NetBSD/sys/arch/alpha/eisa/eisa_machdep.c
lukem 06de426449 SIMPLEQ rototill:
- implement SIMPLEQ_REMOVE(head, elm, type, field).  whilst it's O(n),
  this mirrors the functionality of SLIST_REMOVE() (the other
  singly-linked list type) and FreeBSD's STAILQ_REMOVE()
- remove the unnecessary elm arg from SIMPLEQ_REMOVE_HEAD().
  this mirrors the functionality of SLIST_REMOVE_HEAD() (the other
  singly-linked list type) and FreeBSD's STAILQ_REMOVE_HEAD()
- remove notes about SIMPLEQ not supporting arbitrary element removal
- use SIMPLEQ_FOREACH() instead of home-grown for loops
- use SIMPLEQ_EMPTY() appropriately
- use SIMPLEQ_*() instead of accessing sqh_first,sqh_last,sqe_next directly
- reorder manual page; be consistent about how the types are listed
- other minor cleanups
2002-06-01 23:50:52 +00:00

647 lines
16 KiB
C

/* $NetBSD: eisa_machdep.c,v 1.5 2002/06/01 23:50:53 lukem Exp $ */
/*-
* Copyright (c) 2000 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: eisa_machdep.c,v 1.5 2002/06/01 23:50:53 lukem Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <machine/intr.h>
#include <machine/rpb.h>
#include <dev/eisa/eisareg.h>
#include <dev/eisa/eisavar.h>
#define EISA_SLOT_HEADER_SIZE 31
#define EISA_SLOT_INFO_OFFSET 20
#define EISA_FUNC_INFO_OFFSET 34
#define EISA_CONFIG_BLOCK_SIZE 320
#define ECUF_TYPE_STRING 0x01
#define ECUF_MEM_ENTRY 0x02
#define ECUF_IRQ_ENTRY 0x04
#define ECUF_DMA_ENTRY 0x08
#define ECUF_IO_ENTRY 0x10
#define ECUF_INIT_ENTRY 0x20
#define ECUF_DISABLED 0x80
#define ECUF_SELECTIONS_SIZE 26
#define ECUF_TYPE_STRING_SIZE 80
#define ECUF_MEM_ENTRY_SIZE 7
#define ECUF_IRQ_ENTRY_SIZE 2
#define ECUF_DMA_ENTRY_SIZE 2
#define ECUF_IO_ENTRY_SIZE 3
#define ECUF_INIT_ENTRY_SIZE 60
#define ECUF_MEM_ENTRY_CNT 9
#define ECUF_IRQ_ENTRY_CNT 7
#define ECUF_DMA_ENTRY_CNT 4
#define ECUF_IO_ENTRY_CNT 20
/*
* EISA configuration space, as set up by the ECU, may be sparse.
*/
bus_size_t eisa_config_stride;
paddr_t eisa_config_addr; /* defaults to 0 */
paddr_t eisa_config_header_addr;
struct ecu_mem {
SIMPLEQ_ENTRY(ecu_mem) ecum_list;
struct eisa_cfg_mem ecum_mem;
};
struct ecu_irq {
SIMPLEQ_ENTRY(ecu_irq) ecui_list;
struct eisa_cfg_irq ecui_irq;
};
struct ecu_dma {
SIMPLEQ_ENTRY(ecu_dma) ecud_list;
struct eisa_cfg_dma ecud_dma;
};
struct ecu_io {
SIMPLEQ_ENTRY(ecu_io) ecuio_list;
struct eisa_cfg_io ecuio_io;
};
struct ecu_func {
SIMPLEQ_ENTRY(ecu_func) ecuf_list;
int ecuf_funcno;
u_int32_t ecuf_id;
u_int16_t ecuf_slot_info;
u_int16_t ecuf_cfg_ext;
u_int8_t ecuf_selections[ECUF_SELECTIONS_SIZE];
u_int8_t ecuf_func_info;
u_int8_t ecuf_type_string[ECUF_TYPE_STRING_SIZE];
u_int8_t ecuf_init[ECUF_INIT_ENTRY_SIZE];
SIMPLEQ_HEAD(, ecu_mem) ecuf_mem;
SIMPLEQ_HEAD(, ecu_irq) ecuf_irq;
SIMPLEQ_HEAD(, ecu_dma) ecuf_dma;
SIMPLEQ_HEAD(, ecu_io) ecuf_io;
};
struct ecu_data {
SIMPLEQ_ENTRY(ecu_data) ecud_list;
int ecud_slot;
u_int8_t ecud_eisaid[EISA_IDSTRINGLEN];
u_int32_t ecud_offset;
/* General slot info. */
u_int8_t ecud_slot_info;
u_int16_t ecud_ecu_major_rev;
u_int16_t ecud_ecu_minor_rev;
u_int16_t ecud_cksum;
u_int16_t ecud_ndevfuncs;
u_int8_t ecud_funcinfo;
u_int32_t ecud_comp_id;
/* The functions */
SIMPLEQ_HEAD(, ecu_func) ecud_funcs;
};
SIMPLEQ_HEAD(, ecu_data) ecu_data_list =
SIMPLEQ_HEAD_INITIALIZER(ecu_data_list);
static void
ecuf_init(struct ecu_func *ecuf)
{
memset(ecuf, 0, sizeof(*ecuf));
SIMPLEQ_INIT(&ecuf->ecuf_mem);
SIMPLEQ_INIT(&ecuf->ecuf_irq);
SIMPLEQ_INIT(&ecuf->ecuf_dma);
SIMPLEQ_INIT(&ecuf->ecuf_io);
}
static void
eisa_parse_mem(struct ecu_func *ecuf, u_int8_t *dp)
{
struct ecu_mem *ecum;
int i;
for (i = 0; i < ECUF_MEM_ENTRY_CNT; i++) {
ecum = malloc(sizeof(*ecum), M_DEVBUF, M_WAITOK);
ecum->ecum_mem.ecm_isram = dp[0] & 0x1;
ecum->ecum_mem.ecm_unitsize = dp[1] & 0x3;
ecum->ecum_mem.ecm_decode = (dp[1] >> 2) & 0x3;
ecum->ecum_mem.ecm_addr =
(dp[2] | (dp[3] << 8) | (dp[4] << 16)) << 8;
ecum->ecum_mem.ecm_size = (dp[5] | (dp[6] << 8)) << 10;
if (ecum->ecum_mem.ecm_size == 0)
ecum->ecum_mem.ecm_size = (1 << 26);
SIMPLEQ_INSERT_TAIL(&ecuf->ecuf_mem, ecum, ecum_list);
#if 0
printf("MEM 0x%lx 0x%lx %d %d %d\n",
ecum->ecum_mem.ecm_addr, ecum->ecum_mem.ecm_size,
ecum->ecum_mem.ecm_isram, ecum->ecum_mem.ecm_unitsize,
ecum->ecum_mem.ecm_decode);
#endif
if ((dp[0] & 0x80) == 0)
break;
dp += ECUF_MEM_ENTRY_SIZE;
}
}
static void
eisa_parse_irq(struct ecu_func *ecuf, u_int8_t *dp)
{
struct ecu_irq *ecui;
int i;
for (i = 0; i < ECUF_IRQ_ENTRY_CNT; i++) {
ecui = malloc(sizeof(*ecui), M_DEVBUF, M_WAITOK);
ecui->ecui_irq.eci_irq = dp[0] & 0xf;
ecui->ecui_irq.eci_ist = (dp[0] & 0x20) ? IST_LEVEL : IST_EDGE;
ecui->ecui_irq.eci_shared = (dp[0] & 0x40) ? 1 : 0;
SIMPLEQ_INSERT_TAIL(&ecuf->ecuf_irq, ecui, ecui_list);
#if 0
printf("IRQ %d %s%s\n", ecui->eci_irq.ecui_irq,
ecui->eci_irq.ecui_ist == IST_LEVEL ? "level" : "edge",
ecui->eci_irq.ecui_shared ? " shared" : "");
#endif
if ((dp[0] & 0x80) == 0)
break;
dp += ECUF_IRQ_ENTRY_SIZE;
}
}
static void
eisa_parse_dma(struct ecu_func *ecuf, u_int8_t *dp)
{
struct ecu_dma *ecud;
int i;
for (i = 0; i < ECUF_DMA_ENTRY_CNT; i++) {
ecud = malloc(sizeof(*ecud), M_DEVBUF, M_WAITOK);
ecud->ecud_dma.ecd_drq = dp[0] & 0x7;
ecud->ecud_dma.ecd_shared = dp[0] & 0x40;
ecud->ecud_dma.ecd_size = (dp[1] >> 2) & 0x3;
ecud->ecud_dma.ecd_timing = (dp[1] >> 4) & 0x3;
SIMPLEQ_INSERT_TAIL(&ecuf->ecuf_dma, ecud, ecud_list);
#if 0
printf("DRQ %d%s %d %d\n", ecud->ecud_dma.ecd_drq,
ecud->ecud_dma.ecd_shared ? " shared" : "",
ecud->ecud_dma.ecd_size, ecud->ecud_dma.ecd_timing);
#endif
if ((dp[0] & 0x80) == 0)
break;
dp += ECUF_DMA_ENTRY_SIZE;
}
}
static void
eisa_parse_io(struct ecu_func *ecuf, u_int8_t *dp)
{
struct ecu_io *ecuio;
int i;
for (i = 0; i < ECUF_IO_ENTRY_CNT; i++) {
ecuio = malloc(sizeof(*ecuio), M_DEVBUF, M_WAITOK);
ecuio->ecuio_io.ecio_addr = dp[1] | (dp[2] << 8);
ecuio->ecuio_io.ecio_size = (dp[0] & 0x1f) + 1;
ecuio->ecuio_io.ecio_shared = (dp[0] & 0x40) ? 1 : 0;
#if 0
printf("IO 0x%lx 0x%lx%s\n", ecuio->ecuio_io.ecio_addr,
ecuio->ecuio_io.ecio_size,
ecuio->ecuio_io.ecio_shared ? " shared" : "");
#endif
if ((dp[0] & 0x80) == 0)
break;
dp += ECUF_IO_ENTRY_SIZE;
}
}
static void
eisa_read_config_bytes(paddr_t addr, void *buf, size_t count)
{
const u_int8_t *src = (const u_int8_t *)ALPHA_PHYS_TO_K0SEG(addr);
u_int8_t *dst = buf;
for (; count != 0; count--) {
*dst++ = *src;
src += eisa_config_stride;
}
}
static void
eisa_read_config_word(paddr_t addr, u_int32_t *valp)
{
const u_int8_t *src = (const u_int8_t *)ALPHA_PHYS_TO_K0SEG(addr);
u_int32_t val = 0;
int i;
for (i = 0; i < sizeof(val); i++) {
val |= (u_int)(*src << (i * 8));
src += eisa_config_stride;
}
*valp = val;
}
static size_t
eisa_uncompress(void *cbufp, void *ucbufp, size_t count)
{
const u_int8_t *cbuf = cbufp;
u_int8_t *ucbuf = ucbufp;
u_int zeros = 0;
while (count--) {
if (zeros) {
zeros--;
*ucbuf++ = '\0';
} else if (*cbuf == '\0') {
*ucbuf++ = *cbuf++;
zeros = *cbuf++ - 1;
} else
*ucbuf++ = *cbuf++;
}
return ((size_t)cbuf - (size_t)cbufp);
}
void
eisa_init()
{
struct ecu_data *ecud;
paddr_t cfgaddr;
u_int32_t offset;
u_int8_t eisaid[EISA_IDSTRINGLEN];
u_int8_t *cdata, *data;
u_int8_t *cdp, *dp;
struct ecu_func *ecuf;
int i, func;
/*
* Locate EISA configuration space.
*/
if (hwrpb->rpb_condat_off == 0UL ||
(hwrpb->rpb_condat_off >> 63) != 0) {
printf(": WARNING: no EISA configuration space");
return;
}
if (eisa_config_header_addr) {
printf("\n");
panic("eisa_init: EISA config space already initialized");
}
eisa_config_header_addr = hwrpb->rpb_condat_off;
#if 0
printf("\nEISA config header at 0x%lx\n", eisa_config_header_addr);
#endif
if (eisa_config_stride == 0)
eisa_config_stride = 1;
/*
* Read the slot headers, and allocate config structures for
* valid slots.
*/
for (cfgaddr = eisa_config_header_addr, i = 0; i < 16 /* XXX */; i++) {
eisa_read_config_bytes(cfgaddr, eisaid, sizeof(eisaid));
eisaid[EISA_IDSTRINGLEN - 1] = '\0'; /* sanity */
cfgaddr += sizeof(eisaid) * eisa_config_stride;
eisa_read_config_word(cfgaddr, &offset);
cfgaddr += sizeof(offset) * eisa_config_stride;
if (offset != 0) {
#if 0
printf("SLOT %d: offset 0x%08x eisaid %s\n",
i, offset, eisaid);
#endif
ecud = malloc(sizeof(*ecud), M_DEVBUF, M_WAITOK);
memset(ecud, 0, sizeof(*ecud));
SIMPLEQ_INIT(&ecud->ecud_funcs);
ecud->ecud_slot = i;
memcpy(ecud->ecud_eisaid, eisaid, sizeof(eisaid));
ecud->ecud_offset = offset;
SIMPLEQ_INSERT_TAIL(&ecu_data_list, ecud, ecud_list);
}
}
/*
* Now traverse the valid slots and read the info.
*/
cdata = malloc(512, M_TEMP, M_WAITOK);
data = malloc(512, M_TEMP, M_WAITOK);
SIMPLEQ_FOREACH(ecud, &ecu_data_list, ecud_list) {
cfgaddr = eisa_config_addr + ecud->ecud_offset;
eisa_read_config_bytes(cfgaddr, &cdata[0], 1);
cfgaddr += eisa_config_stride;
for (i = 1; ; cfgaddr += eisa_config_stride, i++) {
eisa_read_config_bytes(cfgaddr, &cdata[i], 1);
if (cdata[i - 1] == 0 && cdata[i] == 0)
break;
}
i++; /* index -> length */
#if 0
printf("SLOT %d compressed data length %d:",
ecud->ecud_slot, i);
{
int j;
for (j = 0; j < i; j++) {
if ((j % 16) == 0)
printf("\n");
printf("0x%02x ", cdata[j]);
}
printf("\n");
}
#endif
cdp = cdata;
dp = data;
/* Uncompress the slot header. */
cdp += eisa_uncompress(cdp, dp, EISA_SLOT_HEADER_SIZE);
#if 0
printf("SLOT %d uncompressed header data:",
ecud->ecud_slot);
{
int j;
for (j = 0; j < EISA_SLOT_HEADER_SIZE; j++) {
if ((j % 16) == 0)
printf("\n");
printf("0x%02x ", dp[j]);
}
printf("\n");
}
#endif
dp = &data[EISA_SLOT_INFO_OFFSET];
ecud->ecud_slot_info = *dp++;
ecud->ecud_ecu_major_rev = *dp++;
ecud->ecud_ecu_minor_rev = *dp++;
memcpy(&ecud->ecud_cksum, dp, sizeof(ecud->ecud_cksum));
dp += sizeof(ecud->ecud_cksum);
ecud->ecud_ndevfuncs = *dp++;
ecud->ecud_funcinfo = *dp++;
memcpy(&ecud->ecud_comp_id, dp, sizeof(ecud->ecud_comp_id));
dp += sizeof(ecud->ecud_comp_id);
#if 0
printf("SLOT %d: ndevfuncs %d\n", ecud->ecud_slot,
ecud->ecud_ndevfuncs);
#endif
for (func = 0; func < ecud->ecud_ndevfuncs; func++) {
dp = data;
cdp += eisa_uncompress(cdp, dp, EISA_CONFIG_BLOCK_SIZE);
#if 0
printf("SLOT %d:%d uncompressed data:",
ecud->ecud_slot, func);
{
int j;
for (j = 0; i < EISA_CONFIG_BLOCK_SIZE; j++) {
if ((j % 16) == 0)
printf("\n");
printf("0x%02x ", dp[j]);
}
printf("\n");
}
#endif
/* Skip disabled functions. */
if (dp[EISA_FUNC_INFO_OFFSET] & ECUF_DISABLED) {
#if 0
printf("SLOT %d:%d disabled\n",
ecud->ecud_slot, func);
#endif
continue;
}
ecuf = malloc(sizeof(*ecuf), M_DEVBUF, M_WAITOK);
ecuf_init(ecuf);
ecuf->ecuf_funcno = func;
SIMPLEQ_INSERT_TAIL(&ecud->ecud_funcs, ecuf,
ecuf_list);
memcpy(&ecuf->ecuf_id, dp, sizeof(ecuf->ecuf_id));
dp += sizeof(ecuf->ecuf_id);
memcpy(&ecuf->ecuf_slot_info, dp,
sizeof(ecuf->ecuf_slot_info));
dp += sizeof(ecuf->ecuf_slot_info);
memcpy(&ecuf->ecuf_cfg_ext, dp,
sizeof(ecuf->ecuf_cfg_ext));
dp += sizeof(ecuf->ecuf_cfg_ext);
memcpy(&ecuf->ecuf_selections, dp,
sizeof(ecuf->ecuf_selections));
dp += sizeof(ecuf->ecuf_selections);
memcpy(&ecuf->ecuf_func_info, dp,
sizeof(ecuf->ecuf_func_info));
dp += sizeof(ecuf->ecuf_func_info);
if (ecuf->ecuf_func_info & ECUF_TYPE_STRING)
memcpy(ecuf->ecuf_type_string, dp,
sizeof(ecuf->ecuf_type_string));
dp += sizeof(ecuf->ecuf_type_string);
if (ecuf->ecuf_func_info & ECUF_MEM_ENTRY)
eisa_parse_mem(ecuf, dp);
dp += ECUF_MEM_ENTRY_SIZE * ECUF_MEM_ENTRY_CNT;
if (ecuf->ecuf_func_info & ECUF_IRQ_ENTRY)
eisa_parse_irq(ecuf, dp);
dp += ECUF_IRQ_ENTRY_SIZE * ECUF_IRQ_ENTRY_CNT;
if (ecuf->ecuf_func_info & ECUF_DMA_ENTRY)
eisa_parse_dma(ecuf, dp);
dp += ECUF_DMA_ENTRY_SIZE * ECUF_DMA_ENTRY_CNT;
if (ecuf->ecuf_func_info & ECUF_IO_ENTRY)
eisa_parse_io(ecuf, dp);
dp += ECUF_IO_ENTRY_SIZE * ECUF_IO_ENTRY_CNT;
if (ecuf->ecuf_func_info & ECUF_INIT_ENTRY)
memcpy(ecuf->ecuf_init, dp,
sizeof(ecuf->ecuf_init));
dp += sizeof(ecuf->ecuf_init);
}
}
free(cdata, M_TEMP);
free(data, M_TEMP);
}
static struct ecu_data *
eisa_lookup_data(int slot)
{
struct ecu_data *ecud;
SIMPLEQ_FOREACH(ecud, &ecu_data_list, ecud_list) {
if (ecud->ecud_slot == slot)
return (ecud);
}
return (NULL);
}
static struct ecu_func *
eisa_lookup_func(int slot, int func)
{
struct ecu_data *ecud;
struct ecu_func *ecuf;
ecud = eisa_lookup_data(slot);
if (ecud == NULL)
return (NULL);
SIMPLEQ_FOREACH(ecuf, &ecud->ecud_funcs, ecuf_list) {
if (ecuf->ecuf_funcno == func)
return (ecuf);
}
return (NULL);
}
int
eisa_conf_read_mem(eisa_chipset_tag_t ec, int slot, int func, int entry,
struct eisa_cfg_mem *dp)
{
struct ecu_func *ecuf;
struct ecu_mem *ecum;
ecuf = eisa_lookup_func(slot, func);
if (ecuf == NULL)
return (ENOENT);
SIMPLEQ_FOREACH(ecum, &ecuf->ecuf_mem, ecum_list) {
if (entry-- == 0)
break;
}
if (ecum == NULL)
return (ENOENT);
*dp = ecum->ecum_mem;
return (0);
}
int
eisa_conf_read_irq(eisa_chipset_tag_t ec, int slot, int func, int entry,
struct eisa_cfg_irq *dp)
{
struct ecu_func *ecuf;
struct ecu_irq *ecui;
ecuf = eisa_lookup_func(slot, func);
if (ecuf == NULL)
return (ENOENT);
SIMPLEQ_FOREACH(ecui, &ecuf->ecuf_irq, ecui_list) {
if (entry-- == 0)
break;
}
if (ecui == NULL)
return (ENOENT);
*dp = ecui->ecui_irq;
return (0);
}
int
eisa_conf_read_dma(eisa_chipset_tag_t ec, int slot, int func, int entry,
struct eisa_cfg_dma *dp)
{
struct ecu_func *ecuf;
struct ecu_dma *ecud;
ecuf = eisa_lookup_func(slot, func);
if (ecuf == NULL)
return (ENOENT);
SIMPLEQ_FOREACH(ecud, &ecuf->ecuf_dma, ecud_list) {
if (entry-- == 0)
break;
}
if (ecud == NULL)
return (ENOENT);
*dp = ecud->ecud_dma;
return (0);
}
int
eisa_conf_read_io(eisa_chipset_tag_t ec, int slot, int func, int entry,
struct eisa_cfg_io *dp)
{
struct ecu_func *ecuf;
struct ecu_io *ecuio;
ecuf = eisa_lookup_func(slot, func);
if (ecuf == NULL)
return (ENOENT);
SIMPLEQ_FOREACH(ecuio, &ecuf->ecuf_io, ecuio_list) {
if (entry-- == 0)
break;
}
if (ecuio == NULL)
return (ENOENT);
*dp = ecuio->ecuio_io;
return (0);
}