NetBSD/dist/ntp/ntpd/refclock_parse.c
kardel f2de40854d merge 4.2.2p2
signedness fixes
	fd re-allocation for stdio
	PPSAPI fixes in refclock_parse.c
while there clean up last signedness problems for gcc4 compilation
2006-07-29 08:15:29 +00:00

5977 lines
154 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* $NetBSD: refclock_parse.c,v 1.7 2006/07/29 08:15:29 kardel Exp $ */
/*
* /src/NTP/REPOSITORY/ntp4-dev/ntpd/refclock_parse.c,v 4.76 2006/06/22 18:40:47 kardel RELEASE_20060622_A
*
* refclock_parse.c,v 4.76 2006/06/22 18:40:47 kardel RELEASE_20060622_A
*
* generic reference clock driver for several DCF/GPS/MSF/... receivers
*
* optionally make use of a STREAMS module for input processing where
* available and configured. Currently the STREAMS module
* is only available for Suns running SunOS 4.x and SunOS5.x
*
* Copyright (c) 1995-2006 by Frank Kardel <kardel <AT> ntp.org>
* Copyright (c) 1989-1994 by Frank Kardel, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#if defined(REFCLOCK) && defined(CLOCK_PARSE)
/*
* This driver currently provides the support for
* - Meinberg receiver DCF77 PZF 535 (TCXO version) (DCF)
* - Meinberg receiver DCF77 PZF 535 (OCXO version) (DCF)
* - Meinberg receiver DCF77 PZF 509 (DCF)
* - Meinberg receiver DCF77 AM receivers (e.g. C51) (DCF)
* - IGEL CLOCK (DCF)
* - ELV DCF7000 (DCF)
* - Schmid clock (DCF)
* - Conrad DCF77 receiver module (DCF)
* - FAU DCF77 NTP receiver (TimeBrick) (DCF)
* - WHARTON 400A Series clock (DCF)
*
* - Meinberg GPS166/GPS167 (GPS)
* - Trimble (TSIP and TAIP protocol) (GPS)
*
* - RCC8000 MSF Receiver (MSF)
* - VARITEXT clock (MSF)
*/
/*
* Meinberg receivers are usually connected via a
* 9600 baud serial line
*
* The Meinberg GPS receivers also have a special NTP time stamp
* format. The firmware release is Uni-Erlangen.
*
* Meinberg generic receiver setup:
* output time code every second
* Baud rate 9600 7E2S
*
* Meinberg GPS16x setup:
* output time code every second
* Baudrate 19200 8N1
*
* This software supports the standard data formats used
* in Meinberg receivers.
*
* Special software versions are only sensible for the
* GPS 16x family of receivers.
*
* Meinberg can be reached via: http://www.meinberg.de/
*/
#include "ntpd.h"
#include "ntp_refclock.h"
#include "ntp_unixtime.h" /* includes <sys/time.h> */
#include "ntp_control.h"
#include "ntp_string.h"
#include <stdio.h>
#include <ctype.h>
#ifndef TM_IN_SYS_TIME
# include <time.h>
#endif
#ifdef HAVE_UNISTD_H
# include <unistd.h>
#endif
#if !defined(STREAM) && !defined(HAVE_SYSV_TTYS) && !defined(HAVE_BSD_TTYS) && !defined(HAVE_TERMIOS)
# include "Bletch: Define one of {STREAM,HAVE_SYSV_TTYS,HAVE_TERMIOS}"
#endif
#ifdef STREAM
# include <sys/stream.h>
# include <sys/stropts.h>
#endif
#ifdef HAVE_TERMIOS
# define TTY_GETATTR(_FD_, _ARG_) tcgetattr((_FD_), (_ARG_))
# define TTY_SETATTR(_FD_, _ARG_) tcsetattr((_FD_), TCSANOW, (_ARG_))
# undef HAVE_SYSV_TTYS
#endif
#ifdef HAVE_SYSV_TTYS
# define TTY_GETATTR(_FD_, _ARG_) ioctl((_FD_), TCGETA, (_ARG_))
# define TTY_SETATTR(_FD_, _ARG_) ioctl((_FD_), TCSETAW, (_ARG_))
#endif
#ifdef HAVE_BSD_TTYS
/* #error CURRENTLY NO BSD TTY SUPPORT */
# include "Bletch: BSD TTY not currently supported"
#endif
#ifdef HAVE_SYS_IOCTL_H
# include <sys/ioctl.h>
#endif
#ifdef HAVE_PPSAPI
# include "ppsapi_timepps.h"
#endif
#ifdef PPS
# ifdef HAVE_SYS_PPSCLOCK_H
# include <sys/ppsclock.h>
# endif
# ifdef HAVE_TIO_SERIAL_STUFF
# include <linux/serial.h>
# endif
#endif
#define BUFFER_SIZE(_BUF, _PTR) ((_BUF) + sizeof(_BUF) - (_PTR))
#define BUFFER_SIZES(_BUF, _PTR, _SZ) ((_BUF) + (_SZ) - (_PTR))
/*
* document type of PPS interfacing - copy of ifdef mechanism in local_input()
*/
#undef PPS_METHOD
#ifdef HAVE_PPSAPI
#define PPS_METHOD "PPS API"
#else
#ifdef TIOCDCDTIMESTAMP
#define PPS_METHOD "TIOCDCDTIMESTAMP"
#else /* TIOCDCDTIMESTAMP */
#if defined(HAVE_STRUCT_PPSCLOCKEV) && (defined(HAVE_CIOGETEV) || defined(HAVE_TIOCGPPSEV))
#ifdef HAVE_CIOGETEV
#define PPS_METHOD "CIOGETEV"
#endif
#ifdef HAVE_TIOCGPPSEV
#define PPS_METHOD "TIOCGPPSEV"
#endif
#endif
#endif /* TIOCDCDTIMESTAMP */
#endif /* HAVE_PPSAPI */
#include "ntp_io.h"
#include "ntp_stdlib.h"
#include "parse.h"
#include "mbg_gps166.h"
#include "trimble.h"
#include "binio.h"
#include "ascii.h"
#include "ieee754io.h"
#include "recvbuff.h"
static char rcsid[] = "refclock_parse.c,v 4.76 2006/06/22 18:40:47 kardel RELEASE_20060622_A";
/**===========================================================================
** external interface to ntp mechanism
**/
static int parse_start P((int, struct peer *));
static void parse_shutdown P((int, struct peer *));
static void parse_poll P((int, struct peer *));
static void parse_control P((int, struct refclockstat *, struct refclockstat *, struct peer *));
struct refclock refclock_parse = {
parse_start,
parse_shutdown,
parse_poll,
parse_control,
noentry,
noentry,
NOFLAGS
};
/*
* Definitions
*/
#define MAXUNITS 4 /* maximum number of "PARSE" units permitted */
#define PARSEDEVICE "/dev/refclock-%d" /* device to open %d is unit number */
#undef ABS
#define ABS(_X_) (((_X_) < 0) ? -(_X_) : (_X_))
#define PARSE_HARDPPS_DISABLE 0
#define PARSE_HARDPPS_ENABLE 1
/**===========================================================================
** function vector for dynamically binding io handling mechanism
**/
struct parseunit; /* to keep inquiring minds happy */
typedef struct bind
{
const char *bd_description; /* name of type of binding */
int (*bd_init) P((struct parseunit *)); /* initialize */
void (*bd_end) P((struct parseunit *)); /* end */
int (*bd_setcs) P((struct parseunit *, parsectl_t *)); /* set character size */
int (*bd_disable) P((struct parseunit *)); /* disable */
int (*bd_enable) P((struct parseunit *)); /* enable */
int (*bd_getfmt) P((struct parseunit *, parsectl_t *)); /* get format */
int (*bd_setfmt) P((struct parseunit *, parsectl_t *)); /* setfmt */
int (*bd_timecode) P((struct parseunit *, parsectl_t *)); /* get time code */
void (*bd_receive) P((struct recvbuf *)); /* receive operation */
int (*bd_io_input) P((struct recvbuf *)); /* input operation */
} bind_t;
#define PARSE_END(_X_) (*(_X_)->binding->bd_end)(_X_)
#define PARSE_SETCS(_X_, _CS_) (*(_X_)->binding->bd_setcs)(_X_, _CS_)
#define PARSE_ENABLE(_X_) (*(_X_)->binding->bd_enable)(_X_)
#define PARSE_DISABLE(_X_) (*(_X_)->binding->bd_disable)(_X_)
#define PARSE_GETFMT(_X_, _DCT_) (*(_X_)->binding->bd_getfmt)(_X_, _DCT_)
#define PARSE_SETFMT(_X_, _DCT_) (*(_X_)->binding->bd_setfmt)(_X_, _DCT_)
#define PARSE_GETTIMECODE(_X_, _DCT_) (*(_X_)->binding->bd_timecode)(_X_, _DCT_)
/*
* io modes
*/
#define PARSE_F_PPSPPS 0x0001 /* use loopfilter PPS code (CIOGETEV) */
#define PARSE_F_PPSONSECOND 0x0002 /* PPS pulses are on second */
/**===========================================================================
** error message regression handling
**
** there are quite a few errors that can occur in rapid succession such as
** noisy input data or no data at all. in order to reduce the amount of
** syslog messages in such case, we are using a backoff algorithm. We limit
** the number of error messages of a certain class to 1 per time unit. if a
** configurable number of messages is displayed that way, we move on to the
** next time unit / count for that class. a count of messages that have been
** suppressed is held and displayed whenever a corresponding message is
** displayed. the time units for a message class will also be displayed.
** whenever an error condition clears we reset the error message state,
** thus we would still generate much output on pathological conditions
** where the system oscillates between OK and NOT OK states. coping
** with that condition is currently considered too complicated.
**/
#define ERR_ALL (unsigned)~0 /* "all" errors */
#define ERR_BADDATA (unsigned)0 /* unusable input data/conversion errors */
#define ERR_NODATA (unsigned)1 /* no input data */
#define ERR_BADIO (unsigned)2 /* read/write/select errors */
#define ERR_BADSTATUS (unsigned)3 /* unsync states */
#define ERR_BADEVENT (unsigned)4 /* non nominal events */
#define ERR_INTERNAL (unsigned)5 /* internal error */
#define ERR_CNT (unsigned)(ERR_INTERNAL+1)
#define ERR(_X_) if (list_err(parse, (_X_)))
struct errorregression
{
u_long err_count; /* number of repititions per class */
u_long err_delay; /* minimum delay between messages */
};
static struct errorregression
err_baddata[] = /* error messages for bad input data */
{
{ 1, 0 }, /* output first message immediately */
{ 5, 60 }, /* output next five messages in 60 second intervals */
{ 3, 3600 }, /* output next 3 messages in hour intervals */
{ 0, 12*3600 } /* repeat messages only every 12 hours */
};
static struct errorregression
err_nodata[] = /* error messages for missing input data */
{
{ 1, 0 }, /* output first message immediately */
{ 5, 60 }, /* output next five messages in 60 second intervals */
{ 3, 3600 }, /* output next 3 messages in hour intervals */
{ 0, 12*3600 } /* repeat messages only every 12 hours */
};
static struct errorregression
err_badstatus[] = /* unsynchronized state messages */
{
{ 1, 0 }, /* output first message immediately */
{ 5, 60 }, /* output next five messages in 60 second intervals */
{ 3, 3600 }, /* output next 3 messages in hour intervals */
{ 0, 12*3600 } /* repeat messages only every 12 hours */
};
static struct errorregression
err_badio[] = /* io failures (bad reads, selects, ...) */
{
{ 1, 0 }, /* output first message immediately */
{ 5, 60 }, /* output next five messages in 60 second intervals */
{ 5, 3600 }, /* output next 3 messages in hour intervals */
{ 0, 12*3600 } /* repeat messages only every 12 hours */
};
static struct errorregression
err_badevent[] = /* non nominal events */
{
{ 20, 0 }, /* output first message immediately */
{ 6, 60 }, /* output next five messages in 60 second intervals */
{ 5, 3600 }, /* output next 3 messages in hour intervals */
{ 0, 12*3600 } /* repeat messages only every 12 hours */
};
static struct errorregression
err_internal[] = /* really bad things - basically coding/OS errors */
{
{ 0, 0 }, /* output all messages immediately */
};
static struct errorregression *
err_tbl[] =
{
err_baddata,
err_nodata,
err_badio,
err_badstatus,
err_badevent,
err_internal
};
struct errorinfo
{
u_long err_started; /* begin time (ntp) of error condition */
u_long err_last; /* last time (ntp) error occurred */
u_long err_cnt; /* number of error repititions */
u_long err_suppressed; /* number of suppressed messages */
struct errorregression *err_stage; /* current error stage */
};
/**===========================================================================
** refclock instance data
**/
struct parseunit
{
/*
* NTP management
*/
struct peer *peer; /* backlink to peer structure - refclock inactive if 0 */
struct refclockproc *generic; /* backlink to refclockproc structure */
/*
* PARSE io
*/
bind_t *binding; /* io handling binding */
/*
* parse state
*/
parse_t parseio; /* io handling structure (user level parsing) */
/*
* type specific parameters
*/
struct parse_clockinfo *parse_type; /* link to clock description */
/*
* clock state handling/reporting
*/
u_char flags; /* flags (leap_control) */
u_long lastchange; /* time (ntp) when last state change accured */
u_long statetime[CEVNT_MAX+1]; /* accumulated time of clock states */
u_long pollneeddata; /* current_time(!=0) for receive sample expected in PPS mode */
u_short lastformat; /* last format used */
u_long lastsync; /* time (ntp) when clock was last seen fully synchronized */
u_long maxunsync; /* max time in seconds a receiver is trusted after loosing synchronisation */
double ppsphaseadjust; /* phase adjustment of PPS time stamp */
u_long lastmissed; /* time (ntp) when poll didn't get data (powerup heuristic) */
u_long ppsserial; /* magic cookie for ppsclock serials (avoids stale ppsclock data) */
#ifdef HAVE_PPSAPI
pps_handle_t ppshandle; /* store PPSAPI handle */
pps_params_t ppsparams; /* current PPS parameters */
int hardppsstate; /* current hard pps state */
#endif
parsetime_t timedata; /* last (parse module) data */
void *localdata; /* optional local, receiver-specific data */
unsigned long localstate; /* private local state */
struct errorinfo errors[ERR_CNT]; /* error state table for suppressing excessive error messages */
struct ctl_var *kv; /* additional pseudo variables */
u_long laststatistic; /* time when staticstics where output */
};
/**===========================================================================
** Clockinfo section all parameter for specific clock types
** includes NTP parameters, TTY parameters and IO handling parameters
**/
static void poll_dpoll P((struct parseunit *));
static void poll_poll P((struct peer *));
static int poll_init P((struct parseunit *));
typedef struct poll_info
{
u_long rate; /* poll rate - once every "rate" seconds - 0 off */
const char *string; /* string to send for polling */
u_long count; /* number of characters in string */
} poll_info_t;
#define NO_CL_FLAGS 0
#define NO_POLL 0
#define NO_INIT 0
#define NO_END 0
#define NO_EVENT 0
#define NO_LCLDATA 0
#define NO_MESSAGE 0
#define NO_PPSDELAY 0
#define DCF_ID "DCF" /* generic DCF */
#define DCF_A_ID "DCFa" /* AM demodulation */
#define DCF_P_ID "DCFp" /* psuedo random phase shift */
#define GPS_ID "GPS" /* GPS receiver */
#define NOCLOCK_ROOTDELAY 0.0
#define NOCLOCK_BASEDELAY 0.0
#define NOCLOCK_DESCRIPTION 0
#define NOCLOCK_MAXUNSYNC 0
#define NOCLOCK_CFLAG 0
#define NOCLOCK_IFLAG 0
#define NOCLOCK_OFLAG 0
#define NOCLOCK_LFLAG 0
#define NOCLOCK_ID "TILT"
#define NOCLOCK_POLL NO_POLL
#define NOCLOCK_INIT NO_INIT
#define NOCLOCK_END NO_END
#define NOCLOCK_DATA NO_LCLDATA
#define NOCLOCK_FORMAT ""
#define NOCLOCK_TYPE CTL_SST_TS_UNSPEC
#define NOCLOCK_SAMPLES 0
#define NOCLOCK_KEEP 0
#define DCF_TYPE CTL_SST_TS_LF
#define GPS_TYPE CTL_SST_TS_UHF
/*
* receiver specific constants
*/
#define MBG_SPEED (B9600)
#define MBG_CFLAG (CS7|PARENB|CREAD|CLOCAL|HUPCL|CSTOPB)
#define MBG_IFLAG (IGNBRK|IGNPAR|ISTRIP)
#define MBG_OFLAG 0
#define MBG_LFLAG 0
#define MBG_FLAGS PARSE_F_PPSONSECOND
/*
* Meinberg DCF77 receivers
*/
#define DCFUA31_ROOTDELAY 0.0 /* 0 */
#define DCFUA31_BASEDELAY 0.010 /* 10.7421875ms: 10 ms (+/- 3 ms) */
#define DCFUA31_DESCRIPTION "Meinberg DCF77 C51 or compatible"
#define DCFUA31_MAXUNSYNC 60*30 /* only trust clock for 1/2 hour */
#define DCFUA31_SPEED MBG_SPEED
#define DCFUA31_CFLAG MBG_CFLAG
#define DCFUA31_IFLAG MBG_IFLAG
#define DCFUA31_OFLAG MBG_OFLAG
#define DCFUA31_LFLAG MBG_LFLAG
#define DCFUA31_SAMPLES 5
#define DCFUA31_KEEP 3
#define DCFUA31_FORMAT "Meinberg Standard"
/*
* Meinberg DCF PZF535/TCXO (FM/PZF) receiver
*/
#define DCFPZF535_ROOTDELAY 0.0
#define DCFPZF535_BASEDELAY 0.001968 /* 1.968ms +- 104us (oscilloscope) - relative to start (end of STX) */
#define DCFPZF535_DESCRIPTION "Meinberg DCF PZF 535/509 / TCXO"
#define DCFPZF535_MAXUNSYNC 60*60*12 /* only trust clock for 12 hours
* @ 5e-8df/f we have accumulated
* at most 2.16 ms (thus we move to
* NTP synchronisation */
#define DCFPZF535_SPEED MBG_SPEED
#define DCFPZF535_CFLAG MBG_CFLAG
#define DCFPZF535_IFLAG MBG_IFLAG
#define DCFPZF535_OFLAG MBG_OFLAG
#define DCFPZF535_LFLAG MBG_LFLAG
#define DCFPZF535_SAMPLES 5
#define DCFPZF535_KEEP 3
#define DCFPZF535_FORMAT "Meinberg Standard"
/*
* Meinberg DCF PZF535/OCXO receiver
*/
#define DCFPZF535OCXO_ROOTDELAY 0.0
#define DCFPZF535OCXO_BASEDELAY 0.001968 /* 1.968ms +- 104us (oscilloscope) - relative to start (end of STX) */
#define DCFPZF535OCXO_DESCRIPTION "Meinberg DCF PZF 535/509 / OCXO"
#define DCFPZF535OCXO_MAXUNSYNC 60*60*96 /* only trust clock for 4 days
* @ 5e-9df/f we have accumulated
* at most an error of 1.73 ms
* (thus we move to NTP synchronisation) */
#define DCFPZF535OCXO_SPEED MBG_SPEED
#define DCFPZF535OCXO_CFLAG MBG_CFLAG
#define DCFPZF535OCXO_IFLAG MBG_IFLAG
#define DCFPZF535OCXO_OFLAG MBG_OFLAG
#define DCFPZF535OCXO_LFLAG MBG_LFLAG
#define DCFPZF535OCXO_SAMPLES 5
#define DCFPZF535OCXO_KEEP 3
#define DCFPZF535OCXO_FORMAT "Meinberg Standard"
/*
* Meinberg GPS16X receiver
*/
static void gps16x_message P((struct parseunit *, parsetime_t *));
static int gps16x_poll_init P((struct parseunit *));
#define GPS16X_ROOTDELAY 0.0 /* nothing here */
#define GPS16X_BASEDELAY 0.001968 /* XXX to be fixed ! 1.968ms +- 104us (oscilloscope) - relative to start (end of STX) */
#define GPS16X_DESCRIPTION "Meinberg GPS16x receiver"
#define GPS16X_MAXUNSYNC 60*60*96 /* only trust clock for 4 days
* @ 5e-9df/f we have accumulated
* at most an error of 1.73 ms
* (thus we move to NTP synchronisation) */
#define GPS16X_SPEED B19200
#define GPS16X_CFLAG (CS8|CREAD|CLOCAL|HUPCL)
#define GPS16X_IFLAG (IGNBRK|IGNPAR)
#define GPS16X_OFLAG MBG_OFLAG
#define GPS16X_LFLAG MBG_LFLAG
#define GPS16X_POLLRATE 6
#define GPS16X_POLLCMD ""
#define GPS16X_CMDSIZE 0
static poll_info_t gps16x_pollinfo = { GPS16X_POLLRATE, GPS16X_POLLCMD, GPS16X_CMDSIZE };
#define GPS16X_INIT gps16x_poll_init
#define GPS16X_POLL 0
#define GPS16X_END 0
#define GPS16X_DATA ((void *)(&gps16x_pollinfo))
#define GPS16X_MESSAGE gps16x_message
#define GPS16X_ID GPS_ID
#define GPS16X_FORMAT "Meinberg GPS Extended"
#define GPS16X_SAMPLES 5
#define GPS16X_KEEP 3
/*
* ELV DCF7000 Wallclock-Receiver/Switching Clock (Kit)
*
* This is really not the hottest clock - but before you have nothing ...
*/
#define DCF7000_ROOTDELAY 0.0 /* 0 */
#define DCF7000_BASEDELAY 0.405 /* slow blow */
#define DCF7000_DESCRIPTION "ELV DCF7000"
#define DCF7000_MAXUNSYNC (60*5) /* sorry - but it just was not build as a clock */
#define DCF7000_SPEED (B9600)
#define DCF7000_CFLAG (CS8|CREAD|PARENB|PARODD|CLOCAL|HUPCL)
#define DCF7000_IFLAG (IGNBRK)
#define DCF7000_OFLAG 0
#define DCF7000_LFLAG 0
#define DCF7000_SAMPLES 5
#define DCF7000_KEEP 3
#define DCF7000_FORMAT "ELV DCF7000"
/*
* Schmid DCF Receiver Kit
*
* When the WSDCF clock is operating optimally we want the primary clock
* distance to come out at 300 ms. Thus, peer.distance in the WSDCF peer
* structure is set to 290 ms and we compute delays which are at least
* 10 ms long. The following are 290 ms and 10 ms expressed in u_fp format
*/
#define WS_POLLRATE 1 /* every second - watch interdependency with poll routine */
#define WS_POLLCMD "\163"
#define WS_CMDSIZE 1
static poll_info_t wsdcf_pollinfo = { WS_POLLRATE, WS_POLLCMD, WS_CMDSIZE };
#define WSDCF_INIT poll_init
#define WSDCF_POLL poll_dpoll
#define WSDCF_END 0
#define WSDCF_DATA ((void *)(&wsdcf_pollinfo))
#define WSDCF_ROOTDELAY 0.0 /* 0 */
#define WSDCF_BASEDELAY 0.010 /* ~ 10ms */
#define WSDCF_DESCRIPTION "WS/DCF Receiver"
#define WSDCF_FORMAT "Schmid"
#define WSDCF_MAXUNSYNC (60*60) /* assume this beast hold at 1 h better than 2 ms XXX-must verify */
#define WSDCF_SPEED (B1200)
#define WSDCF_CFLAG (CS8|CREAD|CLOCAL)
#define WSDCF_IFLAG 0
#define WSDCF_OFLAG 0
#define WSDCF_LFLAG 0
#define WSDCF_SAMPLES 5
#define WSDCF_KEEP 3
/*
* RAW DCF77 - input of DCF marks via RS232 - many variants
*/
#define RAWDCF_FLAGS 0
#define RAWDCF_ROOTDELAY 0.0 /* 0 */
#define RAWDCF_BASEDELAY 0.258
#define RAWDCF_FORMAT "RAW DCF77 Timecode"
#define RAWDCF_MAXUNSYNC (0) /* sorry - its a true receiver - no signal - no time */
#define RAWDCF_SPEED (B50)
#ifdef NO_PARENB_IGNPAR /* Was: defined(SYS_IRIX4) || defined(SYS_IRIX5) */
/* somehow doesn't grok PARENB & IGNPAR (mj) */
# define RAWDCF_CFLAG (CS8|CREAD|CLOCAL)
#else
# define RAWDCF_CFLAG (CS8|CREAD|CLOCAL|PARENB)
#endif
#ifdef RAWDCF_NO_IGNPAR /* Was: defined(SYS_LINUX) && defined(CLOCK_RAWDCF) */
# define RAWDCF_IFLAG 0
#else
# define RAWDCF_IFLAG (IGNPAR)
#endif
#define RAWDCF_OFLAG 0
#define RAWDCF_LFLAG 0
#define RAWDCF_SAMPLES 20
#define RAWDCF_KEEP 12
#define RAWDCF_INIT 0
/*
* RAW DCF variants
*/
/*
* Conrad receiver
*
* simplest (cheapest) DCF clock - e. g. DCF77 receiver by Conrad
* (~40DM - roughly $30 ) followed by a level converter for RS232
*/
#define CONRAD_BASEDELAY 0.292 /* Conrad receiver @ 50 Baud on a Sun */
#define CONRAD_DESCRIPTION "RAW DCF77 CODE (Conrad DCF77 receiver module)"
/*
* TimeBrick receiver
*/
#define TIMEBRICK_BASEDELAY 0.210 /* TimeBrick @ 50 Baud on a Sun */
#define TIMEBRICK_DESCRIPTION "RAW DCF77 CODE (TimeBrick)"
/*
* IGEL:clock receiver
*/
#define IGELCLOCK_BASEDELAY 0.258 /* IGEL:clock receiver */
#define IGELCLOCK_DESCRIPTION "RAW DCF77 CODE (IGEL:clock)"
#define IGELCLOCK_SPEED (B1200)
#define IGELCLOCK_CFLAG (CS8|CREAD|HUPCL|CLOCAL)
/*
* RAWDCF receivers that need to be powered from DTR
* (like Expert mouse clock)
*/
static int rawdcf_init_1 P((struct parseunit *));
#define RAWDCFDTRSET_DESCRIPTION "RAW DCF77 CODE (DTR SET/RTS CLR)"
#define RAWDCFDTRSET_INIT rawdcf_init_1
/*
* RAWDCF receivers that need to be powered from
* DTR CLR and RTS SET
*/
static int rawdcf_init_2 P((struct parseunit *));
#define RAWDCFDTRCLRRTSSET_DESCRIPTION "RAW DCF77 CODE (DTR CLR/RTS SET)"
#define RAWDCFDTRCLRRTSSET_INIT rawdcf_init_2
/*
* Trimble GPS receivers (TAIP and TSIP protocols)
*/
#ifndef TRIM_POLLRATE
#define TRIM_POLLRATE 0 /* only true direct polling */
#endif
#define TRIM_TAIPPOLLCMD ">SRM;FR_FLAG=F;EC_FLAG=F<>QTM<"
#define TRIM_TAIPCMDSIZE (sizeof(TRIM_TAIPPOLLCMD)-1)
static poll_info_t trimbletaip_pollinfo = { TRIM_POLLRATE, TRIM_TAIPPOLLCMD, TRIM_TAIPCMDSIZE };
static int trimbletaip_init P((struct parseunit *));
static void trimbletaip_event P((struct parseunit *, int));
/* query time & UTC correction data */
static char tsipquery[] = { DLE, 0x21, DLE, ETX, DLE, 0x2F, DLE, ETX };
static poll_info_t trimbletsip_pollinfo = { TRIM_POLLRATE, tsipquery, sizeof(tsipquery) };
static int trimbletsip_init P((struct parseunit *));
static void trimbletsip_end P((struct parseunit *));
static void trimbletsip_message P((struct parseunit *, parsetime_t *));
static void trimbletsip_event P((struct parseunit *, int));
#define TRIMBLETSIP_IDLE_TIME (300) /* 5 minutes silence at most */
#define TRIMBLE_RESET_HOLDOFF TRIMBLETSIP_IDLE_TIME
#define TRIMBLETAIP_SPEED (B4800)
#define TRIMBLETAIP_CFLAG (CS8|CREAD|CLOCAL)
#define TRIMBLETAIP_IFLAG (BRKINT|IGNPAR|ISTRIP|ICRNL|IXON)
#define TRIMBLETAIP_OFLAG (OPOST|ONLCR)
#define TRIMBLETAIP_LFLAG (0)
#define TRIMBLETSIP_SPEED (B9600)
#define TRIMBLETSIP_CFLAG (CS8|CLOCAL|CREAD|PARENB|PARODD)
#define TRIMBLETSIP_IFLAG (IGNBRK)
#define TRIMBLETSIP_OFLAG (0)
#define TRIMBLETSIP_LFLAG (ICANON)
#define TRIMBLETSIP_SAMPLES 5
#define TRIMBLETSIP_KEEP 3
#define TRIMBLETAIP_SAMPLES 5
#define TRIMBLETAIP_KEEP 3
#define TRIMBLETAIP_FLAGS (PARSE_F_PPSONSECOND)
#define TRIMBLETSIP_FLAGS (TRIMBLETAIP_FLAGS)
#define TRIMBLETAIP_POLL poll_dpoll
#define TRIMBLETSIP_POLL poll_dpoll
#define TRIMBLETAIP_INIT trimbletaip_init
#define TRIMBLETSIP_INIT trimbletsip_init
#define TRIMBLETAIP_EVENT trimbletaip_event
#define TRIMBLETSIP_EVENT trimbletsip_event
#define TRIMBLETSIP_MESSAGE trimbletsip_message
#define TRIMBLETAIP_END 0
#define TRIMBLETSIP_END trimbletsip_end
#define TRIMBLETAIP_DATA ((void *)(&trimbletaip_pollinfo))
#define TRIMBLETSIP_DATA ((void *)(&trimbletsip_pollinfo))
#define TRIMBLETAIP_ID GPS_ID
#define TRIMBLETSIP_ID GPS_ID
#define TRIMBLETAIP_FORMAT "Trimble TAIP"
#define TRIMBLETSIP_FORMAT "Trimble TSIP"
#define TRIMBLETAIP_ROOTDELAY 0x0
#define TRIMBLETSIP_ROOTDELAY 0x0
#define TRIMBLETAIP_BASEDELAY 0.0
#define TRIMBLETSIP_BASEDELAY 0.020 /* GPS time message latency */
#define TRIMBLETAIP_DESCRIPTION "Trimble GPS (TAIP) receiver"
#define TRIMBLETSIP_DESCRIPTION "Trimble GPS (TSIP) receiver"
#define TRIMBLETAIP_MAXUNSYNC 0
#define TRIMBLETSIP_MAXUNSYNC 0
#define TRIMBLETAIP_EOL '<'
/*
* RadioCode Clocks RCC 800 receiver
*/
#define RCC_POLLRATE 0 /* only true direct polling */
#define RCC_POLLCMD "\r"
#define RCC_CMDSIZE 1
static poll_info_t rcc8000_pollinfo = { RCC_POLLRATE, RCC_POLLCMD, RCC_CMDSIZE };
#define RCC8000_FLAGS 0
#define RCC8000_POLL poll_dpoll
#define RCC8000_INIT poll_init
#define RCC8000_END 0
#define RCC8000_DATA ((void *)(&rcc8000_pollinfo))
#define RCC8000_ROOTDELAY 0.0
#define RCC8000_BASEDELAY 0.0
#define RCC8000_ID "MSF"
#define RCC8000_DESCRIPTION "RCC 8000 MSF Receiver"
#define RCC8000_FORMAT "Radiocode RCC8000"
#define RCC8000_MAXUNSYNC (60*60) /* should be ok for an hour */
#define RCC8000_SPEED (B2400)
#define RCC8000_CFLAG (CS8|CREAD|CLOCAL)
#define RCC8000_IFLAG (IGNBRK|IGNPAR)
#define RCC8000_OFLAG 0
#define RCC8000_LFLAG 0
#define RCC8000_SAMPLES 5
#define RCC8000_KEEP 3
/*
* Hopf Radio clock 6021 Format
*
*/
#define HOPF6021_ROOTDELAY 0.0
#define HOPF6021_BASEDELAY 0.0
#define HOPF6021_DESCRIPTION "HOPF 6021"
#define HOPF6021_FORMAT "hopf Funkuhr 6021"
#define HOPF6021_MAXUNSYNC (60*60) /* should be ok for an hour */
#define HOPF6021_SPEED (B9600)
#define HOPF6021_CFLAG (CS8|CREAD|CLOCAL)
#define HOPF6021_IFLAG (IGNBRK|ISTRIP)
#define HOPF6021_OFLAG 0
#define HOPF6021_LFLAG 0
#define HOPF6021_FLAGS 0
#define HOPF6021_SAMPLES 5
#define HOPF6021_KEEP 3
/*
* Diem's Computime Radio Clock Receiver
*/
#define COMPUTIME_FLAGS 0
#define COMPUTIME_ROOTDELAY 0.0
#define COMPUTIME_BASEDELAY 0.0
#define COMPUTIME_ID DCF_ID
#define COMPUTIME_DESCRIPTION "Diem's Computime receiver"
#define COMPUTIME_FORMAT "Diem's Computime Radio Clock"
#define COMPUTIME_TYPE DCF_TYPE
#define COMPUTIME_MAXUNSYNC (60*60) /* only trust clock for 1 hour */
#define COMPUTIME_SPEED (B9600)
#define COMPUTIME_CFLAG (CSTOPB|CS7|CREAD|CLOCAL)
#define COMPUTIME_IFLAG (IGNBRK|IGNPAR|ISTRIP)
#define COMPUTIME_OFLAG 0
#define COMPUTIME_LFLAG 0
#define COMPUTIME_SAMPLES 5
#define COMPUTIME_KEEP 3
/*
* Varitext Radio Clock Receiver
*/
#define VARITEXT_FLAGS 0
#define VARITEXT_ROOTDELAY 0.0
#define VARITEXT_BASEDELAY 0.0
#define VARITEXT_ID "MSF"
#define VARITEXT_DESCRIPTION "Varitext receiver"
#define VARITEXT_FORMAT "Varitext Radio Clock"
#define VARITEXT_TYPE DCF_TYPE
#define VARITEXT_MAXUNSYNC (60*60) /* only trust clock for 1 hour */
#define VARITEXT_SPEED (B9600)
#define VARITEXT_CFLAG (CS7|CREAD|CLOCAL|PARENB|PARODD)
#define VARITEXT_IFLAG (IGNPAR|IGNBRK|INPCK) /*|ISTRIP)*/
#define VARITEXT_OFLAG 0
#define VARITEXT_LFLAG 0
#define VARITEXT_SAMPLES 32
#define VARITEXT_KEEP 20
static struct parse_clockinfo
{
u_long cl_flags; /* operation flags (io modes) */
void (*cl_poll) P((struct parseunit *)); /* active poll routine */
int (*cl_init) P((struct parseunit *)); /* active poll init routine */
void (*cl_event) P((struct parseunit *, int)); /* special event handling (e.g. reset clock) */
void (*cl_end) P((struct parseunit *)); /* active poll end routine */
void (*cl_message) P((struct parseunit *, parsetime_t *)); /* process a lower layer message */
void *cl_data; /* local data area for "poll" mechanism */
double cl_rootdelay; /* rootdelay */
double cl_basedelay; /* current offset by which the RS232
time code is delayed from the actual time */
const char *cl_id; /* ID code */
const char *cl_description; /* device name */
const char *cl_format; /* fixed format */
u_char cl_type; /* clock type (ntp control) */
u_long cl_maxunsync; /* time to trust oscillator after losing synch */
u_long cl_speed; /* terminal input & output baudrate */
u_long cl_cflag; /* terminal control flags */
u_long cl_iflag; /* terminal input flags */
u_long cl_oflag; /* terminal output flags */
u_long cl_lflag; /* terminal local flags */
u_long cl_samples; /* samples for median filter */
u_long cl_keep; /* samples for median filter to keep */
} parse_clockinfo[] =
{
{ /* mode 0 */
MBG_FLAGS,
NO_POLL,
NO_INIT,
NO_EVENT,
NO_END,
NO_MESSAGE,
NO_LCLDATA,
DCFPZF535_ROOTDELAY,
DCFPZF535_BASEDELAY,
DCF_P_ID,
DCFPZF535_DESCRIPTION,
DCFPZF535_FORMAT,
DCF_TYPE,
DCFPZF535_MAXUNSYNC,
DCFPZF535_SPEED,
DCFPZF535_CFLAG,
DCFPZF535_IFLAG,
DCFPZF535_OFLAG,
DCFPZF535_LFLAG,
DCFPZF535_SAMPLES,
DCFPZF535_KEEP
},
{ /* mode 1 */
MBG_FLAGS,
NO_POLL,
NO_INIT,
NO_EVENT,
NO_END,
NO_MESSAGE,
NO_LCLDATA,
DCFPZF535OCXO_ROOTDELAY,
DCFPZF535OCXO_BASEDELAY,
DCF_P_ID,
DCFPZF535OCXO_DESCRIPTION,
DCFPZF535OCXO_FORMAT,
DCF_TYPE,
DCFPZF535OCXO_MAXUNSYNC,
DCFPZF535OCXO_SPEED,
DCFPZF535OCXO_CFLAG,
DCFPZF535OCXO_IFLAG,
DCFPZF535OCXO_OFLAG,
DCFPZF535OCXO_LFLAG,
DCFPZF535OCXO_SAMPLES,
DCFPZF535OCXO_KEEP
},
{ /* mode 2 */
MBG_FLAGS,
NO_POLL,
NO_INIT,
NO_EVENT,
NO_END,
NO_MESSAGE,
NO_LCLDATA,
DCFUA31_ROOTDELAY,
DCFUA31_BASEDELAY,
DCF_A_ID,
DCFUA31_DESCRIPTION,
DCFUA31_FORMAT,
DCF_TYPE,
DCFUA31_MAXUNSYNC,
DCFUA31_SPEED,
DCFUA31_CFLAG,
DCFUA31_IFLAG,
DCFUA31_OFLAG,
DCFUA31_LFLAG,
DCFUA31_SAMPLES,
DCFUA31_KEEP
},
{ /* mode 3 */
MBG_FLAGS,
NO_POLL,
NO_INIT,
NO_EVENT,
NO_END,
NO_MESSAGE,
NO_LCLDATA,
DCF7000_ROOTDELAY,
DCF7000_BASEDELAY,
DCF_A_ID,
DCF7000_DESCRIPTION,
DCF7000_FORMAT,
DCF_TYPE,
DCF7000_MAXUNSYNC,
DCF7000_SPEED,
DCF7000_CFLAG,
DCF7000_IFLAG,
DCF7000_OFLAG,
DCF7000_LFLAG,
DCF7000_SAMPLES,
DCF7000_KEEP
},
{ /* mode 4 */
NO_CL_FLAGS,
WSDCF_POLL,
WSDCF_INIT,
NO_EVENT,
WSDCF_END,
NO_MESSAGE,
WSDCF_DATA,
WSDCF_ROOTDELAY,
WSDCF_BASEDELAY,
DCF_A_ID,
WSDCF_DESCRIPTION,
WSDCF_FORMAT,
DCF_TYPE,
WSDCF_MAXUNSYNC,
WSDCF_SPEED,
WSDCF_CFLAG,
WSDCF_IFLAG,
WSDCF_OFLAG,
WSDCF_LFLAG,
WSDCF_SAMPLES,
WSDCF_KEEP
},
{ /* mode 5 */
RAWDCF_FLAGS,
NO_POLL,
RAWDCF_INIT,
NO_EVENT,
NO_END,
NO_MESSAGE,
NO_LCLDATA,
RAWDCF_ROOTDELAY,
CONRAD_BASEDELAY,
DCF_A_ID,
CONRAD_DESCRIPTION,
RAWDCF_FORMAT,
DCF_TYPE,
RAWDCF_MAXUNSYNC,
RAWDCF_SPEED,
RAWDCF_CFLAG,
RAWDCF_IFLAG,
RAWDCF_OFLAG,
RAWDCF_LFLAG,
RAWDCF_SAMPLES,
RAWDCF_KEEP
},
{ /* mode 6 */
RAWDCF_FLAGS,
NO_POLL,
RAWDCF_INIT,
NO_EVENT,
NO_END,
NO_MESSAGE,
NO_LCLDATA,
RAWDCF_ROOTDELAY,
TIMEBRICK_BASEDELAY,
DCF_A_ID,
TIMEBRICK_DESCRIPTION,
RAWDCF_FORMAT,
DCF_TYPE,
RAWDCF_MAXUNSYNC,
RAWDCF_SPEED,
RAWDCF_CFLAG,
RAWDCF_IFLAG,
RAWDCF_OFLAG,
RAWDCF_LFLAG,
RAWDCF_SAMPLES,
RAWDCF_KEEP
},
{ /* mode 7 */
MBG_FLAGS,
GPS16X_POLL,
GPS16X_INIT,
NO_EVENT,
GPS16X_END,
GPS16X_MESSAGE,
GPS16X_DATA,
GPS16X_ROOTDELAY,
GPS16X_BASEDELAY,
GPS16X_ID,
GPS16X_DESCRIPTION,
GPS16X_FORMAT,
GPS_TYPE,
GPS16X_MAXUNSYNC,
GPS16X_SPEED,
GPS16X_CFLAG,
GPS16X_IFLAG,
GPS16X_OFLAG,
GPS16X_LFLAG,
GPS16X_SAMPLES,
GPS16X_KEEP
},
{ /* mode 8 */
RAWDCF_FLAGS,
NO_POLL,
NO_INIT,
NO_EVENT,
NO_END,
NO_MESSAGE,
NO_LCLDATA,
RAWDCF_ROOTDELAY,
IGELCLOCK_BASEDELAY,
DCF_A_ID,
IGELCLOCK_DESCRIPTION,
RAWDCF_FORMAT,
DCF_TYPE,
RAWDCF_MAXUNSYNC,
IGELCLOCK_SPEED,
IGELCLOCK_CFLAG,
RAWDCF_IFLAG,
RAWDCF_OFLAG,
RAWDCF_LFLAG,
RAWDCF_SAMPLES,
RAWDCF_KEEP
},
{ /* mode 9 */
TRIMBLETAIP_FLAGS,
#if TRIM_POLLRATE /* DHD940515: Allow user config */
NO_POLL,
#else
TRIMBLETAIP_POLL,
#endif
TRIMBLETAIP_INIT,
TRIMBLETAIP_EVENT,
TRIMBLETAIP_END,
NO_MESSAGE,
TRIMBLETAIP_DATA,
TRIMBLETAIP_ROOTDELAY,
TRIMBLETAIP_BASEDELAY,
TRIMBLETAIP_ID,
TRIMBLETAIP_DESCRIPTION,
TRIMBLETAIP_FORMAT,
GPS_TYPE,
TRIMBLETAIP_MAXUNSYNC,
TRIMBLETAIP_SPEED,
TRIMBLETAIP_CFLAG,
TRIMBLETAIP_IFLAG,
TRIMBLETAIP_OFLAG,
TRIMBLETAIP_LFLAG,
TRIMBLETAIP_SAMPLES,
TRIMBLETAIP_KEEP
},
{ /* mode 10 */
TRIMBLETSIP_FLAGS,
#if TRIM_POLLRATE /* DHD940515: Allow user config */
NO_POLL,
#else
TRIMBLETSIP_POLL,
#endif
TRIMBLETSIP_INIT,
TRIMBLETSIP_EVENT,
TRIMBLETSIP_END,
TRIMBLETSIP_MESSAGE,
TRIMBLETSIP_DATA,
TRIMBLETSIP_ROOTDELAY,
TRIMBLETSIP_BASEDELAY,
TRIMBLETSIP_ID,
TRIMBLETSIP_DESCRIPTION,
TRIMBLETSIP_FORMAT,
GPS_TYPE,
TRIMBLETSIP_MAXUNSYNC,
TRIMBLETSIP_SPEED,
TRIMBLETSIP_CFLAG,
TRIMBLETSIP_IFLAG,
TRIMBLETSIP_OFLAG,
TRIMBLETSIP_LFLAG,
TRIMBLETSIP_SAMPLES,
TRIMBLETSIP_KEEP
},
{ /* mode 11 */
NO_CL_FLAGS,
RCC8000_POLL,
RCC8000_INIT,
NO_EVENT,
RCC8000_END,
NO_MESSAGE,
RCC8000_DATA,
RCC8000_ROOTDELAY,
RCC8000_BASEDELAY,
RCC8000_ID,
RCC8000_DESCRIPTION,
RCC8000_FORMAT,
DCF_TYPE,
RCC8000_MAXUNSYNC,
RCC8000_SPEED,
RCC8000_CFLAG,
RCC8000_IFLAG,
RCC8000_OFLAG,
RCC8000_LFLAG,
RCC8000_SAMPLES,
RCC8000_KEEP
},
{ /* mode 12 */
HOPF6021_FLAGS,
NO_POLL,
NO_INIT,
NO_EVENT,
NO_END,
NO_MESSAGE,
NO_LCLDATA,
HOPF6021_ROOTDELAY,
HOPF6021_BASEDELAY,
DCF_ID,
HOPF6021_DESCRIPTION,
HOPF6021_FORMAT,
DCF_TYPE,
HOPF6021_MAXUNSYNC,
HOPF6021_SPEED,
HOPF6021_CFLAG,
HOPF6021_IFLAG,
HOPF6021_OFLAG,
HOPF6021_LFLAG,
HOPF6021_SAMPLES,
HOPF6021_KEEP
},
{ /* mode 13 */
COMPUTIME_FLAGS,
NO_POLL,
NO_INIT,
NO_EVENT,
NO_END,
NO_MESSAGE,
NO_LCLDATA,
COMPUTIME_ROOTDELAY,
COMPUTIME_BASEDELAY,
COMPUTIME_ID,
COMPUTIME_DESCRIPTION,
COMPUTIME_FORMAT,
COMPUTIME_TYPE,
COMPUTIME_MAXUNSYNC,
COMPUTIME_SPEED,
COMPUTIME_CFLAG,
COMPUTIME_IFLAG,
COMPUTIME_OFLAG,
COMPUTIME_LFLAG,
COMPUTIME_SAMPLES,
COMPUTIME_KEEP
},
{ /* mode 14 */
RAWDCF_FLAGS,
NO_POLL,
RAWDCFDTRSET_INIT,
NO_EVENT,
NO_END,
NO_MESSAGE,
NO_LCLDATA,
RAWDCF_ROOTDELAY,
RAWDCF_BASEDELAY,
DCF_A_ID,
RAWDCFDTRSET_DESCRIPTION,
RAWDCF_FORMAT,
DCF_TYPE,
RAWDCF_MAXUNSYNC,
RAWDCF_SPEED,
RAWDCF_CFLAG,
RAWDCF_IFLAG,
RAWDCF_OFLAG,
RAWDCF_LFLAG,
RAWDCF_SAMPLES,
RAWDCF_KEEP
},
{ /* mode 15 */
0, /* operation flags (io modes) */
NO_POLL, /* active poll routine */
NO_INIT, /* active poll init routine */
NO_EVENT, /* special event handling (e.g. reset clock) */
NO_END, /* active poll end routine */
NO_MESSAGE, /* process a lower layer message */
NO_LCLDATA, /* local data area for "poll" mechanism */
0, /* rootdelay */
11.0 /* bits */ / 9600, /* current offset by which the RS232
time code is delayed from the actual time */
DCF_ID, /* ID code */
"WHARTON 400A Series clock", /* device name */
"WHARTON 400A Series clock Output Format 1", /* fixed format */
/* Must match a format-name in a libparse/clk_xxx.c file */
DCF_TYPE, /* clock type (ntp control) */
(1*60*60), /* time to trust oscillator after losing synch */
B9600, /* terminal input & output baudrate */
(CS8|CREAD|PARENB|CLOCAL|HUPCL),/* terminal control flags */
0, /* terminal input flags */
0, /* terminal output flags */
0, /* terminal local flags */
5, /* samples for median filter */
3, /* samples for median filter to keep */
},
{ /* mode 16 - RAWDCF RTS set, DTR clr */
RAWDCF_FLAGS,
NO_POLL,
RAWDCFDTRCLRRTSSET_INIT,
NO_EVENT,
NO_END,
NO_MESSAGE,
NO_LCLDATA,
RAWDCF_ROOTDELAY,
RAWDCF_BASEDELAY,
DCF_A_ID,
RAWDCFDTRCLRRTSSET_DESCRIPTION,
RAWDCF_FORMAT,
DCF_TYPE,
RAWDCF_MAXUNSYNC,
RAWDCF_SPEED,
RAWDCF_CFLAG,
RAWDCF_IFLAG,
RAWDCF_OFLAG,
RAWDCF_LFLAG,
RAWDCF_SAMPLES,
RAWDCF_KEEP
},
{ /* mode 17 */
VARITEXT_FLAGS,
NO_POLL,
NO_INIT,
NO_EVENT,
NO_END,
NO_MESSAGE,
NO_LCLDATA,
VARITEXT_ROOTDELAY,
VARITEXT_BASEDELAY,
VARITEXT_ID,
VARITEXT_DESCRIPTION,
VARITEXT_FORMAT,
VARITEXT_TYPE,
VARITEXT_MAXUNSYNC,
VARITEXT_SPEED,
VARITEXT_CFLAG,
VARITEXT_IFLAG,
VARITEXT_OFLAG,
VARITEXT_LFLAG,
VARITEXT_SAMPLES,
VARITEXT_KEEP
},
{ /* mode 18 */
MBG_FLAGS,
NO_POLL,
NO_INIT,
NO_EVENT,
GPS16X_END,
GPS16X_MESSAGE,
GPS16X_DATA,
GPS16X_ROOTDELAY,
GPS16X_BASEDELAY,
GPS16X_ID,
GPS16X_DESCRIPTION,
GPS16X_FORMAT,
GPS_TYPE,
GPS16X_MAXUNSYNC,
GPS16X_SPEED,
GPS16X_CFLAG,
GPS16X_IFLAG,
GPS16X_OFLAG,
GPS16X_LFLAG,
GPS16X_SAMPLES,
GPS16X_KEEP
},
};
static int ncltypes = sizeof(parse_clockinfo) / sizeof(struct parse_clockinfo);
#define CLK_REALTYPE(x) ((int)(((x)->ttl) & 0x7F))
#define CLK_TYPE(x) ((CLK_REALTYPE(x) >= ncltypes) ? ~0 : CLK_REALTYPE(x))
#define CLK_UNIT(x) ((int)REFCLOCKUNIT(&(x)->srcadr))
#define CLK_PPS(x) (((x)->ttl) & 0x80)
/*
* Other constant stuff
*/
#define PARSEHSREFID 0x7f7f08ff /* 127.127.8.255 refid for hi strata */
#define PARSESTATISTICS (60*60) /* output state statistics every hour */
static int notice = 0;
#define PARSE_STATETIME(parse, i) ((parse->generic->currentstatus == i) ? parse->statetime[i] + current_time - parse->lastchange : parse->statetime[i])
static void parse_event P((struct parseunit *, int));
static void parse_process P((struct parseunit *, parsetime_t *));
static void clear_err P((struct parseunit *, u_long));
static int list_err P((struct parseunit *, u_long));
static char * l_mktime P((u_long));
/**===========================================================================
** implementation error message regression module
**/
static void
clear_err(
struct parseunit *parse,
u_long lstate
)
{
if (lstate == ERR_ALL)
{
int i;
for (i = 0; i < ERR_CNT; i++)
{
parse->errors[i].err_stage = err_tbl[i];
parse->errors[i].err_cnt = 0;
parse->errors[i].err_last = 0;
parse->errors[i].err_started = 0;
parse->errors[i].err_suppressed = 0;
}
}
else
{
parse->errors[lstate].err_stage = err_tbl[lstate];
parse->errors[lstate].err_cnt = 0;
parse->errors[lstate].err_last = 0;
parse->errors[lstate].err_started = 0;
parse->errors[lstate].err_suppressed = 0;
}
}
static int
list_err(
struct parseunit *parse,
u_long lstate
)
{
int do_it;
struct errorinfo *err = &parse->errors[lstate];
if (err->err_started == 0)
{
err->err_started = current_time;
}
do_it = (current_time - err->err_last) >= err->err_stage->err_delay;
if (do_it)
err->err_cnt++;
if (err->err_stage->err_count &&
(err->err_cnt >= err->err_stage->err_count))
{
err->err_stage++;
err->err_cnt = 0;
}
if (!err->err_cnt && do_it)
msyslog(LOG_INFO, "PARSE receiver #%d: interval for following error message class is at least %s",
CLK_UNIT(parse->peer), l_mktime(err->err_stage->err_delay));
if (!do_it)
err->err_suppressed++;
else
err->err_last = current_time;
if (do_it && err->err_suppressed)
{
msyslog(LOG_INFO, "PARSE receiver #%d: %ld message%s suppressed, error condition class persists for %s",
CLK_UNIT(parse->peer), err->err_suppressed, (err->err_suppressed == 1) ? " was" : "s where",
l_mktime(current_time - err->err_started));
err->err_suppressed = 0;
}
return do_it;
}
/*--------------------------------------------------
* mkreadable - make a printable ascii string (without
* embedded quotes so that the ntpq protocol isn't
* fooled
*/
#ifndef isprint
#define isprint(_X_) (((_X_) > 0x1F) && ((_X_) < 0x7F))
#endif
static char *
mkreadable(
char *buffer,
long blen,
const char *src,
u_long srclen,
int hex
)
{
char *b = buffer;
char *endb = (char *)0;
if (blen < 4)
return (char *)0; /* don't bother with mini buffers */
endb = buffer + blen - 4;
blen--; /* account for '\0' */
while (blen && srclen--)
{
if (!hex && /* no binary only */
(*src != '\\') && /* no plain \ */
(*src != '"') && /* no " */
isprint((int)*src)) /* only printables */
{ /* they are easy... */
*buffer++ = *src++;
blen--;
}
else
{
if (blen < 4)
{
while (blen--)
{
*buffer++ = '.';
}
*buffer = '\0';
return b;
}
else
{
if (*src == '\\')
{
strcpy(buffer,"\\\\");
buffer += 2;
blen -= 2;
src++;
}
else
{
sprintf(buffer, "\\x%02x", *src++);
blen -= 4;
buffer += 4;
}
}
}
if (srclen && !blen && endb) /* overflow - set last chars to ... */
strcpy(endb, "...");
}
*buffer = '\0';
return b;
}
/*--------------------------------------------------
* mkascii - make a printable ascii string
* assumes (unless defined better) 7-bit ASCII
*/
static char *
mkascii(
char *buffer,
long blen,
const char *src,
u_long srclen
)
{
return mkreadable(buffer, blen, src, srclen, 0);
}
/**===========================================================================
** implementation of i/o handling methods
** (all STREAM, partial STREAM, user level)
**/
/*
* define possible io handling methods
*/
#ifdef STREAM
static int ppsclock_init P((struct parseunit *));
static int stream_init P((struct parseunit *));
static void stream_end P((struct parseunit *));
static int stream_enable P((struct parseunit *));
static int stream_disable P((struct parseunit *));
static int stream_setcs P((struct parseunit *, parsectl_t *));
static int stream_getfmt P((struct parseunit *, parsectl_t *));
static int stream_setfmt P((struct parseunit *, parsectl_t *));
static int stream_timecode P((struct parseunit *, parsectl_t *));
static void stream_receive P((struct recvbuf *));
#endif
static int local_init P((struct parseunit *));
static void local_end P((struct parseunit *));
static int local_nop P((struct parseunit *));
static int local_setcs P((struct parseunit *, parsectl_t *));
static int local_getfmt P((struct parseunit *, parsectl_t *));
static int local_setfmt P((struct parseunit *, parsectl_t *));
static int local_timecode P((struct parseunit *, parsectl_t *));
static void local_receive P((struct recvbuf *));
static int local_input P((struct recvbuf *));
static bind_t io_bindings[] =
{
#ifdef STREAM
{
"parse STREAM",
stream_init,
stream_end,
stream_setcs,
stream_disable,
stream_enable,
stream_getfmt,
stream_setfmt,
stream_timecode,
stream_receive,
0,
},
{
"ppsclock STREAM",
ppsclock_init,
local_end,
local_setcs,
local_nop,
local_nop,
local_getfmt,
local_setfmt,
local_timecode,
local_receive,
local_input,
},
#endif
{
"normal",
local_init,
local_end,
local_setcs,
local_nop,
local_nop,
local_getfmt,
local_setfmt,
local_timecode,
local_receive,
local_input,
},
{
(char *)0,
}
};
#ifdef STREAM
#define fix_ts(_X_) \
if ((&(_X_))->tv.tv_usec >= 1000000) \
{ \
(&(_X_))->tv.tv_usec -= 1000000; \
(&(_X_))->tv.tv_sec += 1; \
}
#define cvt_ts(_X_, _Y_) \
{ \
l_fp ts; \
fix_ts((_X_)); \
if (!buftvtots((const char *)&(&(_X_))->tv, &ts)) \
{ \
ERR(ERR_BADDATA) \
msyslog(LOG_ERR,"parse: stream_receive: timestamp conversion error (buftvtots) (%s) (%ld.%06ld) ", (_Y_), (long)(&(_X_))->tv.tv_sec, (long)(&(_X_))->tv.tv_usec);\
return; \
} \
else \
{ \
(&(_X_))->fp = ts; \
} \
}
/*--------------------------------------------------
* ppsclock STREAM init
*/
static int
ppsclock_init(
struct parseunit *parse
)
{
static char m1[] = "ppsclocd";
static char m2[] = "ppsclock";
/*
* now push the parse streams module
* it will ensure exclusive access to the device
*/
if (ioctl(parse->generic->io.fd, I_PUSH, (caddr_t)m1) == -1 &&
ioctl(parse->generic->io.fd, I_PUSH, (caddr_t)m2) == -1)
{
if (errno != EINVAL)
{
msyslog(LOG_ERR, "PARSE receiver #%d: ppsclock_init: ioctl(fd, I_PUSH, \"ppsclock\"): %m",
CLK_UNIT(parse->peer));
}
return 0;
}
if (!local_init(parse))
{
(void)ioctl(parse->generic->io.fd, I_POP, (caddr_t)0);
return 0;
}
parse->flags |= PARSE_PPSCLOCK;
return 1;
}
/*--------------------------------------------------
* parse STREAM init
*/
static int
stream_init(
struct parseunit *parse
)
{
static char m1[] = "parse";
/*
* now push the parse streams module
* to test whether it is there (neat interface 8-( )
*/
if (ioctl(parse->generic->io.fd, I_PUSH, (caddr_t)m1) == -1)
{
if (errno != EINVAL) /* accept non-existence */
{
msyslog(LOG_ERR, "PARSE receiver #%d: stream_init: ioctl(fd, I_PUSH, \"parse\"): %m", CLK_UNIT(parse->peer));
}
return 0;
}
else
{
while(ioctl(parse->generic->io.fd, I_POP, (caddr_t)0) == 0)
/* empty loop */;
/*
* now push it a second time after we have removed all
* module garbage
*/
if (ioctl(parse->generic->io.fd, I_PUSH, (caddr_t)m1) == -1)
{
msyslog(LOG_ERR, "PARSE receiver #%d: stream_init: ioctl(fd, I_PUSH, \"parse\"): %m", CLK_UNIT(parse->peer));
return 0;
}
else
{
return 1;
}
}
}
/*--------------------------------------------------
* parse STREAM end
*/
static void
stream_end(
struct parseunit *parse
)
{
while(ioctl(parse->generic->io.fd, I_POP, (caddr_t)0) == 0)
/* empty loop */;
}
/*--------------------------------------------------
* STREAM setcs
*/
static int
stream_setcs(
struct parseunit *parse,
parsectl_t *tcl
)
{
struct strioctl strioc;
strioc.ic_cmd = PARSEIOC_SETCS;
strioc.ic_timout = 0;
strioc.ic_dp = (char *)tcl;
strioc.ic_len = sizeof (*tcl);
if (ioctl(parse->generic->io.fd, I_STR, (caddr_t)&strioc) == -1)
{
msyslog(LOG_ERR, "PARSE receiver #%d: stream_setcs: ioctl(fd, I_STR, PARSEIOC_SETCS): %m", CLK_UNIT(parse->peer));
return 0;
}
return 1;
}
/*--------------------------------------------------
* STREAM enable
*/
static int
stream_enable(
struct parseunit *parse
)
{
struct strioctl strioc;
strioc.ic_cmd = PARSEIOC_ENABLE;
strioc.ic_timout = 0;
strioc.ic_dp = (char *)0;
strioc.ic_len = 0;
if (ioctl(parse->generic->io.fd, I_STR, (caddr_t)&strioc) == -1)
{
msyslog(LOG_ERR, "PARSE receiver #%d: stream_enable: ioctl(fd, I_STR, PARSEIOC_ENABLE): %m", CLK_UNIT(parse->peer));
return 0;
}
parse->generic->io.clock_recv = stream_receive; /* ok - parse input in kernel */
return 1;
}
/*--------------------------------------------------
* STREAM disable
*/
static int
stream_disable(
struct parseunit *parse
)
{
struct strioctl strioc;
strioc.ic_cmd = PARSEIOC_DISABLE;
strioc.ic_timout = 0;
strioc.ic_dp = (char *)0;
strioc.ic_len = 0;
if (ioctl(parse->generic->io.fd, I_STR, (caddr_t)&strioc) == -1)
{
msyslog(LOG_ERR, "PARSE receiver #%d: stream_disable: ioctl(fd, I_STR, PARSEIOC_DISABLE): %m", CLK_UNIT(parse->peer));
return 0;
}
parse->generic->io.clock_recv = local_receive; /* ok - parse input in daemon */
return 1;
}
/*--------------------------------------------------
* STREAM getfmt
*/
static int
stream_getfmt(
struct parseunit *parse,
parsectl_t *tcl
)
{
struct strioctl strioc;
strioc.ic_cmd = PARSEIOC_GETFMT;
strioc.ic_timout = 0;
strioc.ic_dp = (char *)tcl;
strioc.ic_len = sizeof (*tcl);
if (ioctl(parse->generic->io.fd, I_STR, (caddr_t)&strioc) == -1)
{
msyslog(LOG_ERR, "PARSE receiver #%d: ioctl(fd, I_STR, PARSEIOC_GETFMT): %m", CLK_UNIT(parse->peer));
return 0;
}
return 1;
}
/*--------------------------------------------------
* STREAM setfmt
*/
static int
stream_setfmt(
struct parseunit *parse,
parsectl_t *tcl
)
{
struct strioctl strioc;
strioc.ic_cmd = PARSEIOC_SETFMT;
strioc.ic_timout = 0;
strioc.ic_dp = (char *)tcl;
strioc.ic_len = sizeof (*tcl);
if (ioctl(parse->generic->io.fd, I_STR, (caddr_t)&strioc) == -1)
{
msyslog(LOG_ERR, "PARSE receiver #%d: stream_setfmt: ioctl(fd, I_STR, PARSEIOC_SETFMT): %m", CLK_UNIT(parse->peer));
return 0;
}
return 1;
}
/*--------------------------------------------------
* STREAM timecode
*/
static int
stream_timecode(
struct parseunit *parse,
parsectl_t *tcl
)
{
struct strioctl strioc;
strioc.ic_cmd = PARSEIOC_TIMECODE;
strioc.ic_timout = 0;
strioc.ic_dp = (char *)tcl;
strioc.ic_len = sizeof (*tcl);
if (ioctl(parse->generic->io.fd, I_STR, (caddr_t)&strioc) == -1)
{
ERR(ERR_INTERNAL)
msyslog(LOG_ERR, "PARSE receiver #%d: stream_timecode: ioctl(fd, I_STR, PARSEIOC_TIMECODE): %m", CLK_UNIT(parse->peer));
return 0;
}
clear_err(parse, ERR_INTERNAL);
return 1;
}
/*--------------------------------------------------
* STREAM receive
*/
static void
stream_receive(
struct recvbuf *rbufp
)
{
struct parseunit *parse = (struct parseunit *)((void *)rbufp->recv_srcclock);
parsetime_t parsetime;
if (!parse->peer)
return;
if (rbufp->recv_length != sizeof(parsetime_t))
{
ERR(ERR_BADIO)
msyslog(LOG_ERR,"PARSE receiver #%d: stream_receive: bad size (got %d expected %d)",
CLK_UNIT(parse->peer), rbufp->recv_length, (int)sizeof(parsetime_t));
parse_event(parse, CEVNT_BADREPLY);
return;
}
clear_err(parse, ERR_BADIO);
memmove((caddr_t)&parsetime,
(caddr_t)rbufp->recv_buffer,
sizeof(parsetime_t));
#ifdef DEBUG
if (debug > 3)
{
printf("PARSE receiver #%d: status %06x, state %08x, time %lx.%08lx, stime %lx.%08lx, ptime %lx.%08lx\n",
CLK_UNIT(parse->peer),
(unsigned int)parsetime.parse_status,
(unsigned int)parsetime.parse_state,
(unsigned long)parsetime.parse_time.tv.tv_sec,
(unsigned long)parsetime.parse_time.tv.tv_usec,
(unsigned long)parsetime.parse_stime.tv.tv_sec,
(unsigned long)parsetime.parse_stime.tv.tv_usec,
(unsigned long)parsetime.parse_ptime.tv.tv_sec,
(unsigned long)parsetime.parse_ptime.tv.tv_usec);
}
#endif
/*
* switch time stamp world - be sure to normalize small usec field
* errors.
*/
cvt_ts(parsetime.parse_stime, "parse_stime");
if (PARSE_TIMECODE(parsetime.parse_state))
{
cvt_ts(parsetime.parse_time, "parse_time");
}
if (PARSE_PPS(parsetime.parse_state))
cvt_ts(parsetime.parse_ptime, "parse_ptime");
parse_process(parse, &parsetime);
}
#endif
/*--------------------------------------------------
* local init
*/
static int
local_init(
struct parseunit *parse
)
{
return parse_ioinit(&parse->parseio);
}
/*--------------------------------------------------
* local end
*/
static void
local_end(
struct parseunit *parse
)
{
parse_ioend(&parse->parseio);
}
/*--------------------------------------------------
* local nop
*/
static int
local_nop(
struct parseunit *parse
)
{
return 1;
}
/*--------------------------------------------------
* local setcs
*/
static int
local_setcs(
struct parseunit *parse,
parsectl_t *tcl
)
{
return parse_setcs(tcl, &parse->parseio);
}
/*--------------------------------------------------
* local getfmt
*/
static int
local_getfmt(
struct parseunit *parse,
parsectl_t *tcl
)
{
return parse_getfmt(tcl, &parse->parseio);
}
/*--------------------------------------------------
* local setfmt
*/
static int
local_setfmt(
struct parseunit *parse,
parsectl_t *tcl
)
{
return parse_setfmt(tcl, &parse->parseio);
}
/*--------------------------------------------------
* local timecode
*/
static int
local_timecode(
struct parseunit *parse,
parsectl_t *tcl
)
{
return parse_timecode(tcl, &parse->parseio);
}
/*--------------------------------------------------
* local input
*/
static int
local_input(
struct recvbuf *rbufp
)
{
struct parseunit *parse = (struct parseunit *)((void *)rbufp->recv_srcclock);
int count;
unsigned char *s;
timestamp_t ts;
if (!parse->peer)
return 0;
/*
* eat all characters, parsing then and feeding complete samples
*/
count = rbufp->recv_length;
s = (unsigned char *)rbufp->recv_buffer;
ts.fp = rbufp->recv_time;
while (count--)
{
if (parse_ioread(&parse->parseio, (unsigned int)(*s++), &ts))
{
struct recvbuf *buf;
/*
* got something good to eat
*/
if (!PARSE_PPS(parse->parseio.parse_dtime.parse_state))
{
#ifdef HAVE_PPSAPI
if (parse->flags & PARSE_PPSCLOCK)
{
struct timespec pps_timeout;
pps_info_t pps_info;
pps_timeout.tv_sec = 0;
pps_timeout.tv_nsec = 0;
if (time_pps_fetch(parse->ppshandle, PPS_TSFMT_TSPEC, &pps_info,
&pps_timeout) == 0)
{
if (pps_info.assert_sequence + pps_info.clear_sequence != parse->ppsserial)
{
double dtemp;
struct timespec pts;
/*
* add PPS time stamp if available via ppsclock module
* and not supplied already.
*/
if (parse->flags & PARSE_CLEAR)
pts = pps_info.clear_timestamp;
else
pts = pps_info.assert_timestamp;
parse->parseio.parse_dtime.parse_ptime.fp.l_ui = pts.tv_sec + JAN_1970;
dtemp = pts.tv_nsec / 1e9;
if (dtemp < 0.) {
dtemp += 1;
parse->parseio.parse_dtime.parse_ptime.fp.l_ui--;
}
if (dtemp > 1.) {
dtemp -= 1;
parse->parseio.parse_dtime.parse_ptime.fp.l_ui++;
}
parse->parseio.parse_dtime.parse_ptime.fp.l_uf = dtemp * FRAC;
parse->parseio.parse_dtime.parse_state |= PARSEB_PPS|PARSEB_S_PPS;
#ifdef DEBUG
if (debug > 3)
{
printf(
"parse: local_receive: fd %d PPSAPI seq %ld - PPS %s\n",
rbufp->fd,
(long)pps_info.assert_sequence + (long)pps_info.clear_sequence,
lfptoa(&parse->parseio.parse_dtime.parse_ptime.fp, 6));
}
#endif
}
#ifdef DEBUG
else
{
if (debug > 3)
{
printf(
"parse: local_receive: fd %d PPSAPI seq assert %ld, seq clear %ld - NO PPS event\n",
rbufp->fd,
(long)pps_info.assert_sequence, (long)pps_info.clear_sequence);
}
}
#endif
parse->ppsserial = pps_info.assert_sequence + pps_info.clear_sequence;
}
#ifdef DEBUG
else
{
if (debug > 3)
{
printf(
"parse: local_receive: fd %d PPSAPI time_pps_fetch errno = %d\n",
rbufp->fd,
errno);
}
}
#endif
}
#else
#ifdef TIOCDCDTIMESTAMP
struct timeval dcd_time;
if (ioctl(rbufp->fd, TIOCDCDTIMESTAMP, &dcd_time) != -1)
{
l_fp tstmp;
TVTOTS(&dcd_time, &tstmp);
tstmp.l_ui += JAN_1970;
L_SUB(&ts.fp, &tstmp);
if (ts.fp.l_ui == 0)
{
#ifdef DEBUG
if (debug)
{
printf(
"parse: local_receive: fd %d DCDTIMESTAMP %s\n",
rbufp->fd,
lfptoa(&tstmp, 6));
printf(" sigio %s\n",
lfptoa(&ts.fp, 6));
}
#endif
parse->parseio.parse_dtime.parse_ptime.fp = tstmp;
parse->parseio.parse_dtime.parse_state |= PARSEB_PPS|PARSEB_S_PPS;
}
}
#else /* TIOCDCDTIMESTAMP */
#if defined(HAVE_STRUCT_PPSCLOCKEV) && (defined(HAVE_CIOGETEV) || defined(HAVE_TIOCGPPSEV))
if (parse->flags & PARSE_PPSCLOCK)
{
l_fp tts;
struct ppsclockev ev;
#ifdef HAVE_CIOGETEV
if (ioctl(parse->generic->io.fd, CIOGETEV, (caddr_t)&ev) == 0)
#endif
#ifdef HAVE_TIOCGPPSEV
if (ioctl(parse->generic->io.fd, TIOCGPPSEV, (caddr_t)&ev) == 0)
#endif
{
if (ev.serial != parse->ppsserial)
{
/*
* add PPS time stamp if available via ppsclock module
* and not supplied already.
*/
if (!buftvtots((const char *)&ev.tv, &tts))
{
ERR(ERR_BADDATA)
msyslog(LOG_ERR,"parse: local_receive: timestamp conversion error (buftvtots) (ppsclockev.tv)");
}
else
{
parse->parseio.parse_dtime.parse_ptime.fp = tts;
parse->parseio.parse_dtime.parse_state |= PARSEB_PPS|PARSEB_S_PPS;
}
}
parse->ppsserial = ev.serial;
}
}
#endif
#endif /* TIOCDCDTIMESTAMP */
#endif /* HAVE_PPSAPI */
}
if (count)
{ /* simulate receive */
buf = get_free_recv_buffer();
if (buf != NULL) {
memmove((caddr_t)buf->recv_buffer,
(caddr_t)&parse->parseio.parse_dtime,
sizeof(parsetime_t));
buf->recv_length = sizeof(parsetime_t);
buf->recv_time = rbufp->recv_time;
buf->srcadr = rbufp->srcadr;
buf->dstadr = rbufp->dstadr;
buf->receiver = rbufp->receiver;
buf->fd = rbufp->fd;
buf->X_from_where = rbufp->X_from_where;
add_full_recv_buffer(buf);
}
parse_iodone(&parse->parseio);
}
else
{
memmove((caddr_t)rbufp->recv_buffer,
(caddr_t)&parse->parseio.parse_dtime,
sizeof(parsetime_t));
parse_iodone(&parse->parseio);
rbufp->recv_length = sizeof(parsetime_t);
return 1; /* got something & in place return */
}
}
}
return 0; /* nothing to pass up */
}
/*--------------------------------------------------
* local receive
*/
static void
local_receive(
struct recvbuf *rbufp
)
{
struct parseunit *parse = (struct parseunit *)((void *)rbufp->recv_srcclock);
parsetime_t parsetime;
if (!parse->peer)
return;
if (rbufp->recv_length != sizeof(parsetime_t))
{
ERR(ERR_BADIO)
msyslog(LOG_ERR,"PARSE receiver #%d: local_receive: bad size (got %d expected %d)",
CLK_UNIT(parse->peer), rbufp->recv_length, (int)sizeof(parsetime_t));
parse_event(parse, CEVNT_BADREPLY);
return;
}
clear_err(parse, ERR_BADIO);
memmove((caddr_t)&parsetime,
(caddr_t)rbufp->recv_buffer,
sizeof(parsetime_t));
#ifdef DEBUG
if (debug > 3)
{
printf("PARSE receiver #%d: status %06x, state %08x, time(fp) %lx.%08lx, stime(fp) %lx.%08lx, ptime(fp) %lx.%08lx\n",
CLK_UNIT(parse->peer),
(unsigned int)parsetime.parse_status,
(unsigned int)parsetime.parse_state,
(unsigned long)parsetime.parse_time.fp.l_ui,
(unsigned long)parsetime.parse_time.fp.l_uf,
(unsigned long)parsetime.parse_stime.fp.l_ui,
(unsigned long)parsetime.parse_stime.fp.l_uf,
(unsigned long)parsetime.parse_ptime.fp.l_ui,
(unsigned long)parsetime.parse_ptime.fp.l_uf);
}
#endif
parse_process(parse, &parsetime);
}
/*--------------------------------------------------
* init_iobinding - find and initialize lower layers
*/
static bind_t *
init_iobinding(
struct parseunit *parse
)
{
bind_t *b = io_bindings;
while (b->bd_description != (char *)0)
{
if ((*b->bd_init)(parse))
{
return b;
}
b++;
}
return (bind_t *)0;
}
/**===========================================================================
** support routines
**/
/*--------------------------------------------------
* convert a flag field to a string
*/
static char *
parsestate(
u_long lstate,
char *buffer,
int size
)
{
static struct bits
{
u_long bit;
const char *name;
} flagstrings[] =
{
{ PARSEB_ANNOUNCE, "DST SWITCH WARNING" },
{ PARSEB_POWERUP, "NOT SYNCHRONIZED" },
{ PARSEB_NOSYNC, "TIME CODE NOT CONFIRMED" },
{ PARSEB_DST, "DST" },
{ PARSEB_UTC, "UTC DISPLAY" },
{ PARSEB_LEAPADD, "LEAP ADD WARNING" },
{ PARSEB_LEAPDEL, "LEAP DELETE WARNING" },
{ PARSEB_LEAPSECOND, "LEAP SECOND" },
{ PARSEB_ALTERNATE, "ALTERNATE ANTENNA" },
{ PARSEB_TIMECODE, "TIME CODE" },
{ PARSEB_PPS, "PPS" },
{ PARSEB_POSITION, "POSITION" },
{ 0 }
};
static struct sbits
{
u_long bit;
const char *name;
} sflagstrings[] =
{
{ PARSEB_S_LEAP, "LEAP INDICATION" },
{ PARSEB_S_PPS, "PPS SIGNAL" },
{ PARSEB_S_ANTENNA, "ANTENNA" },
{ PARSEB_S_POSITION, "POSITION" },
{ 0 }
};
int i;
char *s, *t;
*buffer = '\0';
s = t = buffer;
i = 0;
while (flagstrings[i].bit)
{
if (flagstrings[i].bit & lstate)
{
if (s != t)
strncpy(t, "; ", BUFFER_SIZES(buffer, t, size));
strncat(t, flagstrings[i].name, BUFFER_SIZES(buffer, t, size));
t += strlen(t);
}
i++;
}
if (lstate & (PARSEB_S_LEAP|PARSEB_S_ANTENNA|PARSEB_S_PPS|PARSEB_S_POSITION))
{
if (s != t)
strncpy(t, "; ", BUFFER_SIZES(buffer, t, size));
t += strlen(t);
strncpy(t, "(", BUFFER_SIZES(buffer, t, size));
s = t = t + strlen(t);
i = 0;
while (sflagstrings[i].bit)
{
if (sflagstrings[i].bit & lstate)
{
if (t != s)
{
strncpy(t, "; ", BUFFER_SIZES(buffer, t, size));
t += 2;
}
strncpy(t, sflagstrings[i].name, BUFFER_SIZES(buffer, t, size));
t += strlen(t);
}
i++;
}
strncpy(t, ")", BUFFER_SIZES(buffer, t, size));
}
return buffer;
}
/*--------------------------------------------------
* convert a status flag field to a string
*/
static char *
parsestatus(
u_long lstate,
char *buffer,
int size
)
{
static struct bits
{
u_long bit;
const char *name;
} flagstrings[] =
{
{ CVT_OK, "CONVERSION SUCCESSFUL" },
{ CVT_NONE, "NO CONVERSION" },
{ CVT_FAIL, "CONVERSION FAILED" },
{ CVT_BADFMT, "ILLEGAL FORMAT" },
{ CVT_BADDATE, "DATE ILLEGAL" },
{ CVT_BADTIME, "TIME ILLEGAL" },
{ CVT_ADDITIONAL, "ADDITIONAL DATA" },
{ 0 }
};
int i;
*buffer = '\0';
i = 0;
while (flagstrings[i].bit)
{
if (flagstrings[i].bit & lstate)
{
if (buffer[0])
strncat(buffer, "; ", size);
strncat(buffer, flagstrings[i].name, size);
}
i++;
}
return buffer;
}
/*--------------------------------------------------
* convert a clock status flag field to a string
*/
static const char *
clockstatus(
u_long lstate
)
{
static char buffer[20];
static struct status
{
u_long value;
const char *name;
} flagstrings[] =
{
{ CEVNT_NOMINAL, "NOMINAL" },
{ CEVNT_TIMEOUT, "NO RESPONSE" },
{ CEVNT_BADREPLY,"BAD FORMAT" },
{ CEVNT_FAULT, "FAULT" },
{ CEVNT_PROP, "PROPAGATION DELAY" },
{ CEVNT_BADDATE, "ILLEGAL DATE" },
{ CEVNT_BADTIME, "ILLEGAL TIME" },
{ (unsigned)~0L }
};
int i;
i = 0;
while (flagstrings[i].value != ~0)
{
if (flagstrings[i].value == lstate)
{
return flagstrings[i].name;
}
i++;
}
snprintf(buffer, sizeof(buffer), "unknown #%ld", (u_long)lstate);
return buffer;
}
/*--------------------------------------------------
* l_mktime - make representation of a relative time
*/
static char *
l_mktime(
u_long delta
)
{
u_long tmp, m, s;
static char buffer[40];
char *t;
buffer[0] = '\0';
if ((tmp = delta / (60*60*24)) != 0)
{
snprintf(buffer, BUFFER_SIZE(buffer, buffer), "%ldd+", (u_long)tmp);
delta -= tmp * 60*60*24;
}
s = delta % 60;
delta /= 60;
m = delta % 60;
delta /= 60;
t = buffer + strlen(buffer);
snprintf(t, BUFFER_SIZE(buffer, t), "%02d:%02d:%02d",
(int)delta, (int)m, (int)s);
return buffer;
}
/*--------------------------------------------------
* parse_statistics - list summary of clock states
*/
static void
parse_statistics(
struct parseunit *parse
)
{
int i;
NLOG(NLOG_CLOCKSTATIST) /* conditional if clause for conditional syslog */
{
msyslog(LOG_INFO, "PARSE receiver #%d: running time: %s",
CLK_UNIT(parse->peer),
l_mktime(current_time - parse->generic->timestarted));
msyslog(LOG_INFO, "PARSE receiver #%d: current status: %s",
CLK_UNIT(parse->peer),
clockstatus(parse->generic->currentstatus));
for (i = 0; i <= CEVNT_MAX; i++)
{
u_long s_time;
u_long percent, d = current_time - parse->generic->timestarted;
percent = s_time = PARSE_STATETIME(parse, i);
while (((u_long)(~0) / 10000) < percent)
{
percent /= 10;
d /= 10;
}
if (d)
percent = (percent * 10000) / d;
else
percent = 10000;
if (s_time)
msyslog(LOG_INFO, "PARSE receiver #%d: state %18s: %13s (%3ld.%02ld%%)",
CLK_UNIT(parse->peer),
clockstatus((unsigned int)i),
l_mktime(s_time),
percent / 100, percent % 100);
}
}
}
/*--------------------------------------------------
* cparse_statistics - wrapper for statistics call
*/
static void
cparse_statistics(
struct parseunit *parse
)
{
if (parse->laststatistic + PARSESTATISTICS < current_time)
parse_statistics(parse);
parse->laststatistic = current_time;
}
/**===========================================================================
** ntp interface routines
**/
/*--------------------------------------------------
* parse_shutdown - shut down a PARSE clock
*/
static void
parse_shutdown(
int unit,
struct peer *peer
)
{
struct parseunit *parse = (struct parseunit *)0;
if (peer && peer->procptr)
parse = (struct parseunit *)peer->procptr->unitptr;
if (!parse)
{
/* nothing to clean up */
return;
}
if (!parse->peer)
{
msyslog(LOG_INFO, "PARSE receiver #%d: INTERNAL ERROR - unit already inactive - shutdown ignored", unit);
return;
}
#ifdef HAVE_PPSAPI
if (parse->flags & PARSE_PPSCLOCK)
{
(void)time_pps_destroy(parse->ppshandle);
}
#endif
/*
* print statistics a last time and
* stop statistics machine
*/
parse_statistics(parse);
if (parse->parse_type->cl_end)
{
parse->parse_type->cl_end(parse);
}
/*
* Tell the I/O module to turn us off. We're history.
*/
io_closeclock(&parse->generic->io);
if (parse->binding)
PARSE_END(parse);
free_varlist(parse->kv);
NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
msyslog(LOG_INFO, "PARSE receiver #%d: reference clock \"%s\" removed",
CLK_UNIT(parse->peer), parse->parse_type->cl_description);
parse->peer = (struct peer *)0; /* unused now */
peer->procptr->unitptr = (caddr_t)0;
free(parse);
}
#ifdef HAVE_PPSAPI
/*----------------------------------------
* set up HARDPPS via PPSAPI
*/
static void
parse_hardpps(
struct parseunit *parse,
int mode
)
{
if (parse->hardppsstate == mode)
return;
if (CLK_PPS(parse->peer) && (parse->flags & PARSE_PPSKERNEL)) {
int i = 0;
if (mode == PARSE_HARDPPS_ENABLE)
{
if (parse->flags & PARSE_CLEAR)
i = PPS_CAPTURECLEAR;
else
i = PPS_CAPTUREASSERT;
}
if (time_pps_kcbind(parse->ppshandle, PPS_KC_HARDPPS, i,
PPS_TSFMT_TSPEC) < 0) {
msyslog(LOG_ERR, "PARSE receiver #%d: time_pps_kcbind failed: %m",
CLK_UNIT(parse->peer));
} else {
NLOG(NLOG_CLOCKINFO)
msyslog(LOG_INFO, "PARSE receiver #%d: HARDPPS %sabled",
CLK_UNIT(parse->peer), (mode == PARSE_HARDPPS_ENABLE) ? "en" : "dis");
/*
* tell the rest, that we have a kernel PPS source, iff we ever enable HARDPPS
*/
if (mode == PARSE_HARDPPS_ENABLE)
pps_enable = 1;
}
}
parse->hardppsstate = mode;
}
/*----------------------------------------
* set up PPS via PPSAPI
*/
static int
parse_ppsapi(
struct parseunit *parse
)
{
int cap, mode, mode1;
char *cp;
parse->flags &= ~PARSE_PPSCLOCK;
if (time_pps_getcap(parse->ppshandle, &cap) < 0) {
msyslog(LOG_ERR, "PARSE receiver #%d: parse_ppsapi: time_pps_getcap failed: %m",
CLK_UNIT(parse->peer));
return 0;
}
if (time_pps_getparams(parse->ppshandle, &parse->ppsparams) < 0) {
msyslog(LOG_ERR, "PARSE receiver #%d: parse_ppsapi: time_pps_getparams failed: %m",
CLK_UNIT(parse->peer));
return 0;
}
/* nb. only turn things on, if someone else has turned something
* on before we get here, leave it alone!
*/
if (parse->flags & PARSE_CLEAR) {
cp = "CLEAR";
mode = PPS_CAPTURECLEAR;
mode1 = PPS_OFFSETCLEAR;
} else {
cp = "ASSERT";
mode = PPS_CAPTUREASSERT;
mode1 = PPS_OFFSETASSERT;
}
msyslog(LOG_INFO, "PARSE receiver #%d: initializing PPS to %s",
CLK_UNIT(parse->peer), cp);
if (!(mode & cap)) {
msyslog(LOG_ERR, "PARSE receiver #%d: FAILED to initialize PPS to %s (PPS API capabilities=0x%x)",
CLK_UNIT(parse->peer), cp, cap);
return 0;
}
if (!(mode1 & cap)) {
msyslog(LOG_WARNING, "PARSE receiver #%d: Cannot set PPS_%sCLEAR, this will increase jitter (PPS API capabilities=0x%x)",
CLK_UNIT(parse->peer), cp, cap);
mode1 = 0;
} else {
if (mode1 == PPS_OFFSETCLEAR)
{
parse->ppsparams.clear_offset.tv_sec = -parse->ppsphaseadjust;
parse->ppsparams.clear_offset.tv_nsec = -1e9*(parse->ppsphaseadjust - (long)parse->ppsphaseadjust);
}
if (mode1 == PPS_OFFSETASSERT)
{
parse->ppsparams.assert_offset.tv_sec = -parse->ppsphaseadjust;
parse->ppsparams.assert_offset.tv_nsec = -1e9*(parse->ppsphaseadjust - (long)parse->ppsphaseadjust);
}
}
/* only set what is legal */
parse->ppsparams.mode = (mode | mode1 | PPS_TSFMT_TSPEC) & cap;
if (time_pps_setparams(parse->ppshandle, &parse->ppsparams) < 0) {
msyslog(LOG_ERR, "PARSE receiver #%d: FAILED set PPS parameters: %m",
CLK_UNIT(parse->peer));
return 0;
}
parse->flags |= PARSE_PPSCLOCK;
return 1;
}
#else
#define parse_hardpps(_PARSE_, _MODE_) /* empty */
#endif
/*--------------------------------------------------
* parse_start - open the PARSE devices and initialize data for processing
*/
static int
parse_start(
int sysunit,
struct peer *peer
)
{
u_int unit;
int fd232;
#ifdef HAVE_TERMIOS
struct termios tio; /* NEEDED FOR A LONG TIME ! */
#endif
#ifdef HAVE_SYSV_TTYS
struct termio tio; /* NEEDED FOR A LONG TIME ! */
#endif
struct parseunit * parse;
char parsedev[sizeof(PARSEDEVICE)+20];
parsectl_t tmp_ctl;
u_int type;
/*
* get out Copyright information once
*/
if (!notice)
{
NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
msyslog(LOG_INFO, "NTP PARSE support: Copyright (c) 1989-2006, Frank Kardel");
notice = 1;
}
type = CLK_TYPE(peer);
unit = CLK_UNIT(peer);
if ((type == ~0) || (parse_clockinfo[type].cl_description == (char *)0))
{
msyslog(LOG_ERR, "PARSE receiver #%d: parse_start: unsupported clock type %d (max %d)",
unit, CLK_REALTYPE(peer), ncltypes-1);
return 0;
}
/*
* Unit okay, attempt to open the device.
*/
(void) snprintf(parsedev, sizeof(parsedev), PARSEDEVICE, unit);
#ifndef O_NOCTTY
#define O_NOCTTY 0
#endif
fd232 = open(parsedev, O_RDWR | O_NOCTTY
#ifdef O_NONBLOCK
| O_NONBLOCK
#endif
, 0777);
if (fd232 == -1)
{
msyslog(LOG_ERR, "PARSE receiver #%d: parse_start: open of %s failed: %m", unit, parsedev);
return 0;
}
parse = (struct parseunit *)emalloc(sizeof(struct parseunit));
memset((char *)parse, 0, sizeof(struct parseunit));
parse->generic = peer->procptr; /* link up */
parse->generic->unitptr = (caddr_t)parse; /* link down */
/*
* Set up the structures
*/
parse->generic->timestarted = current_time;
parse->lastchange = current_time;
parse->flags = 0;
parse->pollneeddata = 0;
parse->laststatistic = current_time;
parse->lastformat = (unsigned short)~0; /* assume no format known */
parse->timedata.parse_status = (unsigned short)~0; /* be sure to mark initial status change */
parse->lastmissed = 0; /* assume got everything */
parse->ppsserial = 0;
parse->localdata = (void *)0;
parse->localstate = 0;
parse->kv = (struct ctl_var *)0;
clear_err(parse, ERR_ALL);
parse->parse_type = &parse_clockinfo[type];
parse->maxunsync = parse->parse_type->cl_maxunsync;
parse->generic->fudgetime1 = parse->parse_type->cl_basedelay;
parse->generic->fudgetime2 = 0.0;
parse->ppsphaseadjust = parse->generic->fudgetime2;
parse->generic->clockdesc = parse->parse_type->cl_description;
peer->rootdelay = parse->parse_type->cl_rootdelay;
peer->sstclktype = parse->parse_type->cl_type;
peer->precision = sys_precision;
peer->stratum = STRATUM_REFCLOCK;
if (peer->stratum <= 1)
memmove((char *)&parse->generic->refid, parse->parse_type->cl_id, 4);
else
parse->generic->refid = htonl(PARSEHSREFID);
parse->generic->io.fd = fd232;
parse->peer = peer; /* marks it also as busy */
/*
* configure terminal line
*/
if (TTY_GETATTR(fd232, &tio) == -1)
{
msyslog(LOG_ERR, "PARSE receiver #%d: parse_start: tcgetattr(%d, &tio): %m", unit, fd232);
parse_shutdown(CLK_UNIT(parse->peer), peer); /* let our cleaning staff do the work */
return 0;
}
else
{
#ifndef _PC_VDISABLE
memset((char *)tio.c_cc, 0, sizeof(tio.c_cc));
#else
int disablec;
errno = 0; /* pathconf can deliver -1 without changing errno ! */
disablec = fpathconf(parse->generic->io.fd, _PC_VDISABLE);
if (disablec == -1 && errno)
{
msyslog(LOG_ERR, "PARSE receiver #%d: parse_start: fpathconf(fd, _PC_VDISABLE): %m", CLK_UNIT(parse->peer));
memset((char *)tio.c_cc, 0, sizeof(tio.c_cc)); /* best guess */
}
else
if (disablec != -1)
memset((char *)tio.c_cc, disablec, sizeof(tio.c_cc));
#endif
#if defined (VMIN) || defined(VTIME)
if ((parse_clockinfo[type].cl_lflag & ICANON) == 0)
{
#ifdef VMIN
tio.c_cc[VMIN] = 1;
#endif
#ifdef VTIME
tio.c_cc[VTIME] = 0;
#endif
}
#endif
tio.c_cflag = parse_clockinfo[type].cl_cflag;
tio.c_iflag = parse_clockinfo[type].cl_iflag;
tio.c_oflag = parse_clockinfo[type].cl_oflag;
tio.c_lflag = parse_clockinfo[type].cl_lflag;
#ifdef HAVE_TERMIOS
if ((cfsetospeed(&tio, parse_clockinfo[type].cl_speed) == -1) ||
(cfsetispeed(&tio, parse_clockinfo[type].cl_speed) == -1))
{
msyslog(LOG_ERR, "PARSE receiver #%d: parse_start: tcset{i,o}speed(&tio, speed): %m", unit);
parse_shutdown(CLK_UNIT(parse->peer), peer); /* let our cleaning staff do the work */
return 0;
}
#else
tio.c_cflag |= parse_clockinfo[type].cl_speed;
#endif
/*
* Linux PPS - the old way
*/
#if defined(HAVE_TIO_SERIAL_STUFF) /* Linux hack: define PPS interface */
{
struct serial_struct ss;
if (ioctl(fd232, TIOCGSERIAL, &ss) < 0 ||
(
#ifdef ASYNC_LOW_LATENCY
ss.flags |= ASYNC_LOW_LATENCY,
#endif
#ifndef HAVE_PPSAPI
#ifdef ASYNC_PPS_CD_NEG
ss.flags |= ASYNC_PPS_CD_NEG,
#endif
#endif
ioctl(fd232, TIOCSSERIAL, &ss)) < 0) {
msyslog(LOG_NOTICE, "refclock_parse: TIOCSSERIAL fd %d, %m", fd232);
msyslog(LOG_NOTICE,
"refclock_parse: optional PPS processing not available");
} else {
parse->flags |= PARSE_PPSCLOCK;
#ifdef ASYNC_PPS_CD_NEG
NLOG(NLOG_CLOCKINFO)
msyslog(LOG_INFO,
"refclock_parse: PPS detection on");
#endif
}
}
#endif
/*
* SUN the Solaris way
*/
#ifdef HAVE_TIOCSPPS /* SUN PPS support */
if (CLK_PPS(parse->peer))
{
int i = 1;
if (ioctl(fd232, TIOCSPPS, (caddr_t)&i) == 0)
{
parse->flags |= PARSE_PPSCLOCK;
}
}
#endif
/*
* PPS via PPSAPI
*/
#if defined(HAVE_PPSAPI)
parse->hardppsstate = PARSE_HARDPPS_DISABLE;
if (CLK_PPS(parse->peer))
{
if (time_pps_create(fd232, &parse->ppshandle) < 0)
{
msyslog(LOG_NOTICE, "PARSE receiver #%d: parse_start: could not set up PPS: %m", CLK_UNIT(parse->peer));
}
else
{
parse_ppsapi(parse);
}
}
#endif
if (TTY_SETATTR(fd232, &tio) == -1)
{
msyslog(LOG_ERR, "PARSE receiver #%d: parse_start: tcsetattr(%d, &tio): %m", unit, fd232);
parse_shutdown(CLK_UNIT(parse->peer), peer); /* let our cleaning staff do the work */
return 0;
}
}
/*
* pick correct input machine
*/
parse->generic->io.srcclock = (caddr_t)parse;
parse->generic->io.datalen = 0;
parse->binding = init_iobinding(parse);
if (parse->binding == (bind_t *)0)
{
msyslog(LOG_ERR, "PARSE receiver #%d: parse_start: io sub system initialisation failed.", CLK_UNIT(parse->peer));
parse_shutdown(CLK_UNIT(parse->peer), peer); /* let our cleaning staff do the work */
return 0; /* well, ok - special initialisation broke */
}
parse->generic->io.clock_recv = parse->binding->bd_receive; /* pick correct receive routine */
parse->generic->io.io_input = parse->binding->bd_io_input; /* pick correct input routine */
/*
* as we always(?) get 8 bit chars we want to be
* sure, that the upper bits are zero for less
* than 8 bit I/O - so we pass that information on.
* note that there can be only one bit count format
* per file descriptor
*/
switch (tio.c_cflag & CSIZE)
{
case CS5:
tmp_ctl.parsesetcs.parse_cs = PARSE_IO_CS5;
break;
case CS6:
tmp_ctl.parsesetcs.parse_cs = PARSE_IO_CS6;
break;
case CS7:
tmp_ctl.parsesetcs.parse_cs = PARSE_IO_CS7;
break;
case CS8:
tmp_ctl.parsesetcs.parse_cs = PARSE_IO_CS8;
break;
}
if (!PARSE_SETCS(parse, &tmp_ctl))
{
msyslog(LOG_ERR, "PARSE receiver #%d: parse_start: parse_setcs() FAILED.", unit);
parse_shutdown(CLK_UNIT(parse->peer), peer); /* let our cleaning staff do the work */
return 0; /* well, ok - special initialisation broke */
}
strncpy(tmp_ctl.parseformat.parse_buffer, parse->parse_type->cl_format, sizeof(tmp_ctl.parseformat.parse_buffer));
tmp_ctl.parseformat.parse_count = strlen(tmp_ctl.parseformat.parse_buffer);
if (!PARSE_SETFMT(parse, &tmp_ctl))
{
msyslog(LOG_ERR, "PARSE receiver #%d: parse_start: parse_setfmt() FAILED.", unit);
parse_shutdown(CLK_UNIT(parse->peer), peer); /* let our cleaning staff do the work */
return 0; /* well, ok - special initialisation broke */
}
/*
* get rid of all IO accumulated so far
*/
#ifdef HAVE_TERMIOS
(void) tcflush(parse->generic->io.fd, TCIOFLUSH);
#else
#if defined(TCFLSH) && defined(TCIOFLUSH)
{
int flshcmd = TCIOFLUSH;
(void) ioctl(parse->generic->io.fd, TCFLSH, (caddr_t)&flshcmd);
}
#endif
#endif
/*
* try to do any special initializations
*/
if (parse->parse_type->cl_init)
{
if (parse->parse_type->cl_init(parse))
{
parse_shutdown(CLK_UNIT(parse->peer), peer); /* let our cleaning staff do the work */
return 0; /* well, ok - special initialisation broke */
}
}
/*
* Insert in async io device list.
*/
if (!io_addclock(&parse->generic->io))
{
msyslog(LOG_ERR,
"PARSE receiver #%d: parse_start: addclock %s fails (ABORT - clock type requires async io)", CLK_UNIT(parse->peer), parsedev);
parse_shutdown(CLK_UNIT(parse->peer), peer); /* let our cleaning staff do the work */
return 0;
}
/*
* print out configuration
*/
NLOG(NLOG_CLOCKINFO)
{
/* conditional if clause for conditional syslog */
msyslog(LOG_INFO, "PARSE receiver #%d: reference clock \"%s\" (device %s) added",
CLK_UNIT(parse->peer),
parse->parse_type->cl_description, parsedev);
msyslog(LOG_INFO, "PARSE receiver #%d: Stratum %d, %sPPS support, trust time %s, precision %d",
CLK_UNIT(parse->peer),
parse->peer->stratum, CLK_PPS(parse->peer) ? "" : "no ",
l_mktime(parse->maxunsync), parse->peer->precision);
msyslog(LOG_INFO, "PARSE receiver #%d: rootdelay %.6f s, phase adjustment %.6f s, PPS phase adjustment %.6f s, %s IO handling",
CLK_UNIT(parse->peer),
parse->parse_type->cl_rootdelay,
parse->generic->fudgetime1,
parse->ppsphaseadjust,
parse->binding->bd_description);
msyslog(LOG_INFO, "PARSE receiver #%d: Format recognition: %s", CLK_UNIT(parse->peer),
parse->parse_type->cl_format);
msyslog(LOG_INFO, "PARSE receiver #%d: %sPPS ioctl support%s", CLK_UNIT(parse->peer),
(parse->flags & PARSE_PPSCLOCK) ? "" : "NO ",
#ifdef PPS_METHOD
" (interface is " PPS_METHOD ")"
#else
""
#endif
);
}
return 1;
}
/*--------------------------------------------------
* parse_ctl - process changes on flags/time values
*/
static void
parse_ctl(
struct parseunit *parse,
struct refclockstat *in
)
{
if (in)
{
if (in->haveflags & (CLK_HAVEFLAG1|CLK_HAVEFLAG2|CLK_HAVEFLAG3|CLK_HAVEFLAG4))
{
parse->flags = (parse->flags & ~(CLK_FLAG1|CLK_FLAG2|CLK_FLAG3|CLK_FLAG4)) |
(in->flags & (CLK_FLAG1|CLK_FLAG2|CLK_FLAG3|CLK_FLAG4));
#if defined(HAVE_PPSAPI)
if (CLK_PPS(parse->peer))
{
parse_ppsapi(parse);
}
#endif
}
if (in->haveflags & CLK_HAVETIME1)
{
parse->generic->fudgetime1 = in->fudgetime1;
msyslog(LOG_INFO, "PARSE receiver #%d: new phase adjustment %.6f s",
CLK_UNIT(parse->peer),
parse->generic->fudgetime1);
}
if (in->haveflags & CLK_HAVETIME2)
{
parse->generic->fudgetime2 = in->fudgetime2;
if (parse->flags & PARSE_TRUSTTIME)
{
parse->maxunsync = (u_long)ABS(in->fudgetime2);
msyslog(LOG_INFO, "PARSE receiver #%d: new trust time %s",
CLK_UNIT(parse->peer),
l_mktime(parse->maxunsync));
}
else
{
parse->ppsphaseadjust = in->fudgetime2;
msyslog(LOG_INFO, "PARSE receiver #%d: new PPS phase adjustment %.6f s",
CLK_UNIT(parse->peer),
parse->ppsphaseadjust);
#if defined(HAVE_PPSAPI)
if (CLK_PPS(parse->peer))
{
parse_ppsapi(parse);
}
#endif
}
}
}
}
/*--------------------------------------------------
* parse_poll - called by the transmit procedure
*/
static void
parse_poll(
int unit,
struct peer *peer
)
{
struct parseunit *parse = (struct parseunit *)peer->procptr->unitptr;
if (peer != parse->peer)
{
msyslog(LOG_ERR,
"PARSE receiver #%d: poll: INTERNAL: peer incorrect",
unit);
return;
}
/*
* Update clock stat counters
*/
parse->generic->polls++;
if (parse->pollneeddata &&
((current_time - parse->pollneeddata) > (1<<(max(min(parse->peer->hpoll, parse->peer->ppoll), parse->peer->minpoll)))))
{
/*
* start worrying when exceeding a poll inteval
* bad news - didn't get a response last time
*/
parse->lastmissed = current_time;
parse_event(parse, CEVNT_TIMEOUT);
ERR(ERR_NODATA)
msyslog(LOG_WARNING, "PARSE receiver #%d: no data from device within poll interval (check receiver / wiring)", CLK_UNIT(parse->peer));
}
/*
* we just mark that we want the next sample for the clock filter
*/
parse->pollneeddata = current_time;
if (parse->parse_type->cl_poll)
{
parse->parse_type->cl_poll(parse);
}
cparse_statistics(parse);
return;
}
#define LEN_STATES 300 /* length of state string */
/*--------------------------------------------------
* parse_control - set fudge factors, return statistics
*/
static void
parse_control(
int unit,
struct refclockstat *in,
struct refclockstat *out,
struct peer *peer
)
{
struct parseunit *parse = (struct parseunit *)peer->procptr->unitptr;
parsectl_t tmpctl;
static char outstatus[400]; /* status output buffer */
if (out)
{
out->lencode = 0;
out->p_lastcode = 0;
out->kv_list = (struct ctl_var *)0;
}
if (!parse || !parse->peer)
{
msyslog(LOG_ERR, "PARSE receiver #%d: parse_control: unit invalid (UNIT INACTIVE)",
unit);
return;
}
unit = CLK_UNIT(parse->peer);
/*
* handle changes
*/
parse_ctl(parse, in);
/*
* supply data
*/
if (out)
{
u_long sum = 0;
char *tt, *start;
int i;
outstatus[0] = '\0';
out->type = REFCLK_PARSE;
/*
* keep fudgetime2 in sync with TRUSTTIME/MAXUNSYNC flag1
*/
parse->generic->fudgetime2 = (parse->flags & PARSE_TRUSTTIME) ? (double)parse->maxunsync : parse->ppsphaseadjust;
/*
* figure out skew between PPS and RS232 - just for informational
* purposes
*/
if (PARSE_SYNC(parse->timedata.parse_state))
{
if (PARSE_PPS(parse->timedata.parse_state) && PARSE_TIMECODE(parse->timedata.parse_state))
{
l_fp off;
/*
* we have a PPS and RS232 signal - calculate the skew
* WARNING: assumes on TIMECODE == PULSE (timecode after pulse)
*/
off = parse->timedata.parse_stime.fp;
L_SUB(&off, &parse->timedata.parse_ptime.fp); /* true offset */
tt = add_var(&out->kv_list, 80, RO);
snprintf(tt, 80, "refclock_ppsskew=%s", lfptoms(&off, 6));
}
}
if (PARSE_PPS(parse->timedata.parse_state))
{
tt = add_var(&out->kv_list, 80, RO|DEF);
snprintf(tt, 80, "refclock_ppstime=\"%s\"", gmprettydate(&parse->timedata.parse_ptime.fp));
}
start = tt = add_var(&out->kv_list, 128, RO|DEF);
snprintf(tt, 128, "refclock_time=\"");
tt += strlen(tt);
if (parse->timedata.parse_time.fp.l_ui == 0)
{
strncpy(tt, "<UNDEFINED>\"", BUFFER_SIZES(start, tt, 128));
}
else
{
snprintf(tt, 128, "%s\"", gmprettydate(&parse->timedata.parse_time.fp));
}
if (!PARSE_GETTIMECODE(parse, &tmpctl))
{
ERR(ERR_INTERNAL)
msyslog(LOG_ERR, "PARSE receiver #%d: parse_control: parse_timecode() FAILED", unit);
}
else
{
start = tt = add_var(&out->kv_list, 512, RO|DEF);
snprintf(tt, 512, "refclock_status=\"");
tt += strlen(tt);
/*
* copy PPS flags from last read transaction (informational only)
*/
tmpctl.parsegettc.parse_state |= parse->timedata.parse_state &
(PARSEB_PPS|PARSEB_S_PPS);
(void) parsestate(tmpctl.parsegettc.parse_state, tt, BUFFER_SIZES(start, tt, 512));
strncat(tt, "\"", BUFFER_SIZES(start, tt, 512));
if (tmpctl.parsegettc.parse_count)
mkascii(outstatus+strlen(outstatus), (int)(sizeof(outstatus)- strlen(outstatus) - 1),
tmpctl.parsegettc.parse_buffer, (unsigned)(tmpctl.parsegettc.parse_count));
}
tmpctl.parseformat.parse_format = tmpctl.parsegettc.parse_format;
if (!PARSE_GETFMT(parse, &tmpctl))
{
ERR(ERR_INTERNAL)
msyslog(LOG_ERR, "PARSE receiver #%d: parse_control: parse_getfmt() FAILED", unit);
}
else
{
tt = add_var(&out->kv_list, 80, RO|DEF);
snprintf(tt, 80, "refclock_format=\"");
strncat(tt, tmpctl.parseformat.parse_buffer, tmpctl.parseformat.parse_count);
strncat(tt,"\"", 80);
}
/*
* gather state statistics
*/
start = tt = add_var(&out->kv_list, LEN_STATES, RO|DEF);
strncpy(tt, "refclock_states=\"", LEN_STATES);
tt += strlen(tt);
for (i = 0; i <= CEVNT_MAX; i++)
{
u_long s_time;
u_long d = current_time - parse->generic->timestarted;
u_long percent;
percent = s_time = PARSE_STATETIME(parse, i);
while (((u_long)(~0) / 10000) < percent)
{
percent /= 10;
d /= 10;
}
if (d)
percent = (percent * 10000) / d;
else
percent = 10000;
if (s_time)
{
char item[80];
int count;
snprintf(item, 80, "%s%s%s: %s (%d.%02d%%)",
sum ? "; " : "",
(parse->generic->currentstatus == i) ? "*" : "",
clockstatus((unsigned int)i),
l_mktime(s_time),
(int)(percent / 100), (int)(percent % 100));
if ((count = strlen(item)) < (LEN_STATES - 40 - (tt - start)))
{
strncpy(tt, item, BUFFER_SIZES(start, tt, LEN_STATES));
tt += count;
}
sum += s_time;
}
}
snprintf(tt, BUFFER_SIZES(start, tt, LEN_STATES), "; running time: %s\"", l_mktime(sum));
tt = add_var(&out->kv_list, 32, RO);
snprintf(tt, 32, "refclock_id=\"%s\"", parse->parse_type->cl_id);
tt = add_var(&out->kv_list, 80, RO);
snprintf(tt, 80, "refclock_iomode=\"%s\"", parse->binding->bd_description);
tt = add_var(&out->kv_list, 128, RO);
snprintf(tt, 128, "refclock_driver_version=\"%s\"", rcsid);
{
struct ctl_var *k;
k = parse->kv;
while (k && !(k->flags & EOV))
{
set_var(&out->kv_list, k->text, strlen(k->text)+1, k->flags);
k++;
}
}
out->lencode = strlen(outstatus);
out->p_lastcode = outstatus;
}
}
/**===========================================================================
** processing routines
**/
/*--------------------------------------------------
* event handling - note that nominal events will also be posted
* keep track of state dwelling times
*/
static void
parse_event(
struct parseunit *parse,
int event
)
{
if (parse->generic->currentstatus != (u_char) event)
{
parse->statetime[parse->generic->currentstatus] += current_time - parse->lastchange;
parse->lastchange = current_time;
if (parse->parse_type->cl_event)
parse->parse_type->cl_event(parse, event);
if (event == CEVNT_NOMINAL)
{
NLOG(NLOG_CLOCKSTATUS)
msyslog(LOG_INFO, "PARSE receiver #%d: SYNCHRONIZED",
CLK_UNIT(parse->peer));
}
refclock_report(parse->peer, event);
}
}
/*--------------------------------------------------
* process a PARSE time sample
*/
static void
parse_process(
struct parseunit *parse,
parsetime_t *parsetime
)
{
l_fp off, rectime, reftime;
double fudge;
/*
* check for changes in conversion status
* (only one for each new status !)
*/
if (((parsetime->parse_status & CVT_MASK) != CVT_OK) &&
((parsetime->parse_status & CVT_MASK) != CVT_NONE) &&
(parse->timedata.parse_status != parsetime->parse_status))
{
char buffer[400];
NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
msyslog(LOG_WARNING, "PARSE receiver #%d: conversion status \"%s\"",
CLK_UNIT(parse->peer), parsestatus(parsetime->parse_status, buffer, sizeof(buffer)));
if ((parsetime->parse_status & CVT_MASK) == CVT_FAIL)
{
/*
* tell more about the story - list time code
* there is a slight change for a race condition and
* the time code might be overwritten by the next packet
*/
parsectl_t tmpctl;
if (!PARSE_GETTIMECODE(parse, &tmpctl))
{
ERR(ERR_INTERNAL)
msyslog(LOG_ERR, "PARSE receiver #%d: parse_process: parse_timecode() FAILED", CLK_UNIT(parse->peer));
}
else
{
ERR(ERR_BADDATA)
msyslog(LOG_WARNING, "PARSE receiver #%d: FAILED TIMECODE: \"%s\" (check receiver configuration / wiring)",
CLK_UNIT(parse->peer), mkascii(buffer, sizeof buffer, tmpctl.parsegettc.parse_buffer, (unsigned)(tmpctl.parsegettc.parse_count - 1)));
}
}
}
/*
* examine status and post appropriate events
*/
if ((parsetime->parse_status & CVT_MASK) != CVT_OK)
{
/*
* got bad data - tell the rest of the system
*/
switch (parsetime->parse_status & CVT_MASK)
{
case CVT_NONE:
if ((parsetime->parse_status & CVT_ADDITIONAL) &&
parse->parse_type->cl_message)
parse->parse_type->cl_message(parse, parsetime);
/*
* save PPS information that comes piggyback
*/
if (PARSE_PPS(parsetime->parse_state))
{
parse->timedata.parse_state |= PARSEB_PPS|PARSEB_S_PPS;
parse->timedata.parse_ptime = parsetime->parse_ptime;
}
break; /* well, still waiting - timeout is handled at higher levels */
case CVT_FAIL:
if (parsetime->parse_status & CVT_BADFMT)
{
parse_event(parse, CEVNT_BADREPLY);
}
else
if (parsetime->parse_status & CVT_BADDATE)
{
parse_event(parse, CEVNT_BADDATE);
}
else
if (parsetime->parse_status & CVT_BADTIME)
{
parse_event(parse, CEVNT_BADTIME);
}
else
{
parse_event(parse, CEVNT_BADREPLY); /* for the lack of something better */
}
}
return; /* skip the rest - useless */
}
/*
* check for format changes
* (in case somebody has swapped clocks 8-)
*/
if (parse->lastformat != parsetime->parse_format)
{
parsectl_t tmpctl;
tmpctl.parseformat.parse_format = parsetime->parse_format;
if (!PARSE_GETFMT(parse, &tmpctl))
{
ERR(ERR_INTERNAL)
msyslog(LOG_ERR, "PARSE receiver #%d: parse_getfmt() FAILED", CLK_UNIT(parse->peer));
}
else
{
NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
msyslog(LOG_INFO, "PARSE receiver #%d: packet format \"%s\"",
CLK_UNIT(parse->peer), tmpctl.parseformat.parse_buffer);
}
parse->lastformat = parsetime->parse_format;
}
/*
* now, any changes ?
*/
if ((parse->timedata.parse_state ^ parsetime->parse_state) &
~(unsigned)(PARSEB_PPS|PARSEB_S_PPS))
{
char tmp1[200];
char tmp2[200];
/*
* something happend - except for PPS events
*/
(void) parsestate(parsetime->parse_state, tmp1, sizeof(tmp1));
(void) parsestate(parse->timedata.parse_state, tmp2, sizeof(tmp2));
NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
msyslog(LOG_INFO,"PARSE receiver #%d: STATE CHANGE: %s -> %s",
CLK_UNIT(parse->peer), tmp2, tmp1);
}
/*
* carry on PPS information if still usable
*/
if (PARSE_PPS(parse->timedata.parse_state) && !PARSE_PPS(parsetime->parse_state))
{
parsetime->parse_state |= PARSEB_PPS|PARSEB_S_PPS;
parsetime->parse_ptime = parse->timedata.parse_ptime;
}
/*
* remember for future
*/
parse->timedata = *parsetime;
/*
* check to see, whether the clock did a complete powerup or lost PZF signal
* and post correct events for current condition
*/
if (PARSE_POWERUP(parsetime->parse_state))
{
/*
* this is bad, as we have completely lost synchronisation
* well this is a problem with the receiver here
* for PARSE Meinberg DCF77 receivers the lost synchronisation
* is true as it is the powerup state and the time is taken
* from a crude real time clock chip
* for the PZF series this is only partly true, as
* PARSE_POWERUP only means that the pseudo random
* phase shift sequence cannot be found. this is only
* bad, if we have never seen the clock in the SYNC
* state, where the PHASE and EPOCH are correct.
* for reporting events the above business does not
* really matter, but we can use the time code
* even in the POWERUP state after having seen
* the clock in the synchronized state (PZF class
* receivers) unless we have had a telegram disruption
* after having seen the clock in the SYNC state. we
* thus require having seen the clock in SYNC state
* *after* having missed telegrams (noresponse) from
* the clock. one problem remains: we might use erroneously
* POWERUP data if the disruption is shorter than 1 polling
* interval. fortunately powerdowns last usually longer than 64
* seconds and the receiver is at least 2 minutes in the
* POWERUP or NOSYNC state before switching to SYNC
*/
parse_event(parse, CEVNT_FAULT);
NLOG(NLOG_CLOCKSTATUS)
ERR(ERR_BADSTATUS)
msyslog(LOG_ERR,"PARSE receiver #%d: NOT SYNCHRONIZED",
CLK_UNIT(parse->peer));
}
else
{
/*
* we have two states left
*
* SYNC:
* this state means that the EPOCH (timecode) and PHASE
* information has be read correctly (at least two
* successive PARSE timecodes were received correctly)
* this is the best possible state - full trust
*
* NOSYNC:
* The clock should be on phase with respect to the second
* signal, but the timecode has not been received correctly within
* at least the last two minutes. this is a sort of half baked state
* for PARSE Meinberg DCF77 clocks this is bad news (clock running
* without timecode confirmation)
* PZF 535 has also no time confirmation, but the phase should be
* very precise as the PZF signal can be decoded
*/
if (PARSE_SYNC(parsetime->parse_state))
{
/*
* currently completely synchronized - best possible state
*/
parse->lastsync = current_time;
clear_err(parse, ERR_BADSTATUS);
}
else
{
/*
* we have had some problems receiving the time code
*/
parse_event(parse, CEVNT_PROP);
NLOG(NLOG_CLOCKSTATUS)
ERR(ERR_BADSTATUS)
msyslog(LOG_ERR,"PARSE receiver #%d: TIMECODE NOT CONFIRMED",
CLK_UNIT(parse->peer));
}
}
fudge = parse->generic->fudgetime1; /* standard RS232 Fudgefactor */
if (PARSE_TIMECODE(parsetime->parse_state))
{
rectime = parsetime->parse_stime.fp;
off = reftime = parsetime->parse_time.fp;
L_SUB(&off, &rectime); /* prepare for PPS adjustments logic */
#ifdef DEBUG
if (debug > 3)
printf("PARSE receiver #%d: Reftime %s, Recvtime %s - initial offset %s\n",
CLK_UNIT(parse->peer),
prettydate(&reftime),
prettydate(&rectime),
lfptoa(&off,6));
#endif
}
if (PARSE_PPS(parsetime->parse_state) && CLK_PPS(parse->peer))
{
l_fp offset;
double ppsphaseadjust = parse->ppsphaseadjust;
#ifdef HAVE_PPSAPI
/*
* set fudge = 0.0 if already included in PPS time stamps
*/
if (parse->ppsparams.mode & (PPS_OFFSETCLEAR|PPS_OFFSETASSERT))
{
ppsphaseadjust = 0.0;
}
#endif
/*
* we have a PPS signal - much better than the RS232 stuff (we hope)
*/
offset = parsetime->parse_ptime.fp;
#ifdef DEBUG
if (debug > 3)
printf("PARSE receiver #%d: PPStime %s\n",
CLK_UNIT(parse->peer),
prettydate(&offset));
#endif
if (PARSE_TIMECODE(parsetime->parse_state))
{
if (M_ISGEQ(off.l_i, off.l_f, -1, 0x80000000) &&
M_ISGEQ(0, 0x7fffffff, off.l_i, off.l_f))
{
fudge = ppsphaseadjust; /* pick PPS fudge factor */
/*
* RS232 offsets within [-0.5..0.5[ - take PPS offsets
*/
if (parse->parse_type->cl_flags & PARSE_F_PPSONSECOND)
{
reftime = off = offset;
if (reftime.l_uf & (unsigned)0x80000000)
reftime.l_ui++;
reftime.l_uf = 0;
/*
* implied on second offset
*/
off.l_uf = ~off.l_uf; /* map [0.5..1[ -> [-0.5..0[ */
off.l_ui = (off.l_f < 0) ? ~0 : 0; /* sign extend */
}
else
{
/*
* time code describes pulse
*/
reftime = off = parsetime->parse_time.fp;
L_SUB(&off, &offset); /* true offset */
}
}
/*
* take RS232 offset when PPS when out of bounds
*/
}
else
{
fudge = ppsphaseadjust; /* pick PPS fudge factor */
/*
* Well, no time code to guide us - assume on second pulse
* and pray, that we are within [-0.5..0.5[
*/
off = offset;
reftime = offset;
if (reftime.l_uf & (unsigned)0x80000000)
reftime.l_ui++;
reftime.l_uf = 0;
/*
* implied on second offset
*/
off.l_uf = ~off.l_uf; /* map [0.5..1[ -> [-0.5..0[ */
off.l_ui = (off.l_f < 0) ? ~0 : 0; /* sign extend */
}
}
else
{
if (!PARSE_TIMECODE(parsetime->parse_state))
{
/*
* Well, no PPS, no TIMECODE, no more work ...
*/
if ((parsetime->parse_status & CVT_ADDITIONAL) &&
parse->parse_type->cl_message)
parse->parse_type->cl_message(parse, parsetime);
return;
}
}
#ifdef DEBUG
if (debug > 3)
printf("PARSE receiver #%d: Reftime %s, Recvtime %s - final offset %s\n",
CLK_UNIT(parse->peer),
prettydate(&reftime),
prettydate(&rectime),
lfptoa(&off,6));
#endif
rectime = reftime;
L_SUB(&rectime, &off); /* just to keep the ntp interface happy */
#ifdef DEBUG
if (debug > 3)
printf("PARSE receiver #%d: calculated Reftime %s, Recvtime %s\n",
CLK_UNIT(parse->peer),
prettydate(&reftime),
prettydate(&rectime));
#endif
if ((parsetime->parse_status & CVT_ADDITIONAL) &&
parse->parse_type->cl_message)
parse->parse_type->cl_message(parse, parsetime);
if (PARSE_SYNC(parsetime->parse_state))
{
/*
* log OK status
*/
parse_event(parse, CEVNT_NOMINAL);
}
clear_err(parse, ERR_BADIO);
clear_err(parse, ERR_BADDATA);
clear_err(parse, ERR_NODATA);
clear_err(parse, ERR_INTERNAL);
/*
* and now stick it into the clock machine
* samples are only valid iff lastsync is not too old and
* we have seen the clock in sync at least once
* after the last time we didn't see an expected data telegram
* at startup being not in sync is also bad just like
* POWERUP state
* see the clock states section above for more reasoning
*/
if (((current_time - parse->lastsync) > parse->maxunsync) ||
(parse->lastsync < parse->lastmissed) ||
((parse->lastsync == 0) && !PARSE_SYNC(parsetime->parse_state)) ||
PARSE_POWERUP(parsetime->parse_state))
{
parse->generic->leap = LEAP_NOTINSYNC;
parse->lastsync = 0; /* wait for full sync again */
}
else
{
if (PARSE_LEAPADD(parsetime->parse_state))
{
/*
* we pick this state also for time code that pass leap warnings
* without direction information (as earth is currently slowing
* down).
*/
parse->generic->leap = (parse->flags & PARSE_LEAP_DELETE) ? LEAP_DELSECOND : LEAP_ADDSECOND;
}
else
if (PARSE_LEAPDEL(parsetime->parse_state))
{
parse->generic->leap = LEAP_DELSECOND;
}
else
{
parse->generic->leap = LEAP_NOWARNING;
}
}
if (parse->generic->leap != LEAP_NOTINSYNC)
{
/*
* only good/trusted samples are interesting
*/
#ifdef DEBUG
if (debug > 2)
{
printf("PARSE receiver #%d: refclock_process_offset(reftime=%s, rectime=%s, Fudge=%f)\n",
CLK_UNIT(parse->peer),
prettydate(&reftime),
prettydate(&rectime),
fudge);
}
#endif
parse->generic->lastref = reftime;
refclock_process_offset(parse->generic, reftime, rectime, fudge);
/*
* pass PPS information on to PPS clock
*/
if (PARSE_PPS(parsetime->parse_state) && CLK_PPS(parse->peer))
{
(void) pps_sample(&parse->timedata.parse_ptime.fp);
parse_hardpps(parse, PARSE_HARDPPS_ENABLE);
}
} else {
parse_hardpps(parse, PARSE_HARDPPS_DISABLE);
}
/*
* ready, unless the machine wants a sample or
* we are in fast startup mode (peer->dist > MAXDISTANCE)
*/
if (!parse->pollneeddata && parse->peer->disp <= MAXDISTANCE)
return;
parse->pollneeddata = 0;
parse->timedata.parse_state &= ~(unsigned)(PARSEB_PPS|PARSEB_S_PPS);
refclock_receive(parse->peer);
}
/**===========================================================================
** special code for special clocks
**/
static void
mk_utcinfo(
char *t,
int wnt,
int wnlsf,
int dn,
int dtls,
int dtlsf,
int size
)
{
l_fp leapdate;
char *start = t;
snprintf(t, size, "current correction %d sec", dtls);
t += strlen(t);
if (wnlsf < 990)
wnlsf += 1024;
if (wnt < 990)
wnt += 1024;
gpstolfp((unsigned short)wnlsf, (unsigned short)dn, 0, &leapdate);
if ((dtlsf != dtls) &&
((wnlsf - wnt) < 52))
{
snprintf(t, BUFFER_SIZES(start, t, size), ", next correction %d sec on %s, new GPS-UTC offset %d",
dtlsf - dtls, gmprettydate(&leapdate), dtlsf);
}
else
{
snprintf(t, BUFFER_SIZES(start, t, size), ", last correction on %s",
gmprettydate(&leapdate));
}
}
#ifdef CLOCK_MEINBERG
/**===========================================================================
** Meinberg GPS166/GPS167 support
**/
/*------------------------------------------------------------
* gps16x_message - process GPS16x messages
*/
static void
gps16x_message(
struct parseunit *parse,
parsetime_t *parsetime
)
{
if (parse->timedata.parse_msglen && parsetime->parse_msg[0] == SOH)
{
GPS_MSG_HDR header;
unsigned char *bufp = (unsigned char *)parsetime->parse_msg + 1;
#ifdef DEBUG
if (debug > 2)
{
char msgbuffer[600];
mkreadable(msgbuffer, sizeof(msgbuffer), (char *)parsetime->parse_msg, parsetime->parse_msglen, 1);
printf("PARSE receiver #%d: received message (%d bytes) >%s<\n",
CLK_UNIT(parse->peer),
parsetime->parse_msglen,
msgbuffer);
}
#endif
get_mbg_header(&bufp, &header);
if (header.gps_hdr_csum == mbg_csum(parsetime->parse_msg + 1, 6) &&
(header.gps_len == 0 ||
(header.gps_len < sizeof(parsetime->parse_msg) &&
header.gps_data_csum == mbg_csum(bufp, header.gps_len))))
{
/*
* clean message
*/
switch (header.gps_cmd)
{
case GPS_SW_REV:
{
char buffer[64];
SW_REV gps_sw_rev;
get_mbg_sw_rev(&bufp, &gps_sw_rev);
snprintf(buffer, sizeof(buffer), "meinberg_gps_version=\"%x.%02x%s%s\"",
(gps_sw_rev.code >> 8) & 0xFF,
gps_sw_rev.code & 0xFF,
gps_sw_rev.name[0] ? " " : "",
gps_sw_rev.name);
set_var(&parse->kv, buffer, strlen(buffer)+1, RO|DEF);
}
break;
case GPS_STAT:
{
static struct state
{
unsigned short flag; /* status flag */
unsigned const char *string; /* bit name */
} states[] =
{
{ TM_ANT_DISCONN, (const unsigned char *)"ANTENNA FAULTY" },
{ TM_SYN_FLAG, (const unsigned char *)"NO SYNC SIGNAL" },
{ TM_NO_SYNC, (const unsigned char *)"NO SYNC POWERUP" },
{ TM_NO_POS, (const unsigned char *)"NO POSITION" },
{ 0, (const unsigned char *)"" }
};
unsigned short status;
struct state *s = states;
char buffer[512];
char *p, *b;
status = get_lsb_short(&bufp);
snprintf(buffer, sizeof(buffer), "meinberg_gps_status=\"[0x%04x] ", status);
if (status)
{
p = b = buffer + strlen(buffer);
while (s->flag)
{
if (status & s->flag)
{
if (p != b)
{
*p++ = ',';
*p++ = ' ';
}
strncat(p, (const char *)s->string, sizeof(buffer));
}
s++;
}
*p++ = '"';
*p = '\0';
}
else
{
strncat(buffer, "<OK>\"", sizeof(buffer));
}
set_var(&parse->kv, buffer, strlen(buffer)+1, RO|DEF);
}
break;
case GPS_POS_XYZ:
{
XYZ xyz;
char buffer[256];
get_mbg_xyz(&bufp, xyz);
snprintf(buffer, sizeof(buffer), "gps_position(XYZ)=\"%s m, %s m, %s m\"",
mfptoa(xyz[XP].l_ui, xyz[XP].l_uf, 1),
mfptoa(xyz[YP].l_ui, xyz[YP].l_uf, 1),
mfptoa(xyz[ZP].l_ui, xyz[ZP].l_uf, 1));
set_var(&parse->kv, buffer, sizeof(buffer), RO|DEF);
}
break;
case GPS_POS_LLA:
{
LLA lla;
char buffer[256];
get_mbg_lla(&bufp, lla);
snprintf(buffer, sizeof(buffer), "gps_position(LLA)=\"%s deg, %s deg, %s m\"",
mfptoa(lla[LAT].l_ui, lla[LAT].l_uf, 4),
mfptoa(lla[LON].l_ui, lla[LON].l_uf, 4),
mfptoa(lla[ALT].l_ui, lla[ALT].l_uf, 1));
set_var(&parse->kv, buffer, sizeof(buffer), RO|DEF);
}
break;
case GPS_TZDL:
break;
case GPS_PORT_PARM:
break;
case GPS_SYNTH:
break;
case GPS_ANT_INFO:
{
ANT_INFO antinfo;
char buffer[512];
char *p;
get_mbg_antinfo(&bufp, &antinfo);
snprintf(buffer, sizeof(buffer), "meinberg_antenna_status=\"");
p = buffer + strlen(buffer);
switch (antinfo.status)
{
case ANT_INVALID:
strncat(p, "<OK>", BUFFER_SIZE(buffer, p));
p += strlen(p);
break;
case ANT_DISCONN:
strncat(p, "DISCONNECTED since ", BUFFER_SIZE(buffer, p));
NLOG(NLOG_CLOCKSTATUS)
ERR(ERR_BADSTATUS)
msyslog(LOG_ERR,"PARSE receiver #%d: ANTENNA FAILURE: %s",
CLK_UNIT(parse->peer), p);
p += strlen(p);
mbg_tm_str(&p, &antinfo.tm_disconn, BUFFER_SIZE(buffer, p));
*p = '\0';
break;
case ANT_RECONN:
strncat(p, "RECONNECTED on ", BUFFER_SIZE(buffer, p));
p += strlen(p);
mbg_tm_str(&p, &antinfo.tm_reconn, BUFFER_SIZE(buffer, p));
snprintf(p, BUFFER_SIZE(buffer, p), ", reconnect clockoffset %c%ld.%07ld s, disconnect time ",
(antinfo.delta_t < 0) ? '-' : '+',
ABS(antinfo.delta_t) / 10000,
ABS(antinfo.delta_t) % 10000);
p += strlen(p);
mbg_tm_str(&p, &antinfo.tm_disconn, BUFFER_SIZE(buffer, p));
*p = '\0';
break;
default:
snprintf(p, BUFFER_SIZE(buffer, p), "bad status 0x%04x", antinfo.status);
p += strlen(p);
break;
}
strncat(p, "\"", BUFFER_SIZE(buffer, p));
set_var(&parse->kv, buffer, strlen(buffer)+1, RO|DEF);
}
break;
case GPS_UCAP:
break;
case GPS_CFGH:
{
CFGH cfgh;
char buffer[512];
char *p;
get_mbg_cfgh(&bufp, &cfgh);
if (cfgh.valid)
{
int i;
p = buffer;
strncpy(buffer, "gps_tot_51=\"", BUFFER_SIZE(buffer, p));
p += strlen(p);
mbg_tgps_str(&p, &cfgh.tot_51, BUFFER_SIZE(buffer, p));
strncpy(p, "\"", BUFFER_SIZE(buffer, p));
set_var(&parse->kv, buffer, strlen(buffer)+1, RO);
p = buffer;
strncpy(buffer, "gps_tot_63=\"", BUFFER_SIZE(buffer, p));
p += strlen(p);
mbg_tgps_str(&p, &cfgh.tot_63, BUFFER_SIZE(buffer, p));
strncpy(p, "\"", BUFFER_SIZE(buffer, p));
set_var(&parse->kv, buffer, strlen(buffer)+1, RO);
p = buffer;
strncpy(buffer, "gps_t0a=\"", BUFFER_SIZE(buffer, p));
p += strlen(p);
mbg_tgps_str(&p, &cfgh.t0a, BUFFER_SIZE(buffer, p));
strncpy(p, "\"", BUFFER_SIZE(buffer, p));
set_var(&parse->kv, buffer, strlen(buffer)+1, RO);
for (i = MIN_SVNO; i < MAX_SVNO; i++)
{
p = buffer;
snprintf(p, BUFFER_SIZE(buffer, p), "gps_cfg[%d]=\"[0x%x] ", i, cfgh.cfg[i]);
p += strlen(p);
switch (cfgh.cfg[i] & 0x7)
{
case 0:
strncpy(p, "BLOCK I", BUFFER_SIZE(buffer, p));
break;
case 1:
strncpy(p, "BLOCK II", BUFFER_SIZE(buffer, p));
break;
default:
strncpy(p, "bad CFG", BUFFER_SIZE(buffer, p));
break;
}
strncat(p, "\"", BUFFER_SIZE(buffer, p));
set_var(&parse->kv, buffer, strlen(buffer)+1, RO);
p = buffer;
snprintf(p, BUFFER_SIZE(buffer, p), "gps_health[%d]=\"[0x%x] ", i, cfgh.health[i]);
p += strlen(p);
switch ((cfgh.health[i] >> 5) & 0x7 )
{
case 0:
strncpy(p, "OK;", BUFFER_SIZE(buffer, p));
break;
case 1:
strncpy(p, "PARITY;", BUFFER_SIZE(buffer, p));
break;
case 2:
strncpy(p, "TLM/HOW;", BUFFER_SIZE(buffer, p));
break;
case 3:
strncpy(p, "Z-COUNT;", BUFFER_SIZE(buffer, p));
break;
case 4:
strncpy(p, "SUBFRAME 1,2,3;", BUFFER_SIZE(buffer, p));
break;
case 5:
strncpy(p, "SUBFRAME 4,5;", BUFFER_SIZE(buffer, p));
break;
case 6:
strncpy(p, "UPLOAD BAD;", BUFFER_SIZE(buffer, p));
break;
case 7:
strncpy(p, "DATA BAD;", BUFFER_SIZE(buffer, p));
break;
}
p += strlen(p);
switch (cfgh.health[i] & 0x1F)
{
case 0:
strncpy(p, "SIGNAL OK", BUFFER_SIZE(buffer, p));
break;
case 0x1C:
strncpy(p, "SV TEMP OUT", BUFFER_SIZE(buffer, p));
break;
case 0x1D:
strncpy(p, "SV WILL BE TEMP OUT", BUFFER_SIZE(buffer, p));
break;
case 0x1E:
break;
case 0x1F:
strncpy(p, "MULTIPLE ERRS", BUFFER_SIZE(buffer, p));
break;
default:
strncpy(p, "TRANSMISSION PROBLEMS", BUFFER_SIZE(buffer, p));
break;
}
strncat(p, "\"", sizeof(buffer));
set_var(&parse->kv, buffer, strlen(buffer)+1, RO);
}
}
}
break;
case GPS_ALM:
break;
case GPS_EPH:
break;
case GPS_UTC:
{
UTC utc;
char buffer[512];
char *p;
p = buffer;
get_mbg_utc(&bufp, &utc);
if (utc.valid)
{
strncpy(p, "gps_utc_correction=\"", sizeof(buffer));
p += strlen(p);
mk_utcinfo(p, utc.t0t.wn, utc.WNlsf, utc.DNt, utc.delta_tls, utc.delta_tlsf, BUFFER_SIZE(buffer, p));
strncat(p, "\"", BUFFER_SIZE(buffer, p));
}
else
{
strncpy(p, "gps_utc_correction=\"<NO UTC DATA>\"", BUFFER_SIZE(buffer, p));
}
set_var(&parse->kv, buffer, strlen(buffer)+1, RO|DEF);
}
break;
case GPS_IONO:
break;
case GPS_ASCII_MSG:
{
ASCII_MSG gps_ascii_msg;
char buffer[128];
get_mbg_ascii_msg(&bufp, &gps_ascii_msg);
if (gps_ascii_msg.valid)
{
char buffer1[128];
mkreadable(buffer1, sizeof(buffer1), gps_ascii_msg.s, strlen(gps_ascii_msg.s), (int)0);
snprintf(buffer, sizeof(buffer), "gps_message=\"%s\"", buffer1);
}
else
strncpy(buffer, "gps_message=<NONE>", sizeof(buffer));
set_var(&parse->kv, buffer, strlen(buffer)+1, RO|DEF);
}
break;
default:
break;
}
}
else
{
msyslog(LOG_DEBUG, "PARSE receiver #%d: gps16x_message: message checksum error: hdr_csum = 0x%x (expected 0x%lx), data_len = %d, data_csum = 0x%x (expected 0x%lx)",
CLK_UNIT(parse->peer),
header.gps_hdr_csum, mbg_csum(parsetime->parse_msg + 1, 6),
header.gps_len,
header.gps_data_csum, mbg_csum(bufp, (unsigned)((header.gps_len < sizeof(parsetime->parse_msg)) ? header.gps_len : 0)));
}
}
return;
}
/*------------------------------------------------------------
* gps16x_poll - query the reciver peridically
*/
static void
gps16x_poll(
struct peer *peer
)
{
struct parseunit *parse = (struct parseunit *)peer->procptr->unitptr;
static GPS_MSG_HDR sequence[] =
{
{ GPS_SW_REV, 0, 0, 0 },
{ GPS_STAT, 0, 0, 0 },
{ GPS_UTC, 0, 0, 0 },
{ GPS_ASCII_MSG, 0, 0, 0 },
{ GPS_ANT_INFO, 0, 0, 0 },
{ GPS_CFGH, 0, 0, 0 },
{ GPS_POS_XYZ, 0, 0, 0 },
{ GPS_POS_LLA, 0, 0, 0 },
{ (unsigned short)~0, 0, 0, 0 }
};
int rtc;
unsigned char cmd_buffer[64];
unsigned char *outp = cmd_buffer;
GPS_MSG_HDR *header;
if (((poll_info_t *)parse->parse_type->cl_data)->rate)
{
parse->peer->nextaction = current_time + ((poll_info_t *)parse->parse_type->cl_data)->rate;
}
if (sequence[parse->localstate].gps_cmd == (unsigned short)~0)
parse->localstate = 0;
header = sequence + parse->localstate++;
*outp++ = SOH; /* start command */
put_mbg_header(&outp, header);
outp = cmd_buffer + 1;
header->gps_hdr_csum = (short)mbg_csum(outp, 6);
put_mbg_header(&outp, header);
#ifdef DEBUG
if (debug > 2)
{
char buffer[128];
mkreadable(buffer, sizeof(buffer), (char *)cmd_buffer, (unsigned)(outp - cmd_buffer), 1);
printf("PARSE receiver #%d: transmitted message #%ld (%d bytes) >%s<\n",
CLK_UNIT(parse->peer),
parse->localstate - 1,
(int)(outp - cmd_buffer),
buffer);
}
#endif
rtc = write(parse->generic->io.fd, cmd_buffer, (unsigned long)(outp - cmd_buffer));
if (rtc < 0)
{
ERR(ERR_BADIO)
msyslog(LOG_ERR, "PARSE receiver #%d: gps16x_poll: failed to send cmd to clock: %m", CLK_UNIT(parse->peer));
}
else
if (rtc != outp - cmd_buffer)
{
ERR(ERR_BADIO)
msyslog(LOG_ERR, "PARSE receiver #%d: gps16x_poll: failed to send cmd incomplete (%d of %d bytes sent)", CLK_UNIT(parse->peer), rtc, (int)(outp - cmd_buffer));
}
clear_err(parse, ERR_BADIO);
return;
}
/*--------------------------------------------------
* init routine - setup timer
*/
static int
gps16x_poll_init(
struct parseunit *parse
)
{
if (((poll_info_t *)parse->parse_type->cl_data)->rate)
{
parse->peer->action = gps16x_poll;
gps16x_poll(parse->peer);
}
return 0;
}
#else
static void
gps16x_message(
struct parseunit *parse,
parsetime_t *parsetime
)
{}
static int
gps16x_poll_init(
struct parseunit *parse
)
{
return 1;
}
#endif /* CLOCK_MEINBERG */
/**===========================================================================
** clock polling support
**/
/*--------------------------------------------------
* direct poll routine
*/
static void
poll_dpoll(
struct parseunit *parse
)
{
int rtc;
const char *ps = ((poll_info_t *)parse->parse_type->cl_data)->string;
int ct = ((poll_info_t *)parse->parse_type->cl_data)->count;
rtc = write(parse->generic->io.fd, ps, (unsigned long)ct);
if (rtc < 0)
{
ERR(ERR_BADIO)
msyslog(LOG_ERR, "PARSE receiver #%d: poll_dpoll: failed to send cmd to clock: %m", CLK_UNIT(parse->peer));
}
else
if (rtc != ct)
{
ERR(ERR_BADIO)
msyslog(LOG_ERR, "PARSE receiver #%d: poll_dpoll: failed to send cmd incomplete (%d of %d bytes sent)", CLK_UNIT(parse->peer), rtc, ct);
}
clear_err(parse, ERR_BADIO);
}
/*--------------------------------------------------
* periodic poll routine
*/
static void
poll_poll(
struct peer *peer
)
{
struct parseunit *parse = (struct parseunit *)peer->procptr->unitptr;
if (parse->parse_type->cl_poll)
parse->parse_type->cl_poll(parse);
if (((poll_info_t *)parse->parse_type->cl_data)->rate)
{
parse->peer->nextaction = current_time + ((poll_info_t *)parse->parse_type->cl_data)->rate;
}
}
/*--------------------------------------------------
* init routine - setup timer
*/
static int
poll_init(
struct parseunit *parse
)
{
if (((poll_info_t *)parse->parse_type->cl_data)->rate)
{
parse->peer->action = poll_poll;
poll_poll(parse->peer);
}
return 0;
}
/**===========================================================================
** Trimble support
**/
/*-------------------------------------------------------------
* trimble TAIP init routine - setup EOL and then do poll_init.
*/
static int
trimbletaip_init(
struct parseunit *parse
)
{
#ifdef HAVE_TERMIOS
struct termios tio;
#endif
#ifdef HAVE_SYSV_TTYS
struct termio tio;
#endif
/*
* configure terminal line for trimble receiver
*/
if (TTY_GETATTR(parse->generic->io.fd, &tio) == -1)
{
msyslog(LOG_ERR, "PARSE receiver #%d: trimbletaip_init: tcgetattr(fd, &tio): %m", CLK_UNIT(parse->peer));
return 0;
}
else
{
tio.c_cc[VEOL] = TRIMBLETAIP_EOL;
if (TTY_SETATTR(parse->generic->io.fd, &tio) == -1)
{
msyslog(LOG_ERR, "PARSE receiver #%d: trimbletaip_init: tcsetattr(fd, &tio): %m", CLK_UNIT(parse->peer));
return 0;
}
}
return poll_init(parse);
}
/*--------------------------------------------------
* trimble TAIP event routine - reset receiver upon data format trouble
*/
static const char *taipinit[] = {
">FPV00000000<",
">SRM;ID_FLAG=F;CS_FLAG=T;EC_FLAG=F;FR_FLAG=T;CR_FLAG=F<",
">FTM00020001<",
(char *)0
};
static void
trimbletaip_event(
struct parseunit *parse,
int event
)
{
switch (event)
{
case CEVNT_BADREPLY: /* reset on garbled input */
case CEVNT_TIMEOUT: /* reset on no input */
{
const char **iv;
iv = taipinit;
while (*iv)
{
int rtc = write(parse->generic->io.fd, *iv, strlen(*iv));
if (rtc < 0)
{
msyslog(LOG_ERR, "PARSE receiver #%d: trimbletaip_event: failed to send cmd to clock: %m", CLK_UNIT(parse->peer));
return;
}
else
{
if (rtc != strlen(*iv))
{
msyslog(LOG_ERR, "PARSE receiver #%d: trimbletaip_event: failed to send cmd incomplete (%d of %d bytes sent)",
CLK_UNIT(parse->peer), rtc, (int)strlen(*iv));
return;
}
}
iv++;
}
NLOG(NLOG_CLOCKINFO)
ERR(ERR_BADIO)
msyslog(LOG_ERR, "PARSE receiver #%d: trimbletaip_event: RECEIVER INITIALIZED",
CLK_UNIT(parse->peer));
}
break;
default: /* ignore */
break;
}
}
/*
* This driver supports the Trimble SVee Six Plus GPS receiver module.
* It should support other Trimble receivers which use the Trimble Standard
* Interface Protocol (see below).
*
* The module has a serial I/O port for command/data and a 1 pulse-per-second
* output, about 1 microsecond wide. The leading edge of the pulse is
* coincident with the change of the GPS second. This is the same as
* the change of the UTC second +/- ~1 microsecond. Some other clocks
* specifically use a feature in the data message as a timing reference, but
* the SVee Six Plus does not do this. In fact there is considerable jitter
* on the timing of the messages, so this driver only supports the use
* of the PPS pulse for accurate timing. Where it is determined that
* the offset is way off, when first starting up ntpd for example,
* the timing of the data stream is used until the offset becomes low enough
* (|offset| < CLOCK_MAX), at which point the pps offset is used.
*
* It can use either option for receiving PPS information - the 'ppsclock'
* stream pushed onto the serial data interface to timestamp the Carrier
* Detect interrupts, where the 1PPS connects to the CD line. This only
* works on SunOS 4.1.x currently. To select this, define PPSPPS in
* Config.local. The other option is to use a pulse-stretcher/level-converter
* to convert the PPS pulse into a RS232 start pulse & feed this into another
* tty port. To use this option, define PPSCLK in Config.local. The pps input,
* by whichever method, is handled in ntp_loopfilter.c
*
* The receiver uses a serial message protocol called Trimble Standard
* Interface Protocol (it can support others but this driver only supports
* TSIP). Messages in this protocol have the following form:
*
* <DLE><id> ... <data> ... <DLE><ETX>
*
* Any bytes within the <data> portion of value 10 hex (<DLE>) are doubled
* on transmission and compressed back to one on reception. Otherwise
* the values of data bytes can be anything. The serial interface is RS-422
* asynchronous using 9600 baud, 8 data bits with odd party (**note** 9 bits
* in total!), and 1 stop bit. The protocol supports byte, integer, single,
* and double datatypes. Integers are two bytes, sent most significant first.
* Singles are IEEE754 single precision floating point numbers (4 byte) sent
* sign & exponent first. Doubles are IEEE754 double precision floating point
* numbers (8 byte) sent sign & exponent first.
* The receiver supports a large set of messages, only a small subset of
* which are used here. From driver to receiver the following are used:
*
* ID Description
*
* 21 Request current time
* 22 Mode Select
* 2C Set/Request operating parameters
* 2F Request UTC info
* 35 Set/Request I/O options
* From receiver to driver the following are recognised:
*
* ID Description
*
* 41 GPS Time
* 44 Satellite selection, PDOP, mode
* 46 Receiver health
* 4B Machine code/status
* 4C Report operating parameters (debug only)
* 4F UTC correction data (used to get leap second warnings)
* 55 I/O options (debug only)
*
* All others are accepted but ignored.
*
*/
#define PI 3.1415926535898 /* lots of sig figs */
#define D2R PI/180.0
/*-------------------------------------------------------------------
* sendcmd, sendbyte, sendetx, sendflt, sendint implement the command
* interface to the receiver.
*
* CAVEAT: the sendflt, sendint routines are byte order dependend and
* float implementation dependend - these must be converted to portable
* versions !
*
* CURRENT LIMITATION: float implementation. This runs only on systems
* with IEEE754 floats as native floats
*/
typedef struct trimble
{
u_long last_msg; /* last message received */
u_long last_reset; /* last time a reset was issued */
u_char qtracking; /* query tracking status */
u_long ctrack; /* current tracking set */
u_long ltrack; /* last tracking set */
} trimble_t;
union uval {
u_char bd[8];
int iv;
float fv;
double dv;
};
struct txbuf
{
short idx; /* index to first unused byte */
u_char *txt; /* pointer to actual data buffer */
};
void sendcmd P((struct txbuf *buf, int c));
void sendbyte P((struct txbuf *buf, int b));
void sendetx P((struct txbuf *buf, struct parseunit *parse));
void sendint P((struct txbuf *buf, int a));
void sendflt P((struct txbuf *buf, double a));
void
sendcmd(
struct txbuf *buf,
int c
)
{
buf->txt[0] = DLE;
buf->txt[1] = (u_char)c;
buf->idx = 2;
}
void sendcmd P((struct txbuf *buf, int c));
void sendbyte P((struct txbuf *buf, int b));
void sendetx P((struct txbuf *buf, struct parseunit *parse));
void sendint P((struct txbuf *buf, int a));
void sendflt P((struct txbuf *buf, double a));
void
sendbyte(
struct txbuf *buf,
int b
)
{
if (b == DLE)
buf->txt[buf->idx++] = DLE;
buf->txt[buf->idx++] = (u_char)b;
}
void
sendetx(
struct txbuf *buf,
struct parseunit *parse
)
{
buf->txt[buf->idx++] = DLE;
buf->txt[buf->idx++] = ETX;
if (write(parse->generic->io.fd, buf->txt, (unsigned long)buf->idx) != buf->idx)
{
ERR(ERR_BADIO)
msyslog(LOG_ERR, "PARSE receiver #%d: sendetx: failed to send cmd to clock: %m", CLK_UNIT(parse->peer));
}
else
{
#ifdef DEBUG
if (debug > 2)
{
char buffer[256];
mkreadable(buffer, sizeof(buffer), (char *)buf->txt, (unsigned)buf->idx, 1);
printf("PARSE receiver #%d: transmitted message (%d bytes) >%s<\n",
CLK_UNIT(parse->peer),
buf->idx, buffer);
}
#endif
clear_err(parse, ERR_BADIO);
}
}
void
sendint(
struct txbuf *buf,
int a
)
{
/* send 16bit int, msbyte first */
sendbyte(buf, (u_char)((a>>8) & 0xff));
sendbyte(buf, (u_char)(a & 0xff));
}
void
sendflt(
struct txbuf *buf,
double a
)
{
int i;
union uval uval;
uval.fv = a;
#ifdef WORDS_BIGENDIAN
for (i=0; i<=3; i++)
#else
for (i=3; i>=0; i--)
#endif
sendbyte(buf, uval.bd[i]);
}
#define TRIM_POS_OPT 0x13 /* output position with high precision */
#define TRIM_TIME_OPT 0x03 /* use UTC time stamps, on second */
/*--------------------------------------------------
* trimble TSIP setup routine
*/
static int
trimbletsip_setup(
struct parseunit *parse,
const char *reason
)
{
u_char buffer[256];
struct txbuf buf;
trimble_t *t = parse->localdata;
if (t && t->last_reset &&
((t->last_reset + TRIMBLE_RESET_HOLDOFF) > current_time)) {
return 1; /* not yet */
}
if (t)
t->last_reset = current_time;
buf.txt = buffer;
sendcmd(&buf, CMD_CVERSION); /* request software versions */
sendetx(&buf, parse);
sendcmd(&buf, CMD_COPERPARAM); /* set operating parameters */
sendbyte(&buf, 4); /* static */
sendflt(&buf, 5.0*D2R); /* elevation angle mask = 10 deg XXX */
sendflt(&buf, 4.0); /* s/n ratio mask = 6 XXX */
sendflt(&buf, 12.0); /* PDOP mask = 12 */
sendflt(&buf, 8.0); /* PDOP switch level = 8 */
sendetx(&buf, parse);
sendcmd(&buf, CMD_CMODESEL); /* fix mode select */
sendbyte(&buf, 1); /* time transfer mode */
sendetx(&buf, parse);
sendcmd(&buf, CMD_CMESSAGE); /* request system message */
sendetx(&buf, parse);
sendcmd(&buf, CMD_CSUPER); /* superpacket fix */
sendbyte(&buf, 0x2); /* binary mode */
sendetx(&buf, parse);
sendcmd(&buf, CMD_CIOOPTIONS); /* set I/O options */
sendbyte(&buf, TRIM_POS_OPT); /* position output */
sendbyte(&buf, 0x00); /* no velocity output */
sendbyte(&buf, TRIM_TIME_OPT); /* UTC, compute on seconds */
sendbyte(&buf, 0x00); /* no raw measurements */
sendetx(&buf, parse);
sendcmd(&buf, CMD_CUTCPARAM); /* request UTC correction data */
sendetx(&buf, parse);
NLOG(NLOG_CLOCKINFO)
ERR(ERR_BADIO)
msyslog(LOG_ERR, "PARSE receiver #%d: trimbletsip_setup: RECEIVER RE-INITIALIZED (%s)", CLK_UNIT(parse->peer), reason);
return 0;
}
/*--------------------------------------------------
* TRIMBLE TSIP check routine
*/
static void
trimble_check(
struct peer *peer
)
{
struct parseunit *parse = (struct parseunit *)peer->procptr->unitptr;
trimble_t *t = parse->localdata;
u_char buffer[256];
struct txbuf buf;
buf.txt = buffer;
if (t)
{
if (current_time > t->last_msg + TRIMBLETSIP_IDLE_TIME)
(void)trimbletsip_setup(parse, "message timeout");
}
poll_poll(parse->peer); /* emit query string and re-arm timer */
if (t && t->qtracking)
{
u_long oldsats = t->ltrack & ~t->ctrack;
t->qtracking = 0;
t->ltrack = t->ctrack;
if (oldsats)
{
int i;
for (i = 0; oldsats; i++) {
if (oldsats & (1 << i))
{
sendcmd(&buf, CMD_CSTATTRACK);
sendbyte(&buf, i+1); /* old sat */
sendetx(&buf, parse);
}
oldsats &= ~(1 << i);
}
}
sendcmd(&buf, CMD_CSTATTRACK);
sendbyte(&buf, 0x00); /* current tracking set */
sendetx(&buf, parse);
}
}
/*--------------------------------------------------
* TRIMBLE TSIP end routine
*/
static void
trimbletsip_end(
struct parseunit *parse
)
{ trimble_t *t = parse->localdata;
if (t)
{
free(t);
parse->localdata = (void *)0;
}
parse->peer->nextaction = 0;
parse->peer->action = (void (*) P((struct peer *)))0;
}
/*--------------------------------------------------
* TRIMBLE TSIP init routine
*/
static int
trimbletsip_init(
struct parseunit *parse
)
{
#if defined(VEOL) || defined(VEOL2)
#ifdef HAVE_TERMIOS
struct termios tio; /* NEEDED FOR A LONG TIME ! */
#endif
#ifdef HAVE_SYSV_TTYS
struct termio tio; /* NEEDED FOR A LONG TIME ! */
#endif
/*
* allocate local data area
*/
if (!parse->localdata)
{
trimble_t *t;
t = (trimble_t *)(parse->localdata = emalloc(sizeof(trimble_t)));
if (t)
{
memset((char *)t, 0, sizeof(trimble_t));
t->last_msg = current_time;
}
}
parse->peer->action = trimble_check;
parse->peer->nextaction = current_time;
/*
* configure terminal line for ICANON mode with VEOL characters
*/
if (TTY_GETATTR(parse->generic->io.fd, &tio) == -1)
{
msyslog(LOG_ERR, "PARSE receiver #%d: trimbletsip_init: tcgetattr(%d, &tio): %m", CLK_UNIT(parse->peer), parse->generic->io.fd);
return 0;
}
else
{
if ((parse_clockinfo[CLK_TYPE(parse->peer)].cl_lflag & ICANON))
{
#ifdef VEOL
tio.c_cc[VEOL] = ETX;
#endif
#ifdef VEOL2
tio.c_cc[VEOL2] = DLE;
#endif
}
if (TTY_SETATTR(parse->generic->io.fd, &tio) == -1)
{
msyslog(LOG_ERR, "PARSE receiver #%d: trimbletsip_init: tcsetattr(%d, &tio): %m", CLK_UNIT(parse->peer), parse->generic->io.fd);
return 0;
}
}
#endif
return trimbletsip_setup(parse, "initial startup");
}
/*------------------------------------------------------------
* trimbletsip_event - handle Trimble events
* simple evente handler - attempt to re-initialize receiver
*/
static void
trimbletsip_event(
struct parseunit *parse,
int event
)
{
switch (event)
{
case CEVNT_BADREPLY: /* reset on garbled input */
case CEVNT_TIMEOUT: /* reset on no input */
(void)trimbletsip_setup(parse, "event BAD_REPLY/TIMEOUT");
break;
default: /* ignore */
break;
}
}
/*
* getflt, getint convert fields in the incoming data into the
* appropriate type of item
*
* CAVEAT: these routines are currently definitely byte order dependent
* and assume Representation(float) == IEEE754
* These functions MUST be converted to portable versions (especially
* converting the float representation into ntp_fp formats in order
* to avoid floating point operations at all!
*/
static float
getflt(
u_char *bp
)
{
union uval uval;
#ifdef WORDS_BIGENDIAN
uval.bd[0] = *bp++;
uval.bd[1] = *bp++;
uval.bd[2] = *bp++;
uval.bd[3] = *bp;
#else /* ! WORDS_BIGENDIAN */
uval.bd[3] = *bp++;
uval.bd[2] = *bp++;
uval.bd[1] = *bp++;
uval.bd[0] = *bp;
#endif /* ! WORDS_BIGENDIAN */
return uval.fv;
}
static double
getdbl(
u_char *bp
)
{
union uval uval;
#ifdef WORDS_BIGENDIAN
uval.bd[0] = *bp++;
uval.bd[1] = *bp++;
uval.bd[2] = *bp++;
uval.bd[3] = *bp++;
uval.bd[4] = *bp++;
uval.bd[5] = *bp++;
uval.bd[6] = *bp++;
uval.bd[7] = *bp;
#else /* ! WORDS_BIGENDIAN */
uval.bd[7] = *bp++;
uval.bd[6] = *bp++;
uval.bd[5] = *bp++;
uval.bd[4] = *bp++;
uval.bd[3] = *bp++;
uval.bd[2] = *bp++;
uval.bd[1] = *bp++;
uval.bd[0] = *bp;
#endif /* ! WORDS_BIGENDIAN */
return uval.dv;
}
static int
getshort(
unsigned char *p
)
{
return get_msb_short(&p);
}
/*--------------------------------------------------
* trimbletsip_message - process trimble messages
*/
#define RTOD (180.0 / 3.1415926535898)
#define mb(_X_) (buffer[2+(_X_)]) /* shortcut for buffer access */
static void
trimbletsip_message(
struct parseunit *parse,
parsetime_t *parsetime
)
{
unsigned char *buffer = parsetime->parse_msg;
unsigned int size = parsetime->parse_msglen;
if ((size < 4) ||
(buffer[0] != DLE) ||
(buffer[size-1] != ETX) ||
(buffer[size-2] != DLE))
{
#ifdef DEBUG
if (debug > 2) {
int i;
printf("TRIMBLE BAD packet, size %d:\n ", size);
for (i = 0; i < size; i++) {
printf ("%2.2x, ", buffer[i]&0xff);
if (i%16 == 15) printf("\n\t");
}
printf("\n");
}
#endif
return;
}
else
{
int var_flag;
trimble_t *tr = parse->localdata;
unsigned int cmd = buffer[1];
char pbuffer[200];
char *t = pbuffer;
cmd_info_t *s;
#ifdef DEBUG
if (debug > 3) {
int i;
printf("TRIMBLE packet 0x%02x, size %d:\n ", cmd, size);
for (i = 0; i < size; i++) {
printf ("%2.2x, ", buffer[i]&0xff);
if (i%16 == 15) printf("\n\t");
}
printf("\n");
}
#endif
if (tr)
tr->last_msg = current_time;
s = trimble_convert(cmd, trimble_rcmds);
if (s)
{
snprintf(t, BUFFER_SIZE(pbuffer, t), "%s=\"", s->varname);
}
else
{
#ifdef DEBUG
if (debug)
printf("TRIMBLE UNKNOWN COMMAND 0x%02x\n", cmd);
#endif
return;
}
var_flag = s->varmode;
t += strlen(t);
switch(cmd)
{
case CMD_RCURTIME:
snprintf(t, BUFFER_SIZE(pbuffer, t), "%f, %d, %f",
getflt((unsigned char *)&mb(0)), getshort((unsigned char *)&mb(4)),
getflt((unsigned char *)&mb(6)));
break;
case CMD_RBEST4:
strncpy(t, "mode: ", BUFFER_SIZE(pbuffer, t));
t += strlen(t);
switch (mb(0) & 0xF)
{
default:
snprintf(t, BUFFER_SIZE(pbuffer, t), "0x%x", mb(0) & 0x7);
break;
case 1:
strncpy(t, "0D", BUFFER_SIZE(pbuffer, t));
break;
case 3:
strncpy(t, "2D", BUFFER_SIZE(pbuffer, t));
break;
case 4:
strncpy(t, "3D", BUFFER_SIZE(pbuffer, t));
break;
}
t += strlen(t);
if (mb(0) & 0x10)
strncpy(t, "-MANUAL, ", BUFFER_SIZE(pbuffer, t));
else
strncpy(t, "-AUTO, ", BUFFER_SIZE(pbuffer, t));
t += strlen(t);
snprintf(t, BUFFER_SIZE(pbuffer, t), "satellites %02d %02d %02d %02d, PDOP %.2f, HDOP %.2f, VDOP %.2f, TDOP %.2f",
mb(1), mb(2), mb(3), mb(4),
getflt((unsigned char *)&mb(5)),
getflt((unsigned char *)&mb(9)),
getflt((unsigned char *)&mb(13)),
getflt((unsigned char *)&mb(17)));
break;
case CMD_RVERSION:
snprintf(t, BUFFER_SIZE(pbuffer, t), "%d.%d (%d/%d/%d)",
mb(0)&0xff, mb(1)&0xff, 1900+(mb(4)&0xff), mb(2)&0xff, mb(3)&0xff);
break;
case CMD_RRECVHEALTH:
{
static const char *msgs[] =
{
"Battery backup failed",
"Signal processor error",
"Alignment error, channel or chip 1",
"Alignment error, channel or chip 2",
"Antenna feed line fault",
"Excessive ref freq. error",
"<BIT 6>",
"<BIT 7>"
};
int i, bits;
switch (mb(0) & 0xFF)
{
default:
snprintf(t, BUFFER_SIZE(pbuffer, t), "illegal value 0x%02x", mb(0) & 0xFF);
break;
case 0x00:
strncpy(t, "doing position fixes", BUFFER_SIZE(pbuffer, t));
break;
case 0x01:
strncpy(t, "no GPS time yet", BUFFER_SIZE(pbuffer, t));
break;
case 0x03:
strncpy(t, "PDOP too high", BUFFER_SIZE(pbuffer, t));
break;
case 0x08:
strncpy(t, "no usable satellites", BUFFER_SIZE(pbuffer, t));
break;
case 0x09:
strncpy(t, "only ONE usable satellite", BUFFER_SIZE(pbuffer, t));
break;
case 0x0A:
strncpy(t, "only TWO usable satellites", BUFFER_SIZE(pbuffer, t));
break;
case 0x0B:
strncpy(t, "only THREE usable satellites", BUFFER_SIZE(pbuffer, t));
break;
case 0x0C:
strncpy(t, "the chosen satellite is unusable", BUFFER_SIZE(pbuffer, t));
break;
}
t += strlen(t);
bits = mb(1) & 0xFF;
for (i = 0; i < 8; i++)
if (bits & (0x1<<i))
{
snprintf(t, BUFFER_SIZE(pbuffer, t), ", %s", msgs[i]);
t += strlen(t);
}
}
break;
case CMD_RMESSAGE:
mkreadable(t, (int)BUFFER_SIZE(pbuffer, t), (char *)&mb(0), (unsigned)(size - 2 - (&mb(0) - buffer)), 0);
break;
case CMD_RMACHSTAT:
{
static const char *msgs[] =
{
"Synthesizer Fault",
"Battery Powered Time Clock Fault",
"A-to-D Converter Fault",
"The almanac stored in the receiver is not complete and current",
"<BIT 4>",
"<BIT 5",
"<BIT 6>",
"<BIT 7>"
};
int i, bits;
snprintf(t, BUFFER_SIZE(pbuffer, t), "machine id 0x%02x", mb(0) & 0xFF);
t += strlen(t);
bits = mb(1) & 0xFF;
for (i = 0; i < 8; i++)
if (bits & (0x1<<i))
{
snprintf(t, BUFFER_SIZE(pbuffer, t), ", %s", msgs[i]);
t += strlen(t);
}
snprintf(t, BUFFER_SIZE(pbuffer, t), ", Superpackets %ssupported", (mb(2) & 0xFF) ? "" :"un" );
}
break;
case CMD_ROPERPARAM:
snprintf(t, BUFFER_SIZE(pbuffer, t), "%2x %.1f %.1f %.1f %.1f",
mb(0), getflt((unsigned char *)&mb(1)), getflt((unsigned char *)&mb(5)),
getflt((unsigned char *)&mb(9)), getflt((unsigned char *)&mb(13)));
break;
case CMD_RUTCPARAM:
{
float t0t = getflt((unsigned char *)&mb(14));
short wnt = getshort((unsigned char *)&mb(18));
short dtls = getshort((unsigned char *)&mb(12));
short wnlsf = getshort((unsigned char *)&mb(20));
short dn = getshort((unsigned char *)&mb(22));
short dtlsf = getshort((unsigned char *)&mb(24));
if ((int)t0t != 0)
{
mk_utcinfo(t, wnt, wnlsf, dn, dtls, dtlsf, BUFFER_SIZE(pbuffer, t));
}
else
{
strncpy(t, "<NO UTC DATA>", BUFFER_SIZE(pbuffer, t));
}
}
break;
case CMD_RSAT1BIAS:
snprintf(t, BUFFER_SIZE(pbuffer, t), "%.1fm %.2fm/s at %.1fs",
getflt(&mb(0)), getflt(&mb(4)), getflt(&mb(8)));
break;
case CMD_RIOOPTIONS:
{
snprintf(t, BUFFER_SIZE(pbuffer, t), "%02x %02x %02x %02x",
mb(0), mb(1), mb(2), mb(3));
if (mb(0) != TRIM_POS_OPT ||
mb(2) != TRIM_TIME_OPT)
{
(void)trimbletsip_setup(parse, "bad io options");
}
}
break;
case CMD_RSPOSXYZ:
{
double x = getflt((unsigned char *)&mb(0));
double y = getflt((unsigned char *)&mb(4));
double z = getflt((unsigned char *)&mb(8));
double f = getflt((unsigned char *)&mb(12));
if (f > 0.0)
snprintf(t, BUFFER_SIZE(pbuffer, t), "x= %.1fm, y= %.1fm, z= %.1fm, time_of_fix= %f sec",
x, y, z,
f);
else
return;
}
break;
case CMD_RSLLAPOS:
{
double lat = getflt((unsigned char *)&mb(0));
double lng = getflt((unsigned char *)&mb(4));
double f = getflt((unsigned char *)&mb(12));
if (f > 0.0)
snprintf(t, BUFFER_SIZE(pbuffer, t), "lat %f %c, long %f %c, alt %.2fm",
((lat < 0.0) ? (-lat) : (lat))*RTOD, (lat < 0.0 ? 'S' : 'N'),
((lng < 0.0) ? (-lng) : (lng))*RTOD, (lng < 0.0 ? 'W' : 'E'),
getflt((unsigned char *)&mb(8)));
else
return;
}
break;
case CMD_RDOUBLEXYZ:
{
double x = getdbl((unsigned char *)&mb(0));
double y = getdbl((unsigned char *)&mb(8));
double z = getdbl((unsigned char *)&mb(16));
snprintf(t, BUFFER_SIZE(pbuffer, t), "x= %.1fm, y= %.1fm, z= %.1fm",
x, y, z);
}
break;
case CMD_RDOUBLELLA:
{
double lat = getdbl((unsigned char *)&mb(0));
double lng = getdbl((unsigned char *)&mb(8));
snprintf(t, BUFFER_SIZE(pbuffer, t), "lat %f %c, lon %f %c, alt %.2fm",
((lat < 0.0) ? (-lat) : (lat))*RTOD, (lat < 0.0 ? 'S' : 'N'),
((lng < 0.0) ? (-lng) : (lng))*RTOD, (lng < 0.0 ? 'W' : 'E'),
getdbl((unsigned char *)&mb(16)));
}
break;
case CMD_RALLINVIEW:
{
int i, sats;
strncpy(t, "mode: ", BUFFER_SIZE(pbuffer, t));
t += strlen(t);
switch (mb(0) & 0x7)
{
default:
snprintf(t, BUFFER_SIZE(pbuffer, t), "0x%x", mb(0) & 0x7);
break;
case 3:
strncpy(t, "2D", BUFFER_SIZE(pbuffer, t));
break;
case 4:
strncpy(t, "3D", BUFFER_SIZE(pbuffer, t));
break;
}
t += strlen(t);
if (mb(0) & 0x8)
strncpy(t, "-MANUAL, ", BUFFER_SIZE(pbuffer, t));
else
strncpy(t, "-AUTO, ", BUFFER_SIZE(pbuffer, t));
t += strlen(t);
sats = (mb(0)>>4) & 0xF;
snprintf(t, BUFFER_SIZE(pbuffer, t), "PDOP %.2f, HDOP %.2f, VDOP %.2f, TDOP %.2f, %d satellite%s in view: ",
getflt((unsigned char *)&mb(1)),
getflt((unsigned char *)&mb(5)),
getflt((unsigned char *)&mb(9)),
getflt((unsigned char *)&mb(13)),
sats, (sats == 1) ? "" : "s");
t += strlen(t);
for (i=0; i < sats; i++)
{
snprintf(t, BUFFER_SIZE(pbuffer, t), "%s%02d", i ? ", " : "", mb(17+i));
t += strlen(t);
if (tr)
tr->ctrack |= (1 << (mb(17+i)-1));
}
if (tr)
{ /* mark for tracking status query */
tr->qtracking = 1;
}
}
break;
case CMD_RSTATTRACK:
{
snprintf(t-2, BUFFER_SIZE(pbuffer, t-2), "[%02d]=\"", mb(0)); /* add index to var name */
t += strlen(t);
if (getflt((unsigned char *)&mb(4)) < 0.0)
{
strncpy(t, "<NO MEASUREMENTS>", BUFFER_SIZE(pbuffer, t));
var_flag &= ~DEF;
}
else
{
snprintf(t, BUFFER_SIZE(pbuffer, t), "ch=%d, acq=%s, eph=%d, signal_level= %5.2f, elevation= %5.2f, azimuth= %6.2f",
(mb(1) & 0xFF)>>3,
mb(2) ? ((mb(2) == 1) ? "ACQ" : "SRCH") : "NEVER",
mb(3),
getflt((unsigned char *)&mb(4)),
getflt((unsigned char *)&mb(12)) * RTOD,
getflt((unsigned char *)&mb(16)) * RTOD);
t += strlen(t);
if (mb(20))
{
var_flag &= ~DEF;
strncpy(t, ", OLD", BUFFER_SIZE(pbuffer, t));
}
t += strlen(t);
if (mb(22))
{
if (mb(22) == 1)
strncpy(t, ", BAD PARITY", BUFFER_SIZE(pbuffer, t));
else
if (mb(22) == 2)
strncpy(t, ", BAD EPH HEALTH", BUFFER_SIZE(pbuffer, t));
}
t += strlen(t);
if (mb(23))
strncpy(t, ", collecting data", BUFFER_SIZE(pbuffer, t));
}
}
break;
default:
strncpy(t, "<UNDECODED>", BUFFER_SIZE(pbuffer, t));
break;
}
t += strlen(t);
strncpy(t,"\"", BUFFER_SIZE(pbuffer, t));
set_var(&parse->kv, pbuffer, sizeof(pbuffer), var_flag);
}
}
/**============================================================
** RAWDCF support
**/
/*--------------------------------------------------
* rawdcf_init_1 - set up modem lines for RAWDCF receivers
* SET DTR line
*/
#if defined(TIOCMSET) && (defined(TIOCM_DTR) || defined(CIOCM_DTR))
static int
rawdcf_init_1(
struct parseunit *parse
)
{
/* fixed 2000 for using with Linux by Wolfram Pienkoss <wp@bszh.de> */
/*
* You can use the RS232 to supply the power for a DCF77 receiver.
* Here a voltage between the DTR and the RTS line is used. Unfortunately
* the name has changed from CIOCM_DTR to TIOCM_DTR recently.
*/
int sl232;
if (ioctl(parse->generic->io.fd, TIOCMGET, (caddr_t)&sl232) == -1)
{
msyslog(LOG_NOTICE, "PARSE receiver #%d: rawdcf_init_1: WARNING: ioctl(fd, TIOCMGET, [C|T]IOCM_DTR): %m", CLK_UNIT(parse->peer));
return 0;
}
#ifdef TIOCM_DTR
sl232 = (sl232 & ~TIOCM_RTS) | TIOCM_DTR; /* turn on DTR, clear RTS for power supply */
#else
sl232 = (sl232 & ~CIOCM_RTS) | CIOCM_DTR; /* turn on DTR, clear RTS for power supply */
#endif
if (ioctl(parse->generic->io.fd, TIOCMSET, (caddr_t)&sl232) == -1)
{
msyslog(LOG_NOTICE, "PARSE receiver #%d: rawdcf_init_1: WARNING: ioctl(fd, TIOCMSET, [C|T]IOCM_DTR): %m", CLK_UNIT(parse->peer));
}
return 0;
}
#else
static int
rawdcfdtr_init_1(
struct parseunit *parse
)
{
msyslog(LOG_NOTICE, "PARSE receiver #%d: rawdcf_init_1: WARNING: OS interface incapable of setting DTR to power DCF modules", CLK_UNIT(parse->peer));
return 0;
}
#endif /* DTR initialisation type */
/*--------------------------------------------------
* rawdcf_init_2 - set up modem lines for RAWDCF receivers
* CLR DTR line, SET RTS line
*/
#if defined(TIOCMSET) && (defined(TIOCM_RTS) || defined(CIOCM_RTS))
static int
rawdcf_init_2(
struct parseunit *parse
)
{
/* fixed 2000 for using with Linux by Wolfram Pienkoss <wp@bszh.de> */
/*
* You can use the RS232 to supply the power for a DCF77 receiver.
* Here a voltage between the DTR and the RTS line is used. Unfortunately
* the name has changed from CIOCM_DTR to TIOCM_DTR recently.
*/
int sl232;
if (ioctl(parse->generic->io.fd, TIOCMGET, (caddr_t)&sl232) == -1)
{
msyslog(LOG_NOTICE, "PARSE receiver #%d: rawdcf_init_2: WARNING: ioctl(fd, TIOCMGET, [C|T]IOCM_RTS): %m", CLK_UNIT(parse->peer));
return 0;
}
#ifdef TIOCM_RTS
sl232 = (sl232 & ~TIOCM_DTR) | TIOCM_RTS; /* turn on RTS, clear DTR for power supply */
#else
sl232 = (sl232 & ~CIOCM_DTR) | CIOCM_RTS; /* turn on RTS, clear DTR for power supply */
#endif
if (ioctl(parse->generic->io.fd, TIOCMSET, (caddr_t)&sl232) == -1)
{
msyslog(LOG_NOTICE, "PARSE receiver #%d: rawdcf_init_2: WARNING: ioctl(fd, TIOCMSET, [C|T]IOCM_RTS): %m", CLK_UNIT(parse->peer));
}
return 0;
}
#else
static int
rawdcf_init_2(
struct parseunit *parse
)
{
msyslog(LOG_NOTICE, "PARSE receiver #%d: rawdcf_init_2: WARNING: OS interface incapable of setting RTS to power DCF modules", CLK_UNIT(parse->peer));
return 0;
}
#endif /* DTR initialisation type */
#else /* defined(REFCLOCK) && defined(PARSE) */
int refclock_parse_bs;
#endif /* defined(REFCLOCK) && defined(PARSE) */
/*
* History:
*
* refclock_parse.c,v
* Revision 4.76 2006/06/22 18:40:47 kardel
* clean up signedness (gcc 4)
*
* Revision 4.75 2006/06/22 16:58:10 kardel
* Bug #632: call parse_ppsapi() in parse_ctl() when updating
* the PPS offset. Fix sign of offset passed to kernel.
*
* Revision 4.74 2006/06/18 21:18:37 kardel
* NetBSD Coverity CID 3796: possible NULL deref
*
* Revision 4.73 2006/05/26 14:23:46 kardel
* cleanup of copyright info
*
* Revision 4.72 2006/05/26 14:19:43 kardel
* cleanup of ioctl cruft
*
* Revision 4.71 2006/05/26 14:15:57 kardel
* delay adding refclock to async refclock io after all initializations
*
* Revision 4.70 2006/05/25 18:20:50 kardel
* bug #619
* terminate parse io engine after de-registering
* from refclock io engine
*
* Revision 4.69 2006/05/25 17:28:02 kardel
* complete refclock io structure initialization *before* inserting it into the
* refclock input machine (avoids null pointer deref) (bug #619)
*
* Revision 4.68 2006/05/01 17:02:51 kardel
* copy receiver method also for newlwy created receive buffers
*
* Revision 4.67 2006/05/01 14:37:29 kardel
* If an input buffer parses into more than one message do insert the
* parsed message in a new input buffer instead of processing it
* directly. This avoids deed complicated processing in signal
* handling.
*
* Revision 4.66 2006/03/18 00:45:30 kardel
* coverity fixes found in NetBSD coverity scan
*
* Revision 4.65 2006/01/26 06:08:33 kardel
* output errno on PPS setup failure
*
* Revision 4.64 2005/11/09 20:44:47 kardel
* utilize full PPS timestamp resolution from PPS API
*
* Revision 4.63 2005/10/07 22:10:25 kardel
* bounded buffer implementation
*
* Revision 4.62.2.2 2005/09/25 10:20:16 kardel
* avoid unexpected buffer overflows due to sprintf("%f") on strange floats:
* replace almost all str* and *printf functions be their buffer bounded
* counterparts
*
* Revision 4.62.2.1 2005/08/27 16:19:27 kardel
* limit re-set rate of trimble clocks
*
* Revision 4.62 2005/08/06 17:40:00 kardel
* cleanup size handling wrt/ to buffer boundaries
*
* Revision 4.61 2005/07/27 21:16:19 kardel
* fix a long (> 11 years) misconfiguration wrt/ Meinberg cflag factory
* default setup. CSTOPB was missing for the 7E2 default data format of
* the DCF77 clocks.
*
* Revision 4.60 2005/07/17 21:14:44 kardel
* change contents of version string to include the RCS/CVS Id
*
* Revision 4.59 2005/07/06 06:56:38 kardel
* syntax error
*
* Revision 4.58 2005/07/04 13:10:40 kardel
* fix bug 455: tripping over NULL pointer on cleanup
* fix shadow storage logic for ppsphaseadjust and trustime wrt/ time2
* fix compiler warnings for some platforms wrt/ printf formatstrings and
* varying structure element sizes
* reorder assignment in binding to avoid tripping over NULL pointers
*
* Revision 4.57 2005/06/25 09:25:19 kardel
* sort out log output sequence
*
* Revision 4.56 2005/06/14 21:47:27 kardel
* collect samples only if samples are ok (sync or trusted flywheel)
* propagate pps phase adjustment value to kernel via PPSAPI to help HARDPPS
* en- and dis-able HARDPPS in correlation to receiver sync state
*
* Revision 4.55 2005/06/02 21:28:31 kardel
* clarify trust logic
*
* Revision 4.54 2005/06/02 17:06:49 kardel
* change status reporting to use fixed refclock_report()
*
* Revision 4.53 2005/06/02 16:33:31 kardel
* fix acceptance of clocks unsync clocks right at start
*
* Revision 4.52 2005/05/26 21:55:06 kardel
* cleanup status reporting
*
* Revision 4.51 2005/05/26 19:19:14 kardel
* implement fast refclock startup
*
* Revision 4.50 2005/04/16 20:51:35 kardel
* set pps_enable = 1 when binding a kernel PPS source
*
* Revision 4.49 2005/04/16 17:29:26 kardel
* add non polling clock type 18 for just listenning to Meinberg clocks
*
* Revision 4.48 2005/04/16 16:22:27 kardel
* bk sync 20050415 ntp-dev
*
* Revision 4.47 2004/11/29 10:42:48 kardel
* bk sync ntp-dev 20041129
*
* Revision 4.46 2004/11/29 10:26:29 kardel
* keep fudgetime2 in sync with trusttime/ppsphaseadjust depending in flag1
*
* Revision 4.45 2004/11/14 20:53:20 kardel
* clear PPS flags after using them
*
* Revision 4.44 2004/11/14 15:29:41 kardel
* support PPSAPI, upgrade Copyright to Berkeley style
*
* Revision 4.43 2001/05/26 22:53:16 kardel
* 20010526 reconcilation
*
* Revision 4.42 2000/05/14 15:31:51 kardel
* PPSAPI && RAWDCF modemline support
*
* Revision 4.41 2000/04/09 19:50:45 kardel
* fixed rawdcfdtr_init() -> rawdcf_init_1
*
* Revision 4.40 2000/04/09 15:27:55 kardel
* modem line fiddle in rawdcf_init_2
*
* Revision 4.39 2000/03/18 09:16:55 kardel
* PPSAPI integration
*
* Revision 4.38 2000/03/05 20:25:06 kardel
* support PPSAPI
*
* Revision 4.37 2000/03/05 20:11:14 kardel
* 4.0.99g reconcilation
*
* Revision 4.36 1999/11/28 17:18:20 kardel
* disabled burst mode
*
* Revision 4.35 1999/11/28 09:14:14 kardel
* RECON_4_0_98F
*
* Revision 4.34 1999/05/14 06:08:05 kardel
* store current_time in a suitable container (u_long)
*
* Revision 4.33 1999/05/13 21:48:38 kardel
* double the no response timeout interval
*
* Revision 4.32 1999/05/13 20:09:13 kardel
* complain only about missing polls after a full poll interval
*
* Revision 4.31 1999/05/13 19:59:32 kardel
* add clock type 16 for RTS set DTR clr in RAWDCF
*
* Revision 4.30 1999/02/28 20:36:43 kardel
* fixed printf fmt
*
* Revision 4.29 1999/02/28 19:58:23 kardel
* updated copyright information
*
* Revision 4.28 1999/02/28 19:01:50 kardel
* improved debug out on sent Meinberg messages
*
* Revision 4.27 1999/02/28 18:05:55 kardel
* no linux/ppsclock.h stuff
*
* Revision 4.26 1999/02/28 15:27:27 kardel
* wharton clock integration
*
* Revision 4.25 1999/02/28 14:04:46 kardel
* added missing double quotes to UTC information string
*
* Revision 4.24 1999/02/28 12:06:50 kardel
* (parse_control): using gmprettydate instead of prettydate()
* (mk_utcinfo): new function for formatting GPS derived UTC information
* (gps16x_message): changed to use mk_utcinfo()
* (trimbletsip_message): changed to use mk_utcinfo()
* ignoring position information in unsynchronized mode
* (parse_start): augument linux support for optional ASYNC_LOW_LATENCY
*
* Revision 4.23 1999/02/23 19:47:53 kardel
* fixed #endifs
* (stream_receive): fixed formats
*
* Revision 4.22 1999/02/22 06:21:02 kardel
* use new autoconfig symbols
*
* Revision 4.21 1999/02/21 12:18:13 kardel
* 4.91f reconcilation
*
* Revision 4.20 1999/02/21 10:53:36 kardel
* initial Linux PPSkit version
*
* Revision 4.19 1999/02/07 09:10:45 kardel
* clarify STREAMS mitigation rules in comment
*
* Revision 4.18 1998/12/20 23:45:34 kardel
* fix types and warnings
*
* Revision 4.17 1998/11/15 21:24:51 kardel
* cannot access mbg_ routines when CLOCK_MEINBERG
* is not defined
*
* Revision 4.16 1998/11/15 20:28:17 kardel
* Release 4.0.73e13 reconcilation
*
* Revision 4.15 1998/08/22 21:56:08 kardel
* fixed IO handling for non-STREAM IO
*
* Revision 4.14 1998/08/16 19:00:48 kardel
* (gps16x_message): reduced UTC parameter information (dropped A0,A1)
* made uval a local variable (killed one of the last globals)
* (sendetx): added logging of messages when in debug mode
* (trimble_check): added periodic checks to facilitate re-initialization
* (trimbletsip_init): made use of EOL character if in non-kernel operation
* (trimbletsip_message): extended message interpretation
* (getdbl): fixed data conversion
*
* Revision 4.13 1998/08/09 22:29:13 kardel
* Trimble TSIP support
*
* Revision 4.12 1998/07/11 10:05:34 kardel
* Release 4.0.73d reconcilation
*
* Revision 4.11 1998/06/14 21:09:42 kardel
* Sun acc cleanup
*
* Revision 4.10 1998/06/13 12:36:45 kardel
* signed/unsigned, name clashes
*
* Revision 4.9 1998/06/12 15:30:00 kardel
* prototype fixes
*
* Revision 4.8 1998/06/12 11:19:42 kardel
* added direct input processing routine for refclocks in
* order to avaiod that single character io gobbles up all
* receive buffers and drops input data. (Problem started
* with fast machines so a character a buffer was possible
* one of the few cases where faster machines break existing
* allocation algorithms)
*
* Revision 4.7 1998/06/06 18:35:20 kardel
* (parse_start): added BURST mode initialisation
*
* Revision 4.6 1998/05/27 06:12:46 kardel
* RAWDCF_BASEDELAY default added
* old comment removed
* casts for ioctl()
*
* Revision 4.5 1998/05/25 22:05:09 kardel
* RAWDCF_SETDTR option removed
* clock type 14 attempts to set DTR for
* power supply of RAWDCF receivers
*
* Revision 4.4 1998/05/24 16:20:47 kardel
* updated comments referencing Meinberg clocks
* added RAWDCF clock with DTR set option as type 14
*
* Revision 4.3 1998/05/24 10:48:33 kardel
* calibrated CONRAD RAWDCF default fudge factor
*
* Revision 4.2 1998/05/24 09:59:35 kardel
* corrected version information (ntpq support)
*
* Revision 4.1 1998/05/24 09:52:31 kardel
* use fixed format only (new IO model)
* output debug to stdout instead of msyslog()
* don't include >"< in ASCII output in order not to confuse
* ntpq parsing
*
* Revision 4.0 1998/04/10 19:52:11 kardel
* Start 4.0 release version numbering
*
* Revision 1.2 1998/04/10 19:28:04 kardel
* initial NTP VERSION 4 integration of PARSE with GPS166 binary support
* derived from 3.105.1.2 from V3 tree
*
* Revision information 3.1 - 3.105 from log deleted 1998/04/10 kardel
*
*/