NetBSD/sys/kern/kern_sleepq.c

521 lines
12 KiB
C

/* $NetBSD: kern_sleepq.c,v 1.7 2007/02/27 15:07:29 yamt Exp $ */
/*-
* Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Sleep queue implementation, used by turnstiles and general sleep/wakeup
* interfaces.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.7 2007/02/27 15:07:29 yamt Exp $");
#include "opt_multiprocessor.h"
#include "opt_lockdebug.h"
#include "opt_ktrace.h"
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/kernel.h>
#include <sys/pool.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/systm.h>
#include <sys/sleepq.h>
#ifdef KTRACE
#include <sys/ktrace.h>
#endif
#include <uvm/uvm_extern.h>
int sleepq_sigtoerror(struct lwp *, int);
void updatepri(struct lwp *);
/* General purpose sleep table, used by ltsleep() and condition variables. */
sleeptab_t sleeptab;
/*
* sleeptab_init:
*
* Initialize a sleep table.
*/
void
sleeptab_init(sleeptab_t *st)
{
sleepq_t *sq;
int i;
for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
#if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
sq = &st->st_queues[i].st_queue;
mutex_init(&st->st_queues[i].st_mutex, MUTEX_SPIN, IPL_SCHED);
sleepq_init(sq, &st->st_queues[i].st_mutex);
#else
sq = &st->st_queues[i];
sleepq_init(sq, &sched_mutex);
#endif
}
}
/*
* sleepq_init:
*
* Prepare a sleep queue for use.
*/
void
sleepq_init(sleepq_t *sq, kmutex_t *mtx)
{
sq->sq_waiters = 0;
sq->sq_mutex = mtx;
TAILQ_INIT(&sq->sq_queue);
}
/*
* sleepq_remove:
*
* Remove an LWP from a sleep queue and wake it up. Return non-zero if
* the LWP is swapped out; if so the caller needs to awaken the swapper
* to bring the LWP into memory.
*/
int
sleepq_remove(sleepq_t *sq, struct lwp *l)
{
struct cpu_info *ci;
KASSERT(lwp_locked(l, sq->sq_mutex));
KASSERT(sq->sq_waiters > 0);
sq->sq_waiters--;
TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
#ifdef DIAGNOSTIC
if (sq->sq_waiters == 0)
KASSERT(TAILQ_FIRST(&sq->sq_queue) == NULL);
else
KASSERT(TAILQ_FIRST(&sq->sq_queue) != NULL);
#endif
l->l_syncobj = &sched_syncobj;
l->l_wchan = NULL;
l->l_sleepq = NULL;
l->l_flag &= ~LW_SINTR;
/*
* If not sleeping, the LWP must have been suspended. Let whoever
* holds it stopped set it running again.
*/
if (l->l_stat != LSSLEEP) {
KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
lwp_setlock(l, &sched_mutex);
return 0;
}
sched_lock(1);
lwp_setlock(l, &sched_mutex);
/*
* If the LWP is still on the CPU, mark it as LSONPROC. It may be
* about to call mi_switch(), in which case it will yield.
*
* XXXSMP Will need to change for preemption.
*/
ci = l->l_cpu;
#ifdef MULTIPROCESSOR
if (ci->ci_curlwp == l) {
#else
if (l == curlwp) {
#endif
l->l_stat = LSONPROC;
l->l_slptime = 0;
sched_unlock(1);
return 0;
}
/*
* Set it running. We'll try to get the last CPU that ran
* this LWP to pick it up again.
*/
if (l->l_slptime > 1)
updatepri(l);
l->l_stat = LSRUN;
l->l_slptime = 0;
if ((l->l_flag & LW_INMEM) != 0) {
setrunqueue(l);
if (lwp_eprio(l) < ci->ci_schedstate.spc_curpriority)
cpu_need_resched(ci);
sched_unlock(1);
return 0;
}
sched_unlock(1);
return 1;
}
/*
* sleepq_insert:
*
* Insert an LWP into the sleep queue, optionally sorting by priority.
*/
inline void
sleepq_insert(sleepq_t *sq, struct lwp *l, syncobj_t *sobj)
{
struct lwp *l2;
const int pri = lwp_eprio(l);
if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
TAILQ_FOREACH(l2, &sq->sq_queue, l_sleepchain) {
if (lwp_eprio(l2) > pri) {
TAILQ_INSERT_BEFORE(l2, l, l_sleepchain);
return;
}
}
}
TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_sleepchain);
}
void
sleepq_enqueue(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
syncobj_t *sobj)
{
struct lwp *l = curlwp;
KASSERT(mutex_owned(sq->sq_mutex));
KASSERT(l->l_stat == LSONPROC);
KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
l->l_syncobj = sobj;
l->l_wchan = wchan;
l->l_sleepq = sq;
l->l_wmesg = wmesg;
l->l_slptime = 0;
l->l_priority = pri;
l->l_stat = LSSLEEP;
l->l_sleeperr = 0;
l->l_nvcsw++;
sq->sq_waiters++;
sleepq_insert(sq, l, sobj);
}
void
sleepq_switch(int timo, int catch)
{
struct lwp *l = curlwp;
#ifdef KTRACE
if (KTRPOINT(l->l_proc, KTR_CSW))
ktrcsw(l, 1, 0);
#endif
/*
* If sleeping interruptably, check for pending signals, exits or
* core dump events.
*/
if (catch) {
l->l_flag |= LW_SINTR;
if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0)) {
l->l_sleeperr = EPASSTHROUGH;
/* lwp_unsleep() will release the lock */
lwp_unsleep(l);
return;
}
if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
l->l_flag &= ~LW_CANCELLED;
l->l_sleeperr = EINTR;
/* lwp_unsleep() will release the lock */
lwp_unsleep(l);
return;
}
}
if (timo)
callout_reset(&l->l_tsleep_ch, timo, sleepq_timeout, l);
mi_switch(l, NULL);
l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
/*
* When we reach this point, the LWP and sleep queue are unlocked.
*/
KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
}
/*
* sleepq_block:
*
* Enter an LWP into the sleep queue and prepare for sleep. The sleep
* queue must already be locked, and any interlock (such as the kernel
* lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
*
* sleepq_block() may return early under exceptional conditions, for
* example if the LWP's containing process is exiting.
*/
void
sleepq_block(sleepq_t *sq, pri_t pri, wchan_t wchan, const char *wmesg,
int timo, int catch, syncobj_t *sobj)
{
sleepq_enqueue(sq, pri, wchan, wmesg, sobj);
sleepq_switch(timo, catch);
}
/*
* sleepq_unblock:
*
* After any intermediate step such as updating statistics, re-acquire
* the kernel lock and record the switch for ktrace. Note that we are
* no longer on the sleep queue at this point.
*
* This is split out from sleepq_block() in expectation that at some
* point in the future, LWPs may awake on different kernel stacks than
* those they went asleep on.
*/
int
sleepq_unblock(int timo, int catch)
{
int error, expired, sig;
struct proc *p;
struct lwp *l;
l = curlwp;
error = l->l_sleeperr;
if (timo) {
/*
* Even if the callout appears to have fired, we need to
* stop it in order to synchronise with other CPUs.
*/
expired = callout_expired(&l->l_tsleep_ch);
callout_stop(&l->l_tsleep_ch);
if (expired && error == 0)
error = EWOULDBLOCK;
}
if (catch && (error == 0 || error == EPASSTHROUGH)) {
l->l_sleeperr = 0;
p = l->l_proc;
if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
error = EINTR;
else if ((l->l_flag & LW_PENDSIG) != 0) {
KERNEL_LOCK(1, l); /* XXXSMP pool_put() */
mutex_enter(&p->p_smutex);
if ((sig = issignal(l)) != 0)
error = sleepq_sigtoerror(l, sig);
mutex_exit(&p->p_smutex);
KERNEL_UNLOCK_LAST(l);
}
if (error == EPASSTHROUGH) {
/* Raced */
error = EINTR;
}
}
#ifdef KTRACE
if (KTRPOINT(l->l_proc, KTR_CSW))
ktrcsw(l, 0, 0);
#endif
KERNEL_LOCK(l->l_biglocks, l);
return error;
}
/*
* sleepq_wake:
*
* Wake zero or more LWPs blocked on a single wait channel.
*/
void
sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected)
{
struct lwp *l, *next;
int swapin = 0;
KASSERT(mutex_owned(sq->sq_mutex));
for (l = TAILQ_FIRST(&sq->sq_queue); l != NULL; l = next) {
KASSERT(l->l_sleepq == sq);
next = TAILQ_NEXT(l, l_sleepchain);
if (l->l_wchan != wchan)
continue;
swapin |= sleepq_remove(sq, l);
if (--expected == 0)
break;
}
sleepq_unlock(sq);
/*
* If there are newly awakend threads that need to be swapped in,
* then kick the swapper into action.
*/
if (swapin)
uvm_kick_scheduler();
}
/*
* sleepq_unsleep:
*
* Remove an LWP from its sleep queue and set it runnable again.
* sleepq_unsleep() is called with the LWP's mutex held, and will
* always release it.
*/
void
sleepq_unsleep(struct lwp *l)
{
sleepq_t *sq = l->l_sleepq;
int swapin;
KASSERT(lwp_locked(l, NULL));
KASSERT(l->l_wchan != NULL);
KASSERT(l->l_mutex == sq->sq_mutex);
swapin = sleepq_remove(sq, l);
sleepq_unlock(sq);
if (swapin)
uvm_kick_scheduler();
}
/*
* sleepq_timeout:
*
* Entered via the callout(9) subsystem to time out an LWP that is on a
* sleep queue.
*/
void
sleepq_timeout(void *arg)
{
struct lwp *l = arg;
/*
* Lock the LWP. Assuming it's still on the sleep queue, its
* current mutex will also be the sleep queue mutex.
*/
lwp_lock(l);
if (l->l_wchan == NULL) {
/* Somebody beat us to it. */
lwp_unlock(l);
return;
}
lwp_unsleep(l);
}
/*
* sleepq_sigtoerror:
*
* Given a signal number, interpret and return an error code.
*/
int
sleepq_sigtoerror(struct lwp *l, int sig)
{
struct proc *p = l->l_proc;
int error;
KASSERT(mutex_owned(&p->p_smutex));
/*
* If this sleep was canceled, don't let the syscall restart.
*/
if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
error = EINTR;
else
error = ERESTART;
return error;
}
/*
* sleepq_abort:
*
* After a panic or during autoconfiguration, lower the interrupt
* priority level to give pending interrupts a chance to run, and
* then return. Called if sleepq_dontsleep() returns non-zero, and
* always returns zero.
*/
int
sleepq_abort(kmutex_t *mtx, int unlock)
{
extern int safepri;
int s;
s = splhigh();
splx(safepri);
splx(s);
if (mtx != NULL && unlock != 0)
mutex_exit(mtx);
return 0;
}
/*
* sleepq_changepri:
*
* Adjust the priority of an LWP residing on a sleepq. This method
* will only alter the user priority; the effective priority is
* assumed to have been fixed at the time of insertion into the queue.
*/
void
sleepq_changepri(struct lwp *l, pri_t pri)
{
KASSERT(lwp_locked(l, l->l_sleepq->sq_mutex));
l->l_usrpri = pri;
}
void
sleepq_lendpri(struct lwp *l, pri_t pri)
{
sleepq_t *sq = l->l_sleepq;
pri_t opri;
KASSERT(lwp_locked(l, sq->sq_mutex));
opri = lwp_eprio(l);
l->l_inheritedprio = pri;
if (lwp_eprio(l) != opri &&
(l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
TAILQ_REMOVE(&sq->sq_queue, l, l_sleepchain);
sleepq_insert(sq, l, l->l_syncobj);
}
}