf("-- scsiabort gave up after 1000 tries (startlen = %d len = %d)\n",
startlen, len);
goto out2;
}
}
out2:
if ((hd->scsi_psns & PHASE) == MESG_OUT_PHASE)
hd->scsi_scmd = SCMD_RST_ATN;
hd->scsi_pctl = hd->scsi_psns & PHASE;
if (hd->scsi_psns & PHASE_IO) {
/* one of the input phases - read & discard a byte */
hd->scsi_scmd = SCMD_SET_ACK;
if (hd->scsi_tmod == 0)
while (hd->scsi_psns & PSNS_REQ)
DELAY(1);
junk = hd->scsi_temp;
} else {
/* one of the output phases - send an abort msg */
hd->scsi_temp = MSG_ABORT;
hd->scsi_scmd = SCMD_SET_ACK;
if (hd->scsi_tmod == 0)
while (hd->scsi_psns & PSNS_REQ)
DELAY(1);
}
hd->scsi_scmd = SCMD_RST_ACK;
}
out:
/*
* Either the abort was successful & the bus is disconnected or
* the device didn't listen. If the latter, announce the problem.
* Either way, reset the card & the SPC.
*/
if (len < 0 && hs)
printf("scsi%d: abort failed. phase=0x%x, ssts=0x%x\n",
hs->sc_hc->hp_unit, hd->scsi_psns, hd->scsi_ssts);
if (! ((junk = hd->scsi_ints) & INTS_RESEL)) {
hd->scsi_sctl |= SCTL_CTRLRST;
DELAY(1);
hd->scsi_sctl &=~ SCTL_CTRLRST;
hd->scsi_hconf = 0;
hd->scsi_ints = hd->scsi_ints;
}
}
/*
* XXX Set/reset long delays.
*
* if delay == 0, reset default delays
* if delay < 0, set both delays to default long initialization values
* if delay > 0, set both delays to this value
*
* Used when a devices is expected to respond slowly (e.g. during
* initialization).
*/
void
scsi_delay(delay)
int delay;
{
static int saved_cmd_wait, saved_data_wait;
if (delay) {
saved_cmd_wait = scsi_cmd_wait;
saved_data_wait = scsi_data_wait;
if (delay > 0)
scsi_cmd_wait = scsi_data_wait = delay;
else
scsi_cmd_wait = scsi_data_wait = scsi_init_wait;
} else {
scsi_cmd_wait = saved_cmd_wait;
scsi_data_wait = saved_data_wait;
}
}
int
scsiinit(hc)
register struct hp_ctlr *hc;
{
register struct scsi_softc *hs = &scsi_softc[hc->hp_unit];
register struct scsidevice *hd = (struct scsidevice *)hc->hp_addr;
if ((hd->scsi_id & ID_MASK) != SCSI_ID)
return(0);
hc->hp_ipl = SCSI_IPL(hd->scsi_csr);
hs->sc_hc = hc;
hs->sc_dq.dq_unit = hc->hp_unit;
hs->sc_dq.dq_driver = &scsidriver;
hs->sc_sq.dq_forw = hs->sc_sq.dq_back = &hs->sc_sq;
scsi_isr[hc->hp_unit].isr_intr = scsiintr;
scsi_isr[hc->hp_unit].isr_ipl = hc->hp_ipl;
scsi_isr[hc->hp_unit].isr_arg = hc->hp_unit;
isrlink(&scsi_isr[hc->hp_unit]);
scsireset(hc->hp_unit);
/*
* XXX scale initialization wait according to CPU speed.
* Should we do this for all wait? Should we do this at all?
*/
scsi_init_wait *= cpuspeed;
return(1);
}
void
scsireset(unit)
register int unit;
{
register struct scsi_softc *hs = &scsi_softc[unit];
volatile register struct scsidevice *hd =
(struct scsidevice *)hs->sc_hc->hp_addr;
u_int i;
if (hs->sc_flags & SCSI_ALIVE)
scsiabort(hs, hd, "reset");
printf("scsi%d: ", unit);
hd->scsi_id = 0xFF;
DELAY(100);
/*
* Disable interrupts then reset the FUJI chip.
*/
hd->scsi_csr = 0;
hd->scsi_sctl = SCTL_DISABLE | SCTL_CTRLRST;
hd->scsi_scmd = 0;
hd->scsi_tmod = 0;
hd->scsi_pctl = 0;
hd->scsi_temp = 0;
hd->scsi_tch = 0;
hd->scsi_tcm = 0;
hd->scsi_tcl = 0;
hd->scsi_ints = 0;
if ((hd->scsi_id & ID_WORD_DMA) == 0) {
hs->sc_flags |= SCSI_DMA32;
printf("32 bit dma, ");
}
/* Determine Max Synchronous Transfer Rate */
if (scsi_nosync)
i = 3;
else
i = SCSI_SYNC_XFER(hd->scsi_hconf);
switch (i) {
case 0:
hs->sc_sync = TMOD_SYNC | 0x3e; /* 250 nsecs */
printf("250ns sync");
break;
case 1:
hs->sc_sync = TMOD_SYNC | 0x5e; /* 375 nsecs */
printf("375ns sync");
break;
case 2:
hs->sc_sync = TMOD_SYNC | 0x7d; /* 500 nsecs */
printf("500ns sync");
break;
case 3:
hs->sc_sync = 0;
printf("async");
break;
}
/*
* Configure the FUJI chip with its SCSI address, all
* interrupts enabled & appropriate parity.
*/
i = (~hd->scsi_hconf) & 0x7;
hs->sc_scsi_addr = 1 << i;
hd->scsi_bdid = i;
if (hd->scsi_hconf & HCONF_PARITY)
hd->scsi_sctl = SCTL_DISABLE | SCTL_ABRT_ENAB |
SCTL_SEL_ENAB | SCTL_RESEL_ENAB |
SCTL_INTR_ENAB | SCTL_PARITY_ENAB;
else {
hd->scsi_sctl = SCTL_DISABLE | SCTL_ABRT_ENAB |
SCTL_SEL_ENAB | SCTL_RESEL_ENAB |
SCTL_INTR_ENAB;
printf(", no parity");
}
hd->scsi_sctl &=~ SCTL_DISABLE;
printf(", scsi id %d\n", i);
hs->sc_flags |= SCSI_ALIVE;
}
static void
scsierror(hs, hd, ints)
register struct scsi_softc *hs;
volatile register struct scsidevice *hd;
u_char ints;
{
int unit = hs->sc_hc->hp_unit;
char *sep = "";
printf("scsi%d: ", unit);
if (ints & INTS_RST) {
DELAY(100);
if (hd->scsi_hconf & HCONF_SD)
printf("spurious RST interrupt");
else
printf("hardware error - check fuse");
sep = ", ";
}
if ((ints & INTS_HARD_ERR) || hd->scsi_serr) {
if (hd->scsi_serr & SERR_SCSI_PAR) {
printf("%sparity err", sep);
sep = ", ";
}
if (hd->scsi_serr & SERR_SPC_PAR) {
printf("%sSPC parity err", sep);
sep = ", ";
}
if (hd->scsi_serr & SERR_TC_PAR) {
printf("%sTC parity err", sep);
sep = ", ";
}
if (hd->scsi_serr & SERR_PHASE_ERR) {
printf("%sphase err", sep);
sep = ", ";
}
if (hd->scsi_serr & SERR_SHORT_XFR) {
printf("%ssync short transfer err", sep);
sep = ", ";
}
if (hd->scsi_serr & SERR_OFFSET) {
printf("%ssync offset error", sep);
sep = ", ";
}
}
if (ints & INTS_TIMEOUT)
printf("%sSPC select timeout error", sep);
if (ints & INTS_SRV_REQ)
printf("%sspurious SRV_REQ interrupt", sep);
if (ints & INTS_CMD_DONE)
printf("%sspurious CMD_DONE interrupt", sep);
if (ints & INTS_DISCON)
printf("%sspurious disconnect interrupt", sep);
if (ints & INTS_RESEL)
printf("%sspurious reselect interrupt", sep);
if (ints & INTS_SEL)
printf("%sspurious select interrupt", sep);
printf("\n");
}
static int
issue_select(hd, target, our_addr)
volatile register struct scsidevice *hd;
u_char target, our_addr;
{
if (hd->scsi_ssts & (SSTS_INITIATOR|SSTS_TARGET|SSTS_BUSY))
return (1);
if (hd->scsi_ints & INTS_DISCON)
hd->scsi_ints = INTS_DISCON;
hd->scsi_pctl = 0;
hd->scsi_temp = (1 << target) | our_addr;
/* select timeout is hardcoded to 2ms */
hd->scsi_tch = 0;
hd->scsi_tcm = 32;
hd->scsi_tcl = 4;
hd->scsi_scmd = SCMD_SELECT;
return (0);
}
static int
wait_for_select(hd)
volatile register struct scsidevice *hd;
{
u_char ints;
while ((ints = hd->scsi_ints) == 0)
DELAY(1);
hd->scsi_ints = ints;
return (!(hd->scsi_ssts & SSTS_INITIATOR));
}
static int
ixfer_start(hd, len, phase, wait)
volatile register struct scsidevice *hd;
int len;
u_char phase;
register int wait;
{
hd->scsi_tch = len >> 16;
hd->scsi_tcm = len >> 8;
hd->scsi_tcl = len;
hd->scsi_pctl = phase;
hd->scsi_tmod = 0; /*XXX*/
hd->scsi_scmd = SCMD_XFR | SCMD_PROG_XFR;
/* wait for xfer to start or svc_req interrupt */
while ((hd->scsi_ssts & SSTS_BUSY) == 0) {
if (hd->scsi_ints || --wait < 0) {
#ifdef DEBUG
if (scsi_debug)
printf("ixfer_start fail: i%x, w%d\n",
hd->scsi_ints, wait);
#endif
HIST(ixstart_wait, wait)
return (0);
}
DELAY(1);
}
HIST(ixstart_wait, wait)
return (1);
}
static int
ixfer_out(hd, len, buf)
volatile register struct scsidevice *hd;
int len;
register u_char *buf;
{
register int wait = scsi_data_wait;
for (; len > 0; --len) {
while (hd->scsi_ssts & SSTS_DREG_FULL) {
if (hd->scsi_ints || --wait < 0) {
#ifdef DEBUG
if (scsi_debug)
printf("ixfer_out fail: l%d i%x w%d\n",
len, hd->scsi_ints, wait);
#endif
HIST(ixout_wait, wait)
return (len);
}
DELAY(1);
}
hd->scsi_dreg = *buf++;
}
HIST(ixout_wait, wait)
return (0);
}
static void
ixfer_in(hd, len, buf)
volatile register struct scsidevice *hd;
int len;
register u_char *buf;
{
register int wait = scsi_data_wait;
for (; len > 0; --len) {
while (hd->scsi_ssts & SSTS_DREG_EMPTY) {
if (hd->scsi_ints || --wait < 0) {
while (! (hd->scsi_ssts & SSTS_DREG_EMPTY)) {
*buf++ = hd->scsi_dreg;
--len;
}
#ifdef DEBUG
if (scsi_debug)
printf("ixfer_in fail: l%d i%x w%d\n",
len, hd->scsi_ints, wait);
#endif
HIST(ixin_wait, wait)
return;
}
DELAY(1);
}
*buf++ = hd->scsi_dreg;
}
HIST(ixin_wait, wait)
}
static int
mxfer_in(hd, len, buf, phase)
volatile register struct scsidevice *hd;
register int len;
register u_char *buf;
register u_char phase;
{
register int wait = scsi_cmd_wait;
register int i;
hd->scsi_tmod = 0;
for (i = 0; i < len; ++i) {
/*
* manual sez: reset ATN before ACK is sent.
*/
if (hd->scsi_psns & PSNS_ATN)
hd->scsi_scmd = SCMD_RST_ATN;
/*
* wait for the request line (which says the target
* wants to give us data). If the phase changes while
* we're waiting, we're done.
*/
while ((hd->scsi_psns & PSNS_REQ) == 0) {
if (--wait < 0) {
HIST(mxin_wait, wait)
return (-1);
}
if ((hd->scsi_psns & PHASE) != phase ||
(hd->scsi_ssts & SSTS_INITIATOR) == 0)
goto out;
DELAY(1);
}
/*
* set ack (which says we're ready for the data, wait for
* req to go away (target says data is available), grab the
* data, then reset ack (say we've got the data).
*/
hd->scsi_pctl = phase;
hd->scsi_scmd = SCMD_SET_ACK;
while (hd->scsi_psns & PSNS_REQ) {
if (--wait < 0) {
HIST(mxin_wait, wait)
return (-2);
}
DELAY(1);
}
*buf++ = hd->scsi_temp;
hd->scsi_scmd = SCMD_RST_ACK;
}
out:
HIST(mxin_wait, wait)
/*
* Wait for manual transfer to finish.
* Avoids occasional "unexpected phase" errors in finishxfer
* formerly addressed by per-slave delays.
*/
wait = scsi_cmd_wait;
while ((hd->scsi_ssts & SSTS_ACTIVE) == SSTS_INITIATOR) {
if (--wait < 0)
break;
DELAY(1);
}
HIST(mxin2_wait, wait)
return (i);
}
/*
* SCSI 'immediate' command: issue a command to some SCSI device
* and get back an 'immediate' response (i.e., do programmed xfer
* to get the response data). 'cbuf' is a buffer containing a scsi
* command of length clen bytes. 'buf' is a buffer of length 'len'
* bytes for data. The transfer direction is determined by the device
* (i.e., by the scsi bus data xfer phase). If 'len' is zero, the
* command must supply no data. 'xferphase' is the bus phase the
* caller expects to happen after the command is issued. It should
* be one of DATA_IN_PHASE, DATA_OUT_PHASE or STATUS_PHASE.
*/
static int
scsiicmd(hs, target, cbuf, clen, buf, len, xferphase)
struct scsi_softc *hs;
int target;
u_char *cbuf;
int clen;
u_char *buf;
int len;
u_char xferphase;
{
volatile register struct scsidevice *hd =
(struct scsidevice *)hs->sc_hc->hp_addr;
u_char phase, ints;
register int wait;
/* select the SCSI bus (it's an error if bus isn't free) */
if (issue_select(hd, target, hs->sc_scsi_addr))
return (-1);
if (wait_for_select(hd))
return (-1);
/*
* Wait for a phase change (or error) then let the device
* sequence us through the various SCSI phases.
*/
hs->sc_stat[0] = 0xff;
hs->sc_msg[0] = 0xff;
phase = CMD_PHASE;
while (1) {
wait = scsi_cmd_wait;
switch (phase) {
case CMD_PHASE:
if (ixfer_start(hd, clen, phase, wait))
if (ixfer_out(hd, clen, cbuf))
goto abort;
phase = xferphase;
break;
case DATA_IN_PHASE:
if (len <= 0)
goto abort;
wait = scsi_data_wait;
if (ixfer_start(hd, len, phase, wait) ||
!(hd->scsi_ssts & SSTS_DREG_EMPTY))
ixfer_in(hd, len, buf);
phase = STATUS_PHASE;
break;
case DATA_OUT_PHASE:
if (len <= 0)
goto abort;
wait = scsi_data_wait;
if (ixfer_start(hd, len, phase, wait)) {
if (ixfer_out(hd, len, buf))
goto abort;
}
phase = STATUS_PHASE;
break;
case STATUS_PHASE:
wait = scsi_data_wait;
if (ixfer_start(hd, sizeof(hs->sc_stat), phase, wait) ||
!(hd->scsi_ssts & SSTS_DREG_EMPTY))
ixfer_in(hd, sizeof(hs->sc_stat), hs->sc_stat);
phase = MESG_IN_PHASE;
break;
case MESG_IN_PHASE:
if (ixfer_start(hd, sizeof(hs->sc_msg), phase, wait) ||
!(hd->scsi_ssts & SSTS_DREG_EMPTY)) {
ixfer_in(hd, sizeof(hs->sc_msg), hs->sc_msg);
hd->scsi_scmd = SCMD_RST_ACK;
}
phase = BUS_FREE_PHASE;
break;
case BUS_FREE_PHASE:
goto out;
default:
printf("scsi%d: unexpected phase %d in icmd from %d\n",
hs->sc_hc->hp_unit, phase, target);
goto abort;
}
/* wait for last command to complete */
while ((ints = hd->scsi_ints) == 0) {
if (--wait < 0) {
HIST(cxin_wait, wait)
goto abort;
}
DELAY(1);
}
HIST(cxin_wait, wait)
hd->scsi_ints = ints;
if (ints & INTS_SRV_REQ)
phase = hd->scsi_psns & PHASE;
else if (ints & INTS_DISCON)
goto out;
else if ((ints & INTS_CMD_DONE) == 0) {
scsierror(hs, hd, ints);
goto abort;
}
}
abort:
scsiabort(hs, hd, "icmd");
out:
return (hs->sc_stat[0]);
}
/*
* Finish SCSI xfer command: After the completion interrupt from
* a read/write operation, sequence through the final phases in
* programmed i/o. This routine is a lot like scsiicmd except we
* skip (and don't allow) the select, cmd out and data in/out phases.
*/
static void
finishxfer(hs, hd, target)
struct scsi_softc *hs;
volatile register struct scsidevice *hd;
int target;
{
u_char phase, ints;
/*
* We specified padding xfer so we ended with either a phase
* change interrupt (normal case) or an error interrupt (handled
* elsewhere). Reset the board dma logic then try to get the
* completion status & command done msg. The reset confuses
* the SPC REQ/ACK logic so we have to do any status/msg input
* operations via 'manual xfer'.
*/
if (hd->scsi_ssts & SSTS_BUSY) {
int wait = scsi_cmd_wait;
/* wait for dma operation to finish */
while (hd->scsi_ssts & SSTS_BUSY) {
if (--wait < 0) {
#ifdef DEBUG
if (scsi_debug)
printf("finishxfer fail: ssts %x\n",
hd->scsi_ssts);
#endif
HIST(fxfr_wait, wait)
goto abort;
}
}
HIST(fxfr_wait, wait)
}
hd->scsi_scmd |= SCMD_PROG_XFR;
hd->scsi_sctl |= SCTL_CTRLRST;
DELAY(1);
hd->scsi_sctl &=~ SCTL_CTRLRST;
hd->scsi_hconf = 0;
/*
* The following delay is definitely needed when trying to
* write on a write protected disk (in the optical jukebox anyways),
* but we shall see if other unexplained machine freezeups
* also stop occuring... A value of 5 seems to work but
* 10 seems safer considering the potential consequences.
*/
DELAY(10);
hs->sc_stat[0] = 0xff;
hs->sc_msg[0] = 0xff;
hd->scsi_csr = 0;
hd->scsi_ints = ints = hd->scsi_ints;
while (1) {
phase = hd->scsi_psns & PHASE;
switch (phase) {
case STATUS_PHASE:
if (mxfer_in(hd, sizeof(hs->sc_stat), hs->sc_stat,
phase) <= 0)
goto abort;
break;
case MESG_IN_PHASE:
if (mxfer_in(hd, sizeof(hs->sc_msg), hs->sc_msg,
phase) < 0)
goto abort;
break;
case BUS_FREE_PHASE:
return;
default:
printf("scsi%d: unexpected phase %d in finishxfer from %d\n",
hs->sc_hc->hp_unit, phase, target);
goto abort;
}
if (ints = hd->scsi_ints) {
hd->scsi_ints = ints;
if (ints & INTS_DISCON)
return;
else if (ints & ~(INTS_SRV_REQ|INTS_CMD_DONE)) {
scsierror(hs, hd, ints);
break;
}
}
if ((hd->scsi_ssts & SSTS_INITIATOR) == 0)
return;
}
abort:
scsiabort(hs, hd, "finishxfer");
hs->sc_stat[0] = 0xfe;
}
int
scsi_test_unit_rdy(ctlr, slave, unit)
int ctlr, slave, unit;
{
register struct scsi_softc *hs = &scsi_softc[ctlr];
static struct scsi_cdb6 cdb = { CMD_TEST_UNIT_READY };
cdb.lun = unit;
return (scsiicmd(hs, slave, &cdb, sizeof(cdb), (u_char *)0, 0,
STATUS_PHASE));
}
int
scsi_request_sense(ctlr, slave, unit, buf, len)
int ctlr, slave, unit;
u_char *buf;
unsigned len;
{
register struct scsi_softc *hs = &scsi_softc[ctlr];
static struct scsi_cdb6 cdb = { CMD_REQUEST_SENSE };
cdb.lun = unit;
cdb.len = len;
return (scsiicmd(hs, slave, &cdb, sizeof(cdb), buf, len, DATA_IN_PHASE));
}
int
scsi_immed_command(ctlr, slave, unit, cdb, buf, len, rd)
int ctlr, slave, unit, rd;
struct scsi_fmt_cdb *cdb;
u_char *buf;
u_int len;
{
register struct scsi_softc *hs = &scsi_softc[ctlr];
cdb->cdb[1] |= unit << 5;
return (scsiicmd(hs, slave, cdb->cdb, cdb->len, buf, len,
rd != 0? DATA_IN_PHASE : DATA_OUT_PHASE));
}
/*
* The following routines are test-and-transfer i/o versions of read/write
* for things like reading disk labels and writing core dumps. The
* routine scsigo should be used for normal data transfers, NOT these
* routines.
*/
int
scsi_tt_read(ctlr, slave, unit, buf, len, blk, bshift)
int ctlr, slave, unit;
u_char *buf;
u_int len;
daddr_t blk;
int bshift;
{
register struct scsi_softc *hs = &scsi_softc[ctlr];
struct scsi_cdb10 cdb;
int stat;
int old_wait = scsi_data_wait;
scsi_data_wait = 300000;
bzero(&cdb, sizeof(cdb));
cdb.cmd = CMD_READ_EXT;
cdb.lun = unit;
blk >>= bshift;
cdb.lbah = blk >> 24;
cdb.lbahm = blk >> 16;
cdb.lbalm = blk >> 8;
cdb.lbal = blk;
cdb.lenh = len >> (8 + DEV_BSHIFT + bshift);
cdb.lenl = len >> (DEV_BSHIFT + bshift);
stat = scsiicmd(hs, slave, &cdb, sizeof(cdb), buf, len, DATA_IN_PHASE);
scsi_data_wait = old_wait;
return (stat);
}
int
scsi_tt_write(ctlr, slave, unit, buf, len, blk, bshift)
int ctlr, slave, unit;
u_char *buf;
u_int len;
daddr_t blk;
int bshift;
{
register struct scsi_softc *hs = &scsi_softc[ctlr];
struct scsi_cdb10 cdb;
int stat;
int old_wait = scsi_data_wait;
scsi_data_wait = 300000;
bzero(&cdb, sizeof(cdb));
cdb.cmd = CMD_WRITE_EXT;
cdb.lun = unit;
blk >>= bshift;
cdb.lbah = blk >> 24;
cdb.lbahm = blk >> 16;
cdb.lbalm = blk >> 8;
cdb.lbal = blk;
cdb.lenh = len >> (8 + DEV_BSHIFT + bshift);
cdb.lenl = len >> (DEV_BSHIFT + bshift);
stat = scsiicmd(hs, slave, &cdb, sizeof(cdb), buf, len, DATA_OUT_PHASE);
scsi_data_wait = old_wait;
return (stat);
}
int
scsireq(dq)
register struct devqueue *dq;
{
register struct devqueue *hq;
hq = &scsi_softc[dq->dq_ctlr].sc_sq;
insque(dq, hq->dq_back);
if (dq->dq_back == hq)
return(1);
return(0);
}
int
scsiustart(unit)
int unit;
{
register struct scsi_softc *hs = &scsi_softc[unit];
hs->sc_dq.dq_ctlr = DMA0 | DMA1;
hs->sc_flags |= SCSI_HAVEDMA;
if (dmareq(&hs->sc_dq))
return(1);
return(0);
}
void
scsistart(unit)
int unit;
{
register struct devqueue *dq;
dq = scsi_softc[unit].sc_sq.dq_forw;
(dq->dq_driver->d_go)(dq->dq_unit);
}
int
scsigo(ctlr, slave, unit, bp, cdb, pad)
int ctlr, slave, unit;
struct buf *bp;
struct scsi_fmt_cdb *cdb;
int pad;
{
register struct scsi_softc *hs = &scsi_softc[ctlr];
volatile register struct scsidevice *hd =
(struct scsidevice *)hs->sc_hc->hp_addr;
int i, dmaflags;
u_char phase, ints, cmd;
cdb->cdb[1] |= unit << 5;
/* select the SCSI bus (it's an error if bus isn't free) */
if (issue_select(hd, slave, hs->sc_scsi_addr) || wait_for_select(hd)) {
if (hs->sc_flags & SCSI_HAVEDMA) {
hs->sc_flags &=~ SCSI_HAVEDMA;
dmafree(&hs->sc_dq);
}
return (1);
}
/*
* Wait for a phase change (or error) then let the device
* sequence us through command phase (we may have to take
* a msg in/out before doing the command). If the disk has
* to do a seek, it may be a long time until we get a change
* to data phase so, in the absense of an explicit phase
* change, we assume data phase will be coming up and tell
* the SPC to start a transfer whenever it does. We'll get
* a service required interrupt later if this assumption is
* wrong. Otherwise we'll get a service required int when
* the transfer changes to status phase.
*/
phase = CMD_PHASE;
while (1) {
register int wait = scsi_cmd_wait;
switch (phase) {
case CMD_PHASE:
if (ixfer_start(hd, cdb->len, phase, wait))
if (ixfer_out(hd, cdb->len, cdb->cdb))
goto abort;
break;
case MESG_IN_PHASE:
if (ixfer_start(hd, sizeof(hs->sc_msg), phase, wait)||
!(hd->scsi_ssts & SSTS_DREG_EMPTY)) {
ixfer_in(hd, sizeof(hs->sc_msg), hs->sc_msg);
hd->scsi_scmd = SCMD_RST_ACK;
}
phase = BUS_FREE_PHASE;
break;
case DATA_IN_PHASE:
case DATA_OUT_PHASE:
goto out;
default:
printf("scsi%d: unexpected phase %d in go from %d\n",
hs->sc_hc->hp_unit, phase, slave);
goto abort;
}
while ((ints = hd->scsi_ints) == 0) {
if (--wait < 0) {
HIST(sgo_wait, wait)
goto abort;
}
DELAY(1);
}
HIST(sgo_wait, wait)
hd->scsi_ints = ints;
if (ints & INTS_SRV_REQ)
phase = hd->scsi_psns & PHASE;
else if (ints & INTS_CMD_DONE)
goto out;
else {
scsierror(hs, hd, ints);
goto abort;
}
}
out:
/*
* Reset the card dma logic, setup the dma channel then
* get the dio part of the card set for a dma xfer.
*/
hd->scsi_hconf = 0;
cmd = CSR_IE;
dmaflags = DMAGO_NOINT;
if (scsi_pridma)
dmaflags |= DMAGO_PRI;
if (bp->b_flags & B_READ)
dmaflags |= DMAGO_READ;
if ((hs->sc_flags & SCSI_DMA32) &&
((int)bp->b_un.b_addr & 3) == 0 && (bp->b_bcount & 3) == 0) {
cmd |= CSR_DMA32;
dmaflags |= DMAGO_LWORD;
} else
dmaflags |= DMAGO_WORD;
dmago(hs->sc_dq.dq_ctlr, bp->b_un.b_addr, bp->b_bcount, dmaflags);
if (bp->b_flags & B_READ) {
cmd |= CSR_DMAIN;
phase = DATA_IN_PHASE;
} else
phase = DATA_OUT_PHASE;
/*
* DMA enable bits must be set after size and direction bits.
*/
hd->scsi_csr = cmd;
hd->scsi_csr |= (CSR_DE0 << hs->sc_dq.dq_ctlr);
/*
* Setup the SPC for the transfer. We don't want to take
* first a command complete then a service required interrupt
* at the end of the transfer so we try to disable the cmd
* complete by setting the transfer counter to more bytes
* than we expect. (XXX - This strategy may have to be
* modified to deal with devices that return variable length
* blocks, e.g., some tape drives.)
*/
cmd = SCMD_XFR;
i = (unsigned)bp->b_bcount;
if (pad) {
cmd |= SCMD_PAD;
/*
* XXX - If we don't do this, the last 2 or 4 bytes
* (depending on word/lword DMA) of a read get trashed.
* It looks like it is necessary for the DMA to complete
* before the SPC goes into "pad mode"??? Note: if we
* also do this on a write, the request never completes.
*/
if (bp->b_flags & B_READ)
i += 2;
#ifdef DEBUG
hs->sc_flags |= SCSI_PAD;
if (i & 1)
printf("scsi%d: odd byte count: %d bytes @ %d\n",
ctlr, i, bp->b_cylin);
#endif
} else
i += 4;
hd->scsi_tch = i >> 16;
hd->scsi_tcm = i >> 8;
hd->scsi_tcl = i;
hd->scsi_pctl = phase;
hd->scsi_tmod = 0;
hd->scsi_scmd = cmd;
hs->sc_flags |= SCSI_IO;
return (0);
abort:
scsiabort(hs, hd, "go");
hs->sc_flags &=~ SCSI_HAVEDMA;
dmafree(&hs->sc_dq);
return (1);
}
void
scsidone(unit)
register int unit;
{
volatile register struct scsidevice *hd =
(struct scsidevice *)scsi_softc[unit].sc_hc->hp_addr;
#ifdef DEBUG
if (scsi_debug)
printf("scsi%d: done called!\n", unit);
#endif
/* dma operation is done -- turn off card dma */
hd->scsi_csr &=~ (CSR_DE1|CSR_DE0);
}
int
scsiintr(unit)
register int unit;
{
register struct scsi_softc *hs = &scsi_softc[unit];
volatile register struct scsidevice *hd =
(struct scsidevice *)hs->sc_hc->hp_addr;
register u_char ints;
register struct devqueue *dq;
if ((hd->scsi_csr & (CSR_IE|CSR_IR)) != (CSR_IE|CSR_IR))
return (0);
ints = hd->scsi_ints;
if ((ints & INTS_SRV_REQ) && (hs->sc_flags & SCSI_IO)) {
/*
* this should be the normal i/o completion case.
* get the status & cmd complete msg then let the
* device driver look at what happened.
*/
#ifdef DEBUG
int len = (hd->scsi_tch << 16) | (hd->scsi_tcm << 8) |
hd->scsi_tcl;
if (!(hs->sc_flags & SCSI_PAD))
len -= 4;
hs->sc_flags &=~ SCSI_PAD;
#endif
dq = hs->sc_sq.dq_forw;
finishxfer(hs, hd, dq->dq_slave);
hs->sc_flags &=~ (SCSI_IO|SCSI_HAVEDMA);
dmafree(&hs->sc_dq);
(dq->dq_driver->d_intr)(dq->dq_unit, hs->sc_stat[0]);
} else {
/* Something unexpected happened -- deal with it. */
hd->scsi_ints = ints;
hd->scsi_csr = 0;
scsierror(hs, hd, ints);
scsiabort(hs, hd, "intr");
if (hs->sc_flags & SCSI_IO) {
hs->sc_flags &=~ (SCSI_IO|SCSI_HAVEDMA);
dmafree(&hs->sc_dq);
dq = hs->sc_sq.dq_forw;
(dq->dq_driver->d_intr)(dq->dq_unit, -1);
}
}
return(1);
}
void
scsifree(dq)
register struct devqueue *dq;
{
register struct devqueue *hq;
hq = &scsi_softc[dq->dq_ctlr].sc_sq;
remque(dq);
if ((dq = hq->dq_forw) != hq)
(dq->dq_driver->d_start)(dq->dq_unit);
}
/*
* (XXX) The following routine is needed for the SCSI tape driver
* to read odd-size records.
*/
#include "st.h"
#if NST > 0
int
scsi_tt_oddio(ctlr, slave, unit, buf, len, b_flags, freedma)
int ctlr, slave, unit, b_flags, freedma;
u_char *buf;
u_int len;
{
register struct scsi_softc *hs = &scsi_softc[ctlr];
struct scsi_cdb6 cdb;
u_char iphase;
int stat;
#ifdef DEBUG
if (freedma && (hs->sc_flags & SCSI_HAVEDMA) == 0 ||
!freedma && (hs->sc_flags & SCSI_HAVEDMA))
printf("oddio: freedma (%d) inconsistency (flags=%x)\n",
freedma, hs->sc_flags);
#endif
/*
* First free any DMA channel that was allocated.
* We can't use DMA to do this transfer.
*/
if (freedma) {
hs->sc_flags &=~ SCSI_HAVEDMA;
dmafree(hs->sc_dq);
}
/*
* Initialize command block
*/
bzero(&cdb, sizeof(cdb));
cdb.lun = unit;
cdb.lbam = (len >> 16) & 0xff;
cdb.lbal = (len >> 8) & 0xff;
cdb.len = len & 0xff;
if (buf == 0) {
cdb.cmd = CMD_SPACE;
cdb.lun |= 0x00;
len = 0;
iphase = MESG_IN_PHASE;
} else if (b_flags & B_READ) {
cdb.cmd = CMD_READ;
iphase = DATA_IN_PHASE;
} else {
cdb.cmd = CMD_WRITE;
iphase = DATA_OUT_PHASE;
}
/*
* Perform command (with very long delays)
*/
scsi_delay(30000000);
stat = scsiicmd(hs, slave, &cdb, sizeof(cdb), buf, len, iphase);
scsi_delay(0);
return (stat);
}
#endif
#endif