1126 lines
32 KiB
C
1126 lines
32 KiB
C
/* $NetBSD: lubbock_machdep.c,v 1.12 2006/05/17 04:22:46 mrg Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
|
|
* Written by Hiroyuki Bessho for Genetec Corporation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of Genetec Corporation may not be used to endorse or
|
|
* promote products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Machine dependant functions for kernel setup for
|
|
* Intel DBPXA250 evaluation board (a.k.a. Lubbock).
|
|
* Based on iq80310_machhdep.c
|
|
*/
|
|
/*
|
|
* Copyright (c) 2001 Wasabi Systems, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed for the NetBSD Project by
|
|
* Wasabi Systems, Inc.
|
|
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
|
|
* or promote products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1997,1998 Mark Brinicombe.
|
|
* Copyright (c) 1997,1998 Causality Limited.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Mark Brinicombe
|
|
* for the NetBSD Project.
|
|
* 4. The name of the company nor the name of the author may be used to
|
|
* endorse or promote products derived from this software without specific
|
|
* prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* Machine dependant functions for kernel setup for Intel IQ80310 evaluation
|
|
* boards using RedBoot firmware.
|
|
*/
|
|
|
|
/*
|
|
* DIP switches:
|
|
*
|
|
* S19: no-dot: set RB_KDB. enter kgdb session.
|
|
* S20: no-dot: set RB_SINGLE. don't go multi user mode.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: lubbock_machdep.c,v 1.12 2006/05/17 04:22:46 mrg Exp $");
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_kgdb.h"
|
|
#include "opt_ipkdb.h"
|
|
#include "opt_pmap_debug.h"
|
|
#include "opt_md.h"
|
|
#include "opt_com.h"
|
|
#include "md.h"
|
|
#include "lcd.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/device.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/exec.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/msgbuf.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/termios.h>
|
|
#include <sys/ksyms.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <sys/conf.h>
|
|
#include <dev/cons.h>
|
|
#include <dev/md.h>
|
|
#include <dev/ic/smc91cxxreg.h>
|
|
|
|
#include <machine/db_machdep.h>
|
|
#include <ddb/db_sym.h>
|
|
#include <ddb/db_extern.h>
|
|
#ifdef KGDB
|
|
#include <sys/kgdb.h>
|
|
#endif
|
|
|
|
#include <machine/bootconfig.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/frame.h>
|
|
#include <arm/undefined.h>
|
|
|
|
#include <arm/arm32/machdep.h>
|
|
|
|
#include <arm/xscale/pxa2x0reg.h>
|
|
#include <arm/xscale/pxa2x0var.h>
|
|
#include <arm/xscale/pxa2x0_gpio.h>
|
|
#include <arm/sa11x0/sa1111_reg.h>
|
|
#include <evbarm/lubbock/lubbock_reg.h>
|
|
#include <evbarm/lubbock/lubbock_var.h>
|
|
|
|
/* Kernel text starts 2MB in from the bottom of the kernel address space. */
|
|
#define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
|
|
#define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
|
|
|
|
/*
|
|
* The range 0xc1000000 - 0xccffffff is available for kernel VM space
|
|
* Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
|
|
*/
|
|
#define KERNEL_VM_SIZE 0x0C000000
|
|
|
|
|
|
/*
|
|
* Address to call from cpu_reset() to reset the machine.
|
|
* This is machine architecture dependant as it varies depending
|
|
* on where the ROM appears when you turn the MMU off.
|
|
*/
|
|
|
|
u_int cpu_reset_address = 0;
|
|
|
|
/* Define various stack sizes in pages */
|
|
#define IRQ_STACK_SIZE 1
|
|
#define ABT_STACK_SIZE 1
|
|
#ifdef IPKDB
|
|
#define UND_STACK_SIZE 2
|
|
#else
|
|
#define UND_STACK_SIZE 1
|
|
#endif
|
|
|
|
BootConfig bootconfig; /* Boot config storage */
|
|
char *boot_args = NULL;
|
|
char *boot_file = NULL;
|
|
|
|
vm_offset_t physical_start;
|
|
vm_offset_t physical_freestart;
|
|
vm_offset_t physical_freeend;
|
|
vm_offset_t physical_end;
|
|
u_int free_pages;
|
|
vm_offset_t pagetables_start;
|
|
int physmem = 0;
|
|
|
|
/*int debug_flags;*/
|
|
#ifndef PMAP_STATIC_L1S
|
|
int max_processes = 64; /* Default number */
|
|
#endif /* !PMAP_STATIC_L1S */
|
|
|
|
/* Physical and virtual addresses for some global pages */
|
|
pv_addr_t systempage;
|
|
pv_addr_t irqstack;
|
|
pv_addr_t undstack;
|
|
pv_addr_t abtstack;
|
|
pv_addr_t kernelstack;
|
|
pv_addr_t minidataclean;
|
|
|
|
vm_offset_t msgbufphys;
|
|
|
|
extern u_int data_abort_handler_address;
|
|
extern u_int prefetch_abort_handler_address;
|
|
extern u_int undefined_handler_address;
|
|
|
|
#ifdef PMAP_DEBUG
|
|
extern int pmap_debug_level;
|
|
#endif
|
|
|
|
#define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
|
|
#define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
|
|
#define KERNEL_PT_KERNEL_NUM 4
|
|
#define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
|
|
/* Page tables for mapping kernel VM */
|
|
#define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
|
|
#define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
|
|
|
|
pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
|
|
|
|
struct user *proc0paddr;
|
|
|
|
/* Prototypes */
|
|
|
|
#if 0
|
|
void process_kernel_args(char *);
|
|
void parse_mi_bootargs(char *args);
|
|
#endif
|
|
|
|
void consinit(void);
|
|
void kgdb_port_init(void);
|
|
void change_clock(uint32_t v);
|
|
|
|
bs_protos(bs_notimpl);
|
|
|
|
#include "com.h"
|
|
#if NCOM > 0
|
|
#include <dev/ic/comreg.h>
|
|
#include <dev/ic/comvar.h>
|
|
#endif
|
|
|
|
#ifndef CONSPEED
|
|
#define CONSPEED B115200 /* What RedBoot uses */
|
|
#endif
|
|
#ifndef CONMODE
|
|
#define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
|
|
#endif
|
|
|
|
int comcnspeed = CONSPEED;
|
|
int comcnmode = CONMODE;
|
|
|
|
/*
|
|
* void cpu_reboot(int howto, char *bootstr)
|
|
*
|
|
* Reboots the system
|
|
*
|
|
* Deal with any syncing, unmounting, dumping and shutdown hooks,
|
|
* then reset the CPU.
|
|
*/
|
|
void
|
|
cpu_reboot(int howto, char *bootstr)
|
|
{
|
|
#ifdef DIAGNOSTIC
|
|
/* info */
|
|
printf("boot: howto=%08x curproc=%p\n", howto, curproc);
|
|
#endif
|
|
|
|
/*
|
|
* If we are still cold then hit the air brakes
|
|
* and crash to earth fast
|
|
*/
|
|
if (cold) {
|
|
doshutdownhooks();
|
|
printf("The operating system has halted.\n");
|
|
printf("Please press any key to reboot.\n\n");
|
|
cngetc();
|
|
printf("rebooting...\n");
|
|
cpu_reset();
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
/* Disable console buffering */
|
|
/* cnpollc(1);*/
|
|
|
|
/*
|
|
* If RB_NOSYNC was not specified sync the discs.
|
|
* Note: Unless cold is set to 1 here, syslogd will die during the
|
|
* unmount. It looks like syslogd is getting woken up only to find
|
|
* that it cannot page part of the binary in as the filesystem has
|
|
* been unmounted.
|
|
*/
|
|
if (!(howto & RB_NOSYNC))
|
|
bootsync();
|
|
|
|
/* Say NO to interrupts */
|
|
splhigh();
|
|
|
|
/* Do a dump if requested. */
|
|
if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
|
|
dumpsys();
|
|
|
|
/* Run any shutdown hooks */
|
|
doshutdownhooks();
|
|
|
|
/* Make sure IRQ's are disabled */
|
|
IRQdisable;
|
|
|
|
if (howto & RB_HALT) {
|
|
printf("The operating system has halted.\n");
|
|
printf("Please press any key to reboot.\n\n");
|
|
cngetc();
|
|
}
|
|
|
|
printf("rebooting...\n");
|
|
cpu_reset();
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
static inline
|
|
pd_entry_t *
|
|
read_ttb(void)
|
|
{
|
|
long ttb;
|
|
|
|
__asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb));
|
|
|
|
|
|
return (pd_entry_t *)(ttb & ~((1<<14)-1));
|
|
}
|
|
|
|
/*
|
|
* Static device mappings. These peripheral registers are mapped at
|
|
* fixed virtual addresses very early in initarm() so that we can use
|
|
* them while booting the kernel, and stay at the same address
|
|
* throughout whole kernel's life time.
|
|
*
|
|
* We use this table twice; once with bootstrap page table, and once
|
|
* with kernel's page table which we build up in initarm().
|
|
*
|
|
* Since we map these registers into the bootstrap page table using
|
|
* pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
|
|
* registers segment-aligned and segment-rounded in order to avoid
|
|
* using the 2nd page tables.
|
|
*/
|
|
|
|
#define _A(a) ((a) & ~L1_S_OFFSET)
|
|
#define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
|
|
|
|
static const struct pmap_devmap lubbock_devmap[] = {
|
|
{
|
|
LUBBOCK_OBIO_VBASE,
|
|
_A(LUBBOCK_OBIO_PBASE),
|
|
_S(LUBBOCK_OBIO_SIZE),
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
|
|
},
|
|
{
|
|
LUBBOCK_GPIO_VBASE,
|
|
_A(PXA2X0_GPIO_BASE),
|
|
_S(PXA250_GPIO_SIZE),
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
|
|
},
|
|
{
|
|
LUBBOCK_CLKMAN_VBASE,
|
|
_A(PXA2X0_CLKMAN_BASE),
|
|
_S(PXA2X0_CLKMAN_SIZE),
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
|
|
},
|
|
{
|
|
LUBBOCK_INTCTL_VBASE,
|
|
_A(PXA2X0_INTCTL_BASE),
|
|
_S(PXA2X0_INTCTL_SIZE),
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
|
|
},
|
|
{
|
|
LUBBOCK_FFUART_VBASE,
|
|
_A(PXA2X0_FFUART_BASE),
|
|
_S(4 * COM_NPORTS),
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
|
|
},
|
|
{
|
|
LUBBOCK_BTUART_VBASE,
|
|
_A(PXA2X0_BTUART_BASE),
|
|
_S(4 * COM_NPORTS),
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
|
|
},
|
|
|
|
{0, 0, 0, 0,}
|
|
};
|
|
|
|
#undef _A
|
|
#undef _S
|
|
|
|
/*
|
|
* u_int initarm(...)
|
|
*
|
|
* Initial entry point on startup. This gets called before main() is
|
|
* entered.
|
|
* It should be responsible for setting up everything that must be
|
|
* in place when main is called.
|
|
* This includes
|
|
* Taking a copy of the boot configuration structure.
|
|
* Initialising the physical console so characters can be printed.
|
|
* Setting up page tables for the kernel
|
|
* Relocating the kernel to the bottom of physical memory
|
|
*/
|
|
u_int
|
|
initarm(void *arg)
|
|
{
|
|
extern vaddr_t xscale_cache_clean_addr;
|
|
int loop;
|
|
int loop1;
|
|
u_int l1pagetable;
|
|
pv_addr_t kernel_l1pt;
|
|
paddr_t memstart;
|
|
psize_t memsize;
|
|
int led_data = 0;
|
|
#ifdef DIAGNOSTIC
|
|
extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
|
|
#endif
|
|
#define LEDSTEP_P() ioreg_write(LUBBOCK_OBIO_PBASE+LUBBOCK_HEXLED, led_data++)
|
|
#define LEDSTEP() hex_led(led_data++)
|
|
|
|
/* use physical address until pagetable is set */
|
|
LEDSTEP_P();
|
|
|
|
/* map some peripheral registers at static I/O area */
|
|
pmap_devmap_bootstrap((vaddr_t)read_ttb(), lubbock_devmap);
|
|
|
|
LEDSTEP_P();
|
|
|
|
/* start 32.768 kHz OSC */
|
|
ioreg_write(LUBBOCK_CLKMAN_VBASE + 0x08, 2);
|
|
/* Get ready for splfoo() */
|
|
pxa2x0_intr_bootstrap(LUBBOCK_INTCTL_VBASE);
|
|
|
|
LEDSTEP();
|
|
|
|
/*
|
|
* Heads up ... Setup the CPU / MMU / TLB functions
|
|
*/
|
|
if (set_cpufuncs())
|
|
panic("cpu not recognized!");
|
|
|
|
LEDSTEP();
|
|
|
|
|
|
#if 0
|
|
/* Calibrate the delay loop. */
|
|
#endif
|
|
|
|
/*
|
|
* Okay, RedBoot has provided us with the following memory map:
|
|
*
|
|
* Physical Address Range Description
|
|
* ----------------------- ----------------------------------
|
|
* 0x00000000 - 0x01ffffff flash Memory (32MB)
|
|
* 0x04000000 - 0x05ffffff Application flash Memory (32MB)
|
|
* 0x08000000 - 0x080000ff I/O baseboard registers
|
|
* 0x0a000000 - 0x0a0fffff SRAM (1MB)
|
|
* 0x0c000000 - 0x0c0fffff Ethernet Controller
|
|
* 0x0e000000 - 0x0e0fffff Ethernet Controller (Attribute)
|
|
* 0x10000000 - 0x103fffff SA-1111 Companion Chip
|
|
* 0x14000000 - 0x17ffffff Expansion Card (64MB)
|
|
* 0x40000000 - 0x480fffff Processor Registers
|
|
* 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB)
|
|
*
|
|
*
|
|
* Virtual Address Range X C B Description
|
|
* ----------------------- - - - ----------------------------------
|
|
* 0x00000000 - 0x00003fff N Y Y SDRAM
|
|
* 0x00004000 - 0x000fffff N Y N Boot ROM
|
|
* 0x00100000 - 0x01ffffff N N N Application Flash
|
|
* 0x04000000 - 0x05ffffff N N N Exp Application Flash
|
|
* 0x08000000 - 0x080fffff N N N I/O baseboard registers
|
|
* 0x0a000000 - 0x0a0fffff N N N SRAM
|
|
* 0x40000000 - 0x480fffff N N N Processor Registers
|
|
* 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM
|
|
* 0xa0017000 - 0xa3ffffff Y Y Y SDRAM
|
|
* 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region
|
|
* (done by this routine)
|
|
* 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers
|
|
* 0xfd100000 - 0xfd3fffff N N N Processor Registers.
|
|
* 0xfd400000 - 0xfd4fffff N N N FF-UART
|
|
* 0xfd500000 - 0xfd5fffff N N N BT-UART
|
|
*
|
|
* RedBoot's first level page table is at 0xa0004000. There
|
|
* are also 2 second-level tables at 0xa0008000 and
|
|
* 0xa0008400. We will continue to use them until we switch to
|
|
* our pagetable by setttb().
|
|
*
|
|
*/
|
|
|
|
/* setup GPIO for BTUART, in case bootloader doesn't take care of it */
|
|
pxa2x0_gpio_bootstrap(LUBBOCK_GPIO_VBASE);
|
|
pxa2x0_gpio_set_function(42, GPIO_ALT_FN_1_IN);
|
|
pxa2x0_gpio_set_function(43, GPIO_ALT_FN_2_OUT);
|
|
pxa2x0_gpio_set_function(44, GPIO_ALT_FN_1_IN);
|
|
pxa2x0_gpio_set_function(45, GPIO_ALT_FN_2_OUT);
|
|
|
|
/* turn on clock to UART block.
|
|
XXX: this should not be done here. */
|
|
ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, CKEN_FFUART|CKEN_BTUART |
|
|
ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN));
|
|
|
|
LEDSTEP();
|
|
|
|
consinit();
|
|
LEDSTEP();
|
|
#ifdef KGDB
|
|
kgdb_port_init();
|
|
LEDSTEP();
|
|
#endif
|
|
|
|
|
|
/* Talk to the user */
|
|
printf("\nNetBSD/evbarm (lubbock) booting ...\n");
|
|
|
|
/* Tweak memory controller */
|
|
{
|
|
/* Modify access timing for CS3 (91c96) */
|
|
|
|
uint32_t tmp =
|
|
ioreg_read(PXA2X0_MEMCTL_BASE+MEMCTL_MSC1);
|
|
ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MSC1,
|
|
(tmp & 0xffff) | (0x3881<<16));
|
|
/* RRR=3, RDN=8, RDF=8
|
|
* XXX: can be faster?
|
|
*/
|
|
}
|
|
|
|
|
|
/* Initialize for PCMCIA/CF sockets */
|
|
{
|
|
uint32_t tmp;
|
|
|
|
/* Activate two sockets.
|
|
XXX: This code segment should be moved to
|
|
pcmcia MD attach routine.
|
|
XXX: These bits should be toggled based on
|
|
existene of PCMCIA/CF cards
|
|
*/
|
|
ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MECR,
|
|
MECR_NOS|MECR_CIT);
|
|
|
|
tmp = ioreg_read(LUBBOCK_SACC_PBASE+SACCSBI_SKCR);
|
|
ioreg_write(LUBBOCK_SACC_PBASE+SACCSBI_SKCR,
|
|
(tmp & ~(1<<4)) | (1<<0));
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* Examine the boot args string for options we need to know about
|
|
* now.
|
|
*/
|
|
process_kernel_args((char *)nwbootinfo.bt_args);
|
|
#endif
|
|
|
|
{
|
|
int processor_card_id;
|
|
|
|
processor_card_id = 0x000f &
|
|
ioreg_read(LUBBOCK_OBIO_VBASE+LUBBOCK_MISCRD);
|
|
switch(processor_card_id){
|
|
case 0:
|
|
/* Cotulla */
|
|
memstart = 0xa0000000;
|
|
memsize = 0x04000000; /* 64MB */
|
|
break;
|
|
case 1:
|
|
/* XXX: Sabiani */
|
|
memstart = 0xa0000000;
|
|
memsize = 0x04000000; /* 64MB */
|
|
break;
|
|
default:
|
|
/* XXX: Unknown */
|
|
memstart = 0xa0000000;
|
|
memsize = 0x04000000; /* 64MB */
|
|
}
|
|
}
|
|
|
|
printf("initarm: Configuring system ...\n");
|
|
|
|
/* Fake bootconfig structure for the benefit of pmap.c */
|
|
/* XXX must make the memory description h/w independant */
|
|
bootconfig.dramblocks = 1;
|
|
bootconfig.dram[0].address = memstart;
|
|
bootconfig.dram[0].pages = memsize / PAGE_SIZE;
|
|
|
|
/*
|
|
* Set up the variables that define the availablilty of
|
|
* physical memory. For now, we're going to set
|
|
* physical_freestart to 0xa0200000 (where the kernel
|
|
* was loaded), and allocate the memory we need downwards.
|
|
* If we get too close to the page tables that RedBoot
|
|
* set up, we will panic. We will update physical_freestart
|
|
* and physical_freeend later to reflect what pmap_bootstrap()
|
|
* wants to see.
|
|
*
|
|
* XXX pmap_bootstrap() needs an enema.
|
|
*/
|
|
physical_start = bootconfig.dram[0].address;
|
|
physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
|
|
|
|
physical_freestart = 0xa0009000UL;
|
|
physical_freeend = 0xa0200000UL;
|
|
|
|
physmem = (physical_end - physical_start) / PAGE_SIZE;
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
/* Tell the user about the memory */
|
|
printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
|
|
physical_start, physical_end - 1);
|
|
#endif
|
|
|
|
/*
|
|
* Okay, the kernel starts 2MB in from the bottom of physical
|
|
* memory. We are going to allocate our bootstrap pages downwards
|
|
* from there.
|
|
*
|
|
* We need to allocate some fixed page tables to get the kernel
|
|
* going. We allocate one page directory and a number of page
|
|
* tables and store the physical addresses in the kernel_pt_table
|
|
* array.
|
|
*
|
|
* The kernel page directory must be on a 16K boundary. The page
|
|
* tables must be on 4K boundaries. What we do is allocate the
|
|
* page directory on the first 16K boundary that we encounter, and
|
|
* the page tables on 4K boundaries otherwise. Since we allocate
|
|
* at least 3 L2 page tables, we are guaranteed to encounter at
|
|
* least one 16K aligned region.
|
|
*/
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("Allocating page tables\n");
|
|
#endif
|
|
|
|
free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
|
|
physical_freestart, free_pages, free_pages);
|
|
#endif
|
|
|
|
/* Define a macro to simplify memory allocation */
|
|
#define valloc_pages(var, np) \
|
|
alloc_pages((var).pv_pa, (np)); \
|
|
(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
|
|
|
|
#define alloc_pages(var, np) \
|
|
physical_freeend -= ((np) * PAGE_SIZE); \
|
|
if (physical_freeend < physical_freestart) \
|
|
panic("initarm: out of memory"); \
|
|
(var) = physical_freeend; \
|
|
free_pages -= (np); \
|
|
memset((char *)(var), 0, ((np) * PAGE_SIZE));
|
|
|
|
loop1 = 0;
|
|
kernel_l1pt.pv_pa = 0;
|
|
kernel_l1pt.pv_va = 0;
|
|
for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
|
|
/* Are we 16KB aligned for an L1 ? */
|
|
if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
|
|
&& kernel_l1pt.pv_pa == 0) {
|
|
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
|
|
} else {
|
|
valloc_pages(kernel_pt_table[loop1],
|
|
L2_TABLE_SIZE / PAGE_SIZE);
|
|
++loop1;
|
|
}
|
|
}
|
|
|
|
/* This should never be able to happen but better confirm that. */
|
|
if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
|
|
panic("initarm: Failed to align the kernel page directory");
|
|
|
|
LEDSTEP();
|
|
|
|
/*
|
|
* Allocate a page for the system page mapped to V0x00000000
|
|
* This page will just contain the system vectors and can be
|
|
* shared by all processes.
|
|
*/
|
|
alloc_pages(systempage.pv_pa, 1);
|
|
|
|
/* Allocate stacks for all modes */
|
|
valloc_pages(irqstack, IRQ_STACK_SIZE);
|
|
valloc_pages(abtstack, ABT_STACK_SIZE);
|
|
valloc_pages(undstack, UND_STACK_SIZE);
|
|
valloc_pages(kernelstack, UPAGES);
|
|
|
|
/* Allocate enough pages for cleaning the Mini-Data cache. */
|
|
KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
|
|
valloc_pages(minidataclean, 1);
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
|
|
irqstack.pv_va);
|
|
printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
|
|
abtstack.pv_va);
|
|
printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
|
|
undstack.pv_va);
|
|
printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
|
|
kernelstack.pv_va);
|
|
#endif
|
|
|
|
/*
|
|
* XXX Defer this to later so that we can reclaim the memory
|
|
* XXX used by the RedBoot page tables.
|
|
*/
|
|
alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
|
|
|
|
/*
|
|
* Ok we have allocated physical pages for the primary kernel
|
|
* page tables
|
|
*/
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
|
|
#endif
|
|
|
|
/*
|
|
* Now we start construction of the L1 page table
|
|
* We start by mapping the L2 page tables into the L1.
|
|
* This means that we can replace L1 mappings later on if necessary
|
|
*/
|
|
l1pagetable = kernel_l1pt.pv_pa;
|
|
|
|
/* Map the L2 pages tables in the L1 page table */
|
|
pmap_link_l2pt(l1pagetable, 0x00000000,
|
|
&kernel_pt_table[KERNEL_PT_SYS]);
|
|
for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
|
|
pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
|
|
&kernel_pt_table[KERNEL_PT_KERNEL + loop]);
|
|
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
|
|
pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
|
|
&kernel_pt_table[KERNEL_PT_VMDATA + loop]);
|
|
|
|
/* update the top of the kernel VM */
|
|
pmap_curmaxkvaddr =
|
|
KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("Mapping kernel\n");
|
|
#endif
|
|
|
|
/* Now we fill in the L2 pagetable for the kernel static code/data */
|
|
{
|
|
extern char etext[], _end[];
|
|
size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
|
|
size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
|
|
u_int logical;
|
|
|
|
textsize = (textsize + PGOFSET) & ~PGOFSET;
|
|
totalsize = (totalsize + PGOFSET) & ~PGOFSET;
|
|
|
|
logical = 0x00200000; /* offset of kernel in RAM */
|
|
|
|
logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
|
|
physical_start + logical, textsize,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
|
|
physical_start + logical, totalsize - textsize,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
}
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("Constructing L2 page tables\n");
|
|
#endif
|
|
|
|
/* Map the stack pages */
|
|
pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
|
|
IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
|
|
ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
|
|
UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
|
|
UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
|
|
|
|
pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
|
|
L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
|
|
|
|
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
|
|
pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
|
|
kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
|
|
}
|
|
|
|
/* Map the Mini-Data cache clean area. */
|
|
xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
|
|
minidataclean.pv_pa);
|
|
|
|
/* Map the vector page. */
|
|
#if 1
|
|
/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
|
|
* cache-clean code there. */
|
|
pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
|
|
#else
|
|
pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
#endif
|
|
|
|
/*
|
|
* map integrated peripherals at same address in l1pagetable
|
|
* so that we can continue to use console.
|
|
*/
|
|
pmap_devmap_bootstrap(l1pagetable, lubbock_devmap);
|
|
|
|
/*
|
|
* Give the XScale global cache clean code an appropriately
|
|
* sized chunk of unmapped VA space starting at 0xff000000
|
|
* (our device mappings end before this address).
|
|
*/
|
|
xscale_cache_clean_addr = 0xff000000U;
|
|
|
|
/*
|
|
* Now we have the real page tables in place so we can switch to them.
|
|
* Once this is done we will be running with the REAL kernel page
|
|
* tables.
|
|
*/
|
|
|
|
/*
|
|
* Update the physical_freestart/physical_freeend/free_pages
|
|
* variables.
|
|
*/
|
|
{
|
|
extern char _end[];
|
|
|
|
physical_freestart = physical_start +
|
|
(((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
|
|
KERNEL_BASE);
|
|
physical_freeend = physical_end;
|
|
free_pages =
|
|
(physical_freeend - physical_freestart) / PAGE_SIZE;
|
|
}
|
|
|
|
/* Switch tables */
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
|
|
physical_freestart, free_pages, free_pages);
|
|
printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
|
|
#endif
|
|
|
|
LEDSTEP();
|
|
|
|
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
|
|
setttb(kernel_l1pt.pv_pa);
|
|
cpu_tlb_flushID();
|
|
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
|
|
LEDSTEP();
|
|
|
|
/*
|
|
* Moved from cpu_startup() as data_abort_handler() references
|
|
* this during uvm init
|
|
*/
|
|
proc0paddr = (struct user *)kernelstack.pv_va;
|
|
lwp0.l_addr = proc0paddr;
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("bootstrap done.\n");
|
|
#endif
|
|
|
|
arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
|
|
|
|
/*
|
|
* Pages were allocated during the secondary bootstrap for the
|
|
* stacks for different CPU modes.
|
|
* We must now set the r13 registers in the different CPU modes to
|
|
* point to these stacks.
|
|
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
|
|
* of the stack memory.
|
|
*/
|
|
printf("init subsystems: stacks ");
|
|
|
|
set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
|
|
set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
|
|
set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
|
|
|
|
/*
|
|
* Well we should set a data abort handler.
|
|
* Once things get going this will change as we will need a proper
|
|
* handler.
|
|
* Until then we will use a handler that just panics but tells us
|
|
* why.
|
|
* Initialisation of the vectors will just panic on a data abort.
|
|
* This just fills in a slightly better one.
|
|
*/
|
|
printf("vectors ");
|
|
data_abort_handler_address = (u_int)data_abort_handler;
|
|
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
|
|
undefined_handler_address = (u_int)undefinedinstruction_bounce;
|
|
|
|
/* Initialise the undefined instruction handlers */
|
|
printf("undefined ");
|
|
undefined_init();
|
|
|
|
/* Load memory into UVM. */
|
|
printf("page ");
|
|
uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
|
|
uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
|
|
atop(physical_freestart), atop(physical_freeend),
|
|
VM_FREELIST_DEFAULT);
|
|
|
|
/* Boot strap pmap telling it where the kernel page table is */
|
|
printf("pmap ");
|
|
LEDSTEP();
|
|
pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
|
|
KERNEL_VM_BASE + KERNEL_VM_SIZE);
|
|
LEDSTEP();
|
|
|
|
#ifdef __HAVE_MEMORY_DISK__
|
|
md_root_setconf(memory_disk, sizeof memory_disk);
|
|
#endif
|
|
|
|
{
|
|
uint16_t sw = ioreg16_read(LUBBOCK_OBIO_VBASE+LUBBOCK_USERSW);
|
|
|
|
if (0 == (sw & (1<<13))) /* check S19 */
|
|
boothowto |= RB_KDB;
|
|
if (0 == (sw & (1<<12))) /* S20 */
|
|
boothowto |= RB_SINGLE;
|
|
}
|
|
|
|
LEDSTEP();
|
|
|
|
#ifdef IPKDB
|
|
/* Initialise ipkdb */
|
|
ipkdb_init();
|
|
if (boothowto & RB_KDB)
|
|
ipkdb_connect(0);
|
|
#endif
|
|
|
|
#ifdef KGDB
|
|
if (boothowto & RB_KDB) {
|
|
kgdb_debug_init = 1;
|
|
kgdb_connect(1);
|
|
}
|
|
#endif
|
|
|
|
#ifdef DDB
|
|
db_machine_init();
|
|
|
|
/* Firmware doesn't load symbols. */
|
|
ddb_init(0, NULL, NULL);
|
|
|
|
if (boothowto & RB_KDB)
|
|
Debugger();
|
|
#endif
|
|
|
|
/* We return the new stack pointer address */
|
|
return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
|
|
}
|
|
|
|
#if 0
|
|
void
|
|
process_kernel_args(char *args)
|
|
{
|
|
|
|
boothowto = 0;
|
|
|
|
/* Make a local copy of the bootargs */
|
|
strncpy(bootargs, args, MAX_BOOT_STRING);
|
|
|
|
args = bootargs;
|
|
boot_file = bootargs;
|
|
|
|
/* Skip the kernel image filename */
|
|
while (*args != ' ' && *args != 0)
|
|
++args;
|
|
|
|
if (*args != 0)
|
|
*args++ = 0;
|
|
|
|
while (*args == ' ')
|
|
++args;
|
|
|
|
boot_args = args;
|
|
|
|
printf("bootfile: %s\n", boot_file);
|
|
printf("bootargs: %s\n", boot_args);
|
|
|
|
parse_mi_bootargs(boot_args);
|
|
}
|
|
#endif
|
|
|
|
#ifdef KGDB
|
|
#ifndef KGDB_DEVNAME
|
|
#define KGDB_DEVNAME "ffuart"
|
|
#endif
|
|
const char kgdb_devname[] = KGDB_DEVNAME;
|
|
|
|
#if (NCOM > 0)
|
|
#ifndef KGDB_DEVMODE
|
|
#define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
|
|
#endif
|
|
int comkgdbmode = KGDB_DEVMODE;
|
|
#endif /* NCOM */
|
|
|
|
#endif /* KGDB */
|
|
|
|
|
|
void
|
|
consinit(void)
|
|
{
|
|
static int consinit_called = 0;
|
|
uint32_t ckenreg = ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN);
|
|
#if 0
|
|
char *console = CONSDEVNAME;
|
|
#endif
|
|
|
|
if (consinit_called != 0)
|
|
return;
|
|
|
|
consinit_called = 1;
|
|
|
|
#if NCOM > 0
|
|
|
|
#ifdef FFUARTCONSOLE
|
|
/* Check switch. */
|
|
if (0 == (ioreg_read(LUBBOCK_OBIO_VBASE+LUBBOCK_USERSW) & (1<<15))) {
|
|
/* We don't use FF serial when S17=no-dot position */
|
|
}
|
|
#ifdef KGDB
|
|
else if (0 == strcmp(kgdb_devname, "ffuart")) {
|
|
/* port is reserved for kgdb */
|
|
}
|
|
#endif
|
|
else if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
|
|
comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
|
|
#if 0
|
|
/* XXX: can't call pxa2x0_clkman_config yet */
|
|
pxa2x0_clkman_config(CKEN_FFUART, 1);
|
|
#else
|
|
ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN,
|
|
ckenreg|CKEN_FFUART);
|
|
#endif
|
|
|
|
return;
|
|
}
|
|
#endif /* FFUARTCONSOLE */
|
|
|
|
#ifdef BTUARTCONSOLE
|
|
#ifdef KGDB
|
|
if (0 == strcmp(kgdb_devname, "btuart")) {
|
|
/* port is reserved for kgdb */
|
|
} else
|
|
#endif
|
|
if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
|
|
comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
|
|
ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN,
|
|
ckenreg|CKEN_BTUART);
|
|
return;
|
|
}
|
|
#endif /* BTUARTCONSOLE */
|
|
|
|
|
|
#endif /* NCOM */
|
|
|
|
}
|
|
|
|
#ifdef KGDB
|
|
void
|
|
kgdb_port_init(void)
|
|
{
|
|
#if (NCOM > 0) && defined(COM_PXA2X0)
|
|
paddr_t paddr = 0;
|
|
uint32_t ckenreg = ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN);
|
|
|
|
if (0 == strcmp(kgdb_devname, "ffuart")) {
|
|
paddr = PXA2X0_FFUART_BASE;
|
|
ckenreg |= CKEN_FFUART;
|
|
}
|
|
else if (0 == strcmp(kgdb_devname, "btuart")) {
|
|
paddr = PXA2X0_BTUART_BASE;
|
|
ckenreg |= CKEN_BTUART;
|
|
}
|
|
|
|
if (paddr &&
|
|
0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
|
|
kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
|
|
|
|
ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
/*
|
|
* display a number in hex LED.
|
|
* a digit is blank when the corresponding bit in arg blank is 1
|
|
*/
|
|
unsigned short led_control_value = 0;
|
|
|
|
void
|
|
hex_led_blank(uint32_t value, int blank)
|
|
{
|
|
int save = disable_interrupts(I32_bit);
|
|
|
|
ioreg_write(LUBBOCK_OBIO_VBASE+0x10, value);
|
|
led_control_value = (led_control_value & 0xff)
|
|
| ((blank & 0xff)<<8);
|
|
ioreg_write(LUBBOCK_OBIO_VBASE+0x40, led_control_value);
|
|
restore_interrupts(save);
|
|
}
|
|
#endif
|