NetBSD/sys/kern/subr_autoconf.c
2008-11-18 21:20:32 +00:00

2687 lines
62 KiB
C

/* $NetBSD: subr_autoconf.c,v 1.165 2008/11/18 21:20:32 macallan Exp $ */
/*
* Copyright (c) 1996, 2000 Christopher G. Demetriou
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the
* NetBSD Project. See http://www.NetBSD.org/ for
* information about NetBSD.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
*/
/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratories.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
*
* @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.165 2008/11/18 21:20:32 macallan Exp $");
#include "opt_ddb.h"
#include "drvctl.h"
#include <sys/param.h>
#include <sys/device.h>
#include <sys/disklabel.h>
#include <sys/conf.h>
#include <sys/kauth.h>
#include <sys/malloc.h>
#include <sys/kmem.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <sys/kthread.h>
#include <sys/buf.h>
#include <sys/dirent.h>
#include <sys/vnode.h>
#include <sys/mount.h>
#include <sys/namei.h>
#include <sys/unistd.h>
#include <sys/fcntl.h>
#include <sys/lockf.h>
#include <sys/callout.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/devmon.h>
#include <sys/cpu.h>
#include <sys/disk.h>
#include <machine/limits.h>
#include "opt_userconf.h"
#ifdef USERCONF
#include <sys/userconf.h>
#endif
#ifdef __i386__
#include "opt_splash.h"
#if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
#include <dev/splash/splash.h>
extern struct splash_progress *splash_progress_state;
#endif
#endif
/*
* Autoconfiguration subroutines.
*/
typedef struct pmf_private {
int pp_nwait;
int pp_nlock;
lwp_t *pp_holder;
kmutex_t pp_mtx;
kcondvar_t pp_cv;
} pmf_private_t;
/*
* ioconf.c exports exactly two names: cfdata and cfroots. All system
* devices and drivers are found via these tables.
*/
extern struct cfdata cfdata[];
extern const short cfroots[];
/*
* List of all cfdriver structures. We use this to detect duplicates
* when other cfdrivers are loaded.
*/
struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
extern struct cfdriver * const cfdriver_list_initial[];
/*
* Initial list of cfattach's.
*/
extern const struct cfattachinit cfattachinit[];
/*
* List of cfdata tables. We always have one such list -- the one
* built statically when the kernel was configured.
*/
struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
static struct cftable initcftable;
#define ROOT ((device_t)NULL)
struct matchinfo {
cfsubmatch_t fn;
struct device *parent;
const int *locs;
void *aux;
struct cfdata *match;
int pri;
};
static char *number(char *, int);
static void mapply(struct matchinfo *, cfdata_t);
static device_t config_devalloc(const device_t, const cfdata_t, const int *);
static void config_devdealloc(device_t);
static void config_makeroom(int, struct cfdriver *);
static void config_devlink(device_t);
static void config_devunlink(device_t);
static void pmflock_debug(device_t, const char *, int);
static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
static device_t deviter_next1(deviter_t *);
static void deviter_reinit(deviter_t *);
struct deferred_config {
TAILQ_ENTRY(deferred_config) dc_queue;
device_t dc_dev;
void (*dc_func)(device_t);
};
TAILQ_HEAD(deferred_config_head, deferred_config);
struct deferred_config_head deferred_config_queue =
TAILQ_HEAD_INITIALIZER(deferred_config_queue);
struct deferred_config_head interrupt_config_queue =
TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
int interrupt_config_threads = 8;
static void config_process_deferred(struct deferred_config_head *, device_t);
/* Hooks to finalize configuration once all real devices have been found. */
struct finalize_hook {
TAILQ_ENTRY(finalize_hook) f_list;
int (*f_func)(device_t);
device_t f_dev;
};
static TAILQ_HEAD(, finalize_hook) config_finalize_list =
TAILQ_HEAD_INITIALIZER(config_finalize_list);
static int config_finalize_done;
/* list of all devices */
struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
kcondvar_t alldevs_cv;
kmutex_t alldevs_mtx;
static int alldevs_nread = 0;
static int alldevs_nwrite = 0;
static lwp_t *alldevs_writer = NULL;
static int config_pending; /* semaphore for mountroot */
static kmutex_t config_misc_lock;
static kcondvar_t config_misc_cv;
#define STREQ(s1, s2) \
(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
static int config_initialized; /* config_init() has been called. */
static int config_do_twiddle;
struct vnode *
opendisk(struct device *dv)
{
int bmajor, bminor;
struct vnode *tmpvn;
int error;
dev_t dev;
/*
* Lookup major number for disk block device.
*/
bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
if (bmajor == -1)
return NULL;
bminor = minor(device_unit(dv));
/*
* Fake a temporary vnode for the disk, open it, and read
* and hash the sectors.
*/
dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
MAKEDISKDEV(bmajor, bminor, RAW_PART);
if (bdevvp(dev, &tmpvn))
panic("%s: can't alloc vnode for %s", __func__,
device_xname(dv));
error = VOP_OPEN(tmpvn, FREAD, NOCRED);
if (error) {
#ifndef DEBUG
/*
* Ignore errors caused by missing device, partition,
* or medium.
*/
if (error != ENXIO && error != ENODEV)
#endif
printf("%s: can't open dev %s (%d)\n",
__func__, device_xname(dv), error);
vput(tmpvn);
return NULL;
}
return tmpvn;
}
int
config_handle_wedges(struct device *dv, int par)
{
struct dkwedge_list wl;
struct dkwedge_info *wi;
struct vnode *vn;
char diskname[16];
int i, error;
if ((vn = opendisk(dv)) == NULL)
return -1;
wl.dkwl_bufsize = sizeof(*wi) * 16;
wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
VOP_CLOSE(vn, FREAD, NOCRED);
vput(vn);
if (error) {
#ifdef DEBUG_WEDGE
printf("%s: List wedges returned %d\n",
device_xname(dv), error);
#endif
free(wi, M_TEMP);
return -1;
}
#ifdef DEBUG_WEDGE
printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
wl.dkwl_nwedges, wl.dkwl_ncopied);
#endif
snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
par + 'a');
for (i = 0; i < wl.dkwl_ncopied; i++) {
#ifdef DEBUG_WEDGE
printf("%s: Looking for %s in %s\n",
device_xname(dv), diskname, wi[i].dkw_wname);
#endif
if (strcmp(wi[i].dkw_wname, diskname) == 0)
break;
}
if (i == wl.dkwl_ncopied) {
#ifdef DEBUG_WEDGE
printf("%s: Cannot find wedge with parent %s\n",
device_xname(dv), diskname);
#endif
free(wi, M_TEMP);
return -1;
}
#ifdef DEBUG_WEDGE
printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
(unsigned long long)wi[i].dkw_offset,
(unsigned long long)wi[i].dkw_size);
#endif
dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
free(wi, M_TEMP);
return 0;
}
/*
* Initialize the autoconfiguration data structures. Normally this
* is done by configure(), but some platforms need to do this very
* early (to e.g. initialize the console).
*/
void
config_init(void)
{
const struct cfattachinit *cfai;
int i, j;
if (config_initialized)
return;
mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
cv_init(&alldevs_cv, "alldevs");
mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
cv_init(&config_misc_cv, "cfgmisc");
/* allcfdrivers is statically initialized. */
for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
panic("configure: duplicate `%s' drivers",
cfdriver_list_initial[i]->cd_name);
}
for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
for (j = 0; cfai->cfai_list[j] != NULL; j++) {
if (config_cfattach_attach(cfai->cfai_name,
cfai->cfai_list[j]) != 0)
panic("configure: duplicate `%s' attachment "
"of `%s' driver",
cfai->cfai_list[j]->ca_name,
cfai->cfai_name);
}
}
initcftable.ct_cfdata = cfdata;
TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
config_initialized = 1;
}
void
config_deferred(device_t dev)
{
config_process_deferred(&deferred_config_queue, dev);
config_process_deferred(&interrupt_config_queue, dev);
}
static void
config_interrupts_thread(void *cookie)
{
struct deferred_config *dc;
while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
(*dc->dc_func)(dc->dc_dev);
kmem_free(dc, sizeof(*dc));
config_pending_decr();
}
kthread_exit(0);
}
/*
* Configure the system's hardware.
*/
void
configure(void)
{
extern void ssp_init(void);
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
int i, s;
/* Initialize data structures. */
config_init();
pmf_init();
#if NDRVCTL > 0
drvctl_init();
#endif
#ifdef USERCONF
if (boothowto & RB_USERCONF)
user_config();
#endif
if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
config_do_twiddle = 1;
printf_nolog("Detecting hardware...");
}
/*
* Do the machine-dependent portion of autoconfiguration. This
* sets the configuration machinery here in motion by "finding"
* the root bus. When this function returns, we expect interrupts
* to be enabled.
*/
cpu_configure();
/* Initialize SSP. */
ssp_init();
/*
* Now that we've found all the hardware, start the real time
* and statistics clocks.
*/
initclocks();
cold = 0; /* clocks are running, we're warm now! */
s = splsched();
curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING;
splx(s);
/* Boot the secondary processors. */
for (CPU_INFO_FOREACH(cii, ci)) {
uvm_cpu_attach(ci);
}
mp_online = true;
#if defined(MULTIPROCESSOR)
cpu_boot_secondary_processors();
#endif
/* Setup the runqueues and scheduler. */
runq_init();
sched_init();
/*
* Create threads to call back and finish configuration for
* devices that want interrupts enabled.
*/
for (i = 0; i < interrupt_config_threads; i++) {
(void)kthread_create(PRI_NONE, 0, NULL,
config_interrupts_thread, NULL, NULL, "config");
}
/* Get the threads going and into any sleeps before continuing. */
yield();
/* Lock the kernel on behalf of lwp0. */
KERNEL_LOCK(1, NULL);
}
/*
* Announce device attach/detach to userland listeners.
*/
static void
devmon_report_device(device_t dev, bool isattach)
{
#if NDRVCTL > 0
prop_dictionary_t ev;
const char *parent;
const char *what;
device_t pdev = device_parent(dev);
ev = prop_dictionary_create();
if (ev == NULL)
return;
what = (isattach ? "device-attach" : "device-detach");
parent = (pdev == NULL ? "root" : device_xname(pdev));
if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
!prop_dictionary_set_cstring(ev, "parent", parent)) {
prop_object_release(ev);
return;
}
devmon_insert(what, ev);
#endif
}
/*
* Add a cfdriver to the system.
*/
int
config_cfdriver_attach(struct cfdriver *cd)
{
struct cfdriver *lcd;
/* Make sure this driver isn't already in the system. */
LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
if (STREQ(lcd->cd_name, cd->cd_name))
return (EEXIST);
}
LIST_INIT(&cd->cd_attach);
LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
return (0);
}
/*
* Remove a cfdriver from the system.
*/
int
config_cfdriver_detach(struct cfdriver *cd)
{
int i;
/* Make sure there are no active instances. */
for (i = 0; i < cd->cd_ndevs; i++) {
if (cd->cd_devs[i] != NULL)
return (EBUSY);
}
/* ...and no attachments loaded. */
if (LIST_EMPTY(&cd->cd_attach) == 0)
return (EBUSY);
LIST_REMOVE(cd, cd_list);
KASSERT(cd->cd_devs == NULL);
return (0);
}
/*
* Look up a cfdriver by name.
*/
struct cfdriver *
config_cfdriver_lookup(const char *name)
{
struct cfdriver *cd;
LIST_FOREACH(cd, &allcfdrivers, cd_list) {
if (STREQ(cd->cd_name, name))
return (cd);
}
return (NULL);
}
/*
* Add a cfattach to the specified driver.
*/
int
config_cfattach_attach(const char *driver, struct cfattach *ca)
{
struct cfattach *lca;
struct cfdriver *cd;
cd = config_cfdriver_lookup(driver);
if (cd == NULL)
return (ESRCH);
/* Make sure this attachment isn't already on this driver. */
LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
if (STREQ(lca->ca_name, ca->ca_name))
return (EEXIST);
}
LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
return (0);
}
/*
* Remove a cfattach from the specified driver.
*/
int
config_cfattach_detach(const char *driver, struct cfattach *ca)
{
struct cfdriver *cd;
device_t dev;
int i;
cd = config_cfdriver_lookup(driver);
if (cd == NULL)
return (ESRCH);
/* Make sure there are no active instances. */
for (i = 0; i < cd->cd_ndevs; i++) {
if ((dev = cd->cd_devs[i]) == NULL)
continue;
if (dev->dv_cfattach == ca)
return (EBUSY);
}
LIST_REMOVE(ca, ca_list);
return (0);
}
/*
* Look up a cfattach by name.
*/
static struct cfattach *
config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
{
struct cfattach *ca;
LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
if (STREQ(ca->ca_name, atname))
return (ca);
}
return (NULL);
}
/*
* Look up a cfattach by driver/attachment name.
*/
struct cfattach *
config_cfattach_lookup(const char *name, const char *atname)
{
struct cfdriver *cd;
cd = config_cfdriver_lookup(name);
if (cd == NULL)
return (NULL);
return (config_cfattach_lookup_cd(cd, atname));
}
/*
* Apply the matching function and choose the best. This is used
* a few times and we want to keep the code small.
*/
static void
mapply(struct matchinfo *m, cfdata_t cf)
{
int pri;
if (m->fn != NULL) {
pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
} else {
pri = config_match(m->parent, cf, m->aux);
}
if (pri > m->pri) {
m->match = cf;
m->pri = pri;
}
}
int
config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
{
const struct cfiattrdata *ci;
const struct cflocdesc *cl;
int nlocs, i;
ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
KASSERT(ci);
nlocs = ci->ci_loclen;
KASSERT(!nlocs || locs);
for (i = 0; i < nlocs; i++) {
cl = &ci->ci_locdesc[i];
/* !cld_defaultstr means no default value */
if ((!(cl->cld_defaultstr)
|| (cf->cf_loc[i] != cl->cld_default))
&& cf->cf_loc[i] != locs[i])
return (0);
}
return (config_match(parent, cf, aux));
}
/*
* Helper function: check whether the driver supports the interface attribute
* and return its descriptor structure.
*/
static const struct cfiattrdata *
cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
{
const struct cfiattrdata * const *cpp;
if (cd->cd_attrs == NULL)
return (0);
for (cpp = cd->cd_attrs; *cpp; cpp++) {
if (STREQ((*cpp)->ci_name, ia)) {
/* Match. */
return (*cpp);
}
}
return (0);
}
/*
* Lookup an interface attribute description by name.
* If the driver is given, consider only its supported attributes.
*/
const struct cfiattrdata *
cfiattr_lookup(const char *name, const struct cfdriver *cd)
{
const struct cfdriver *d;
const struct cfiattrdata *ia;
if (cd)
return (cfdriver_get_iattr(cd, name));
LIST_FOREACH(d, &allcfdrivers, cd_list) {
ia = cfdriver_get_iattr(d, name);
if (ia)
return (ia);
}
return (0);
}
/*
* Determine if `parent' is a potential parent for a device spec based
* on `cfp'.
*/
static int
cfparent_match(const device_t parent, const struct cfparent *cfp)
{
struct cfdriver *pcd;
/* We don't match root nodes here. */
if (cfp == NULL)
return (0);
pcd = parent->dv_cfdriver;
KASSERT(pcd != NULL);
/*
* First, ensure this parent has the correct interface
* attribute.
*/
if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
return (0);
/*
* If no specific parent device instance was specified (i.e.
* we're attaching to the attribute only), we're done!
*/
if (cfp->cfp_parent == NULL)
return (1);
/*
* Check the parent device's name.
*/
if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
return (0); /* not the same parent */
/*
* Make sure the unit number matches.
*/
if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
cfp->cfp_unit == parent->dv_unit)
return (1);
/* Unit numbers don't match. */
return (0);
}
/*
* Helper for config_cfdata_attach(): check all devices whether it could be
* parent any attachment in the config data table passed, and rescan.
*/
static void
rescan_with_cfdata(const struct cfdata *cf)
{
device_t d;
const struct cfdata *cf1;
deviter_t di;
/*
* "alldevs" is likely longer than a modules's cfdata, so make it
* the outer loop.
*/
for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
if (!(d->dv_cfattach->ca_rescan))
continue;
for (cf1 = cf; cf1->cf_name; cf1++) {
if (!cfparent_match(d, cf1->cf_pspec))
continue;
(*d->dv_cfattach->ca_rescan)(d,
cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
}
}
deviter_release(&di);
}
/*
* Attach a supplemental config data table and rescan potential
* parent devices if required.
*/
int
config_cfdata_attach(cfdata_t cf, int scannow)
{
struct cftable *ct;
ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
ct->ct_cfdata = cf;
TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
if (scannow)
rescan_with_cfdata(cf);
return (0);
}
/*
* Helper for config_cfdata_detach: check whether a device is
* found through any attachment in the config data table.
*/
static int
dev_in_cfdata(const struct device *d, const struct cfdata *cf)
{
const struct cfdata *cf1;
for (cf1 = cf; cf1->cf_name; cf1++)
if (d->dv_cfdata == cf1)
return (1);
return (0);
}
/*
* Detach a supplemental config data table. Detach all devices found
* through that table (and thus keeping references to it) before.
*/
int
config_cfdata_detach(cfdata_t cf)
{
device_t d;
int error = 0;
struct cftable *ct;
deviter_t di;
for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
d = deviter_next(&di)) {
if (!dev_in_cfdata(d, cf))
continue;
if ((error = config_detach(d, 0)) != 0)
break;
}
deviter_release(&di);
if (error) {
aprint_error_dev(d, "unable to detach instance\n");
return error;
}
TAILQ_FOREACH(ct, &allcftables, ct_list) {
if (ct->ct_cfdata == cf) {
TAILQ_REMOVE(&allcftables, ct, ct_list);
kmem_free(ct, sizeof(*ct));
return (0);
}
}
/* not found -- shouldn't happen */
return (EINVAL);
}
/*
* Invoke the "match" routine for a cfdata entry on behalf of
* an external caller, usually a "submatch" routine.
*/
int
config_match(device_t parent, cfdata_t cf, void *aux)
{
struct cfattach *ca;
ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
if (ca == NULL) {
/* No attachment for this entry, oh well. */
return (0);
}
return ((*ca->ca_match)(parent, cf, aux));
}
/*
* Iterate over all potential children of some device, calling the given
* function (default being the child's match function) for each one.
* Nonzero returns are matches; the highest value returned is considered
* the best match. Return the `found child' if we got a match, or NULL
* otherwise. The `aux' pointer is simply passed on through.
*
* Note that this function is designed so that it can be used to apply
* an arbitrary function to all potential children (its return value
* can be ignored).
*/
cfdata_t
config_search_loc(cfsubmatch_t fn, device_t parent,
const char *ifattr, const int *locs, void *aux)
{
struct cftable *ct;
cfdata_t cf;
struct matchinfo m;
KASSERT(config_initialized);
KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
m.fn = fn;
m.parent = parent;
m.locs = locs;
m.aux = aux;
m.match = NULL;
m.pri = 0;
TAILQ_FOREACH(ct, &allcftables, ct_list) {
for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
/* We don't match root nodes here. */
if (!cf->cf_pspec)
continue;
/*
* Skip cf if no longer eligible, otherwise scan
* through parents for one matching `parent', and
* try match function.
*/
if (cf->cf_fstate == FSTATE_FOUND)
continue;
if (cf->cf_fstate == FSTATE_DNOTFOUND ||
cf->cf_fstate == FSTATE_DSTAR)
continue;
/*
* If an interface attribute was specified,
* consider only children which attach to
* that attribute.
*/
if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
continue;
if (cfparent_match(parent, cf->cf_pspec))
mapply(&m, cf);
}
}
return (m.match);
}
cfdata_t
config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
void *aux)
{
return (config_search_loc(fn, parent, ifattr, NULL, aux));
}
/*
* Find the given root device.
* This is much like config_search, but there is no parent.
* Don't bother with multiple cfdata tables; the root node
* must always be in the initial table.
*/
cfdata_t
config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
{
cfdata_t cf;
const short *p;
struct matchinfo m;
m.fn = fn;
m.parent = ROOT;
m.aux = aux;
m.match = NULL;
m.pri = 0;
m.locs = 0;
/*
* Look at root entries for matching name. We do not bother
* with found-state here since only one root should ever be
* searched (and it must be done first).
*/
for (p = cfroots; *p >= 0; p++) {
cf = &cfdata[*p];
if (strcmp(cf->cf_name, rootname) == 0)
mapply(&m, cf);
}
return (m.match);
}
static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
/*
* The given `aux' argument describes a device that has been found
* on the given parent, but not necessarily configured. Locate the
* configuration data for that device (using the submatch function
* provided, or using candidates' cd_match configuration driver
* functions) and attach it, and return true. If the device was
* not configured, call the given `print' function and return 0.
*/
device_t
config_found_sm_loc(device_t parent,
const char *ifattr, const int *locs, void *aux,
cfprint_t print, cfsubmatch_t submatch)
{
cfdata_t cf;
#if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
if (splash_progress_state)
splash_progress_update(splash_progress_state);
#endif
if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
return(config_attach_loc(parent, cf, locs, aux, print));
if (print) {
if (config_do_twiddle)
twiddle();
aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
}
#if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
if (splash_progress_state)
splash_progress_update(splash_progress_state);
#endif
return (NULL);
}
device_t
config_found_ia(device_t parent, const char *ifattr, void *aux,
cfprint_t print)
{
return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
}
device_t
config_found(device_t parent, void *aux, cfprint_t print)
{
return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
}
/*
* As above, but for root devices.
*/
device_t
config_rootfound(const char *rootname, void *aux)
{
cfdata_t cf;
if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
aprint_error("root device %s not configured\n", rootname);
return (NULL);
}
/* just like sprintf(buf, "%d") except that it works from the end */
static char *
number(char *ep, int n)
{
*--ep = 0;
while (n >= 10) {
*--ep = (n % 10) + '0';
n /= 10;
}
*--ep = n + '0';
return (ep);
}
/*
* Expand the size of the cd_devs array if necessary.
*/
static void
config_makeroom(int n, struct cfdriver *cd)
{
const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP);
int old, new;
device_t *nsp;
if (n < cd->cd_ndevs)
return;
/*
* Need to expand the array.
*/
old = cd->cd_ndevs;
if (old == 0)
new = 4;
else
new = old * 2;
while (new <= n)
new *= 2;
cd->cd_ndevs = new;
nsp = kmem_alloc(sizeof(device_t [new]), kmflags);
if (nsp == NULL)
panic("config_attach: %sing dev array",
old != 0 ? "expand" : "creat");
memset(nsp + old, 0, sizeof(device_t [new - old]));
if (old != 0) {
memcpy(nsp, cd->cd_devs, sizeof(device_t [old]));
kmem_free(cd->cd_devs, sizeof(device_t [old]));
}
cd->cd_devs = nsp;
}
static void
config_devlink(device_t dev)
{
struct cfdriver *cd = dev->dv_cfdriver;
/* put this device in the devices array */
config_makeroom(dev->dv_unit, cd);
if (cd->cd_devs[dev->dv_unit])
panic("config_attach: duplicate %s", device_xname(dev));
cd->cd_devs[dev->dv_unit] = dev;
/* It is safe to add a device to the tail of the list while
* readers are in the list, but not while a writer is in
* the list. Wait for any writer to complete.
*/
mutex_enter(&alldevs_mtx);
while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
cv_wait(&alldevs_cv, &alldevs_mtx);
TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */
cv_signal(&alldevs_cv);
mutex_exit(&alldevs_mtx);
}
static void
config_devunlink(device_t dev)
{
struct cfdriver *cd = dev->dv_cfdriver;
int i;
/* Unlink from device list. */
TAILQ_REMOVE(&alldevs, dev, dv_list);
/* Remove from cfdriver's array. */
cd->cd_devs[dev->dv_unit] = NULL;
/*
* If the device now has no units in use, deallocate its softc array.
*/
for (i = 0; i < cd->cd_ndevs; i++) {
if (cd->cd_devs[i] != NULL)
return;
}
/* nothing found; deallocate */
kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs]));
cd->cd_devs = NULL;
cd->cd_ndevs = 0;
}
static device_t
config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
{
struct cfdriver *cd;
struct cfattach *ca;
size_t lname, lunit;
const char *xunit;
int myunit;
char num[10];
device_t dev;
void *dev_private;
const struct cfiattrdata *ia;
const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP);
cd = config_cfdriver_lookup(cf->cf_name);
if (cd == NULL)
return (NULL);
ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
if (ca == NULL)
return (NULL);
if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
ca->ca_devsize < sizeof(struct device))
panic("config_devalloc: %s", cf->cf_atname);
#ifndef __BROKEN_CONFIG_UNIT_USAGE
if (cf->cf_fstate == FSTATE_STAR) {
for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
if (cd->cd_devs[myunit] == NULL)
break;
/*
* myunit is now the unit of the first NULL device pointer,
* or max(cd->cd_ndevs,cf->cf_unit).
*/
} else {
myunit = cf->cf_unit;
if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
return (NULL);
}
#else
myunit = cf->cf_unit;
#endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
/* compute length of name and decimal expansion of unit number */
lname = strlen(cd->cd_name);
xunit = number(&num[sizeof(num)], myunit);
lunit = &num[sizeof(num)] - xunit;
if (lname + lunit > sizeof(dev->dv_xname))
panic("config_devalloc: device name too long");
/* get memory for all device vars */
KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
if (ca->ca_devsize > 0) {
dev_private = kmem_zalloc(ca->ca_devsize, kmflags);
if (dev_private == NULL)
panic("config_devalloc: memory allocation for device softc failed");
} else {
KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
dev_private = NULL;
}
if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
dev = kmem_zalloc(sizeof(*dev), kmflags);
} else {
dev = dev_private;
}
if (dev == NULL)
panic("config_devalloc: memory allocation for device_t failed");
dev->dv_class = cd->cd_class;
dev->dv_cfdata = cf;
dev->dv_cfdriver = cd;
dev->dv_cfattach = ca;
dev->dv_unit = myunit;
dev->dv_activity_count = 0;
dev->dv_activity_handlers = NULL;
dev->dv_private = dev_private;
memcpy(dev->dv_xname, cd->cd_name, lname);
memcpy(dev->dv_xname + lname, xunit, lunit);
dev->dv_parent = parent;
if (parent != NULL)
dev->dv_depth = parent->dv_depth + 1;
else
dev->dv_depth = 0;
dev->dv_flags = DVF_ACTIVE; /* always initially active */
dev->dv_flags |= ca->ca_flags; /* inherit flags from class */
if (locs) {
KASSERT(parent); /* no locators at root */
ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
parent->dv_cfdriver);
dev->dv_locators =
kmem_alloc(sizeof(int [ia->ci_loclen + 1]), kmflags);
*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
}
dev->dv_properties = prop_dictionary_create();
KASSERT(dev->dv_properties != NULL);
prop_dictionary_set_cstring_nocopy(dev->dv_properties,
"device-driver", dev->dv_cfdriver->cd_name);
prop_dictionary_set_uint16(dev->dv_properties,
"device-unit", dev->dv_unit);
return (dev);
}
static void
config_devdealloc(device_t dev)
{
int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
KASSERT(dev->dv_properties != NULL);
prop_object_release(dev->dv_properties);
if (dev->dv_activity_handlers)
panic("config_devdealloc with registered handlers");
if (dev->dv_locators) {
size_t amount = *--dev->dv_locators;
kmem_free(dev->dv_locators, amount);
}
if (dev->dv_cfattach->ca_devsize > 0)
kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
if (priv)
kmem_free(dev, sizeof(*dev));
}
/*
* Attach a found device.
*/
device_t
config_attach_loc(device_t parent, cfdata_t cf,
const int *locs, void *aux, cfprint_t print)
{
device_t dev;
struct cftable *ct;
const char *drvname;
#if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
if (splash_progress_state)
splash_progress_update(splash_progress_state);
#endif
dev = config_devalloc(parent, cf, locs);
if (!dev)
panic("config_attach: allocation of device softc failed");
/* XXX redundant - see below? */
if (cf->cf_fstate != FSTATE_STAR) {
KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
cf->cf_fstate = FSTATE_FOUND;
}
#ifdef __BROKEN_CONFIG_UNIT_USAGE
else
cf->cf_unit++;
#endif
config_devlink(dev);
if (config_do_twiddle)
twiddle();
else
aprint_naive("Found ");
/*
* We want the next two printfs for normal, verbose, and quiet,
* but not silent (in which case, we're twiddling, instead).
*/
if (parent == ROOT) {
aprint_naive("%s (root)", device_xname(dev));
aprint_normal("%s (root)", device_xname(dev));
} else {
aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
if (print)
(void) (*print)(aux, NULL);
}
/*
* Before attaching, clobber any unfound devices that are
* otherwise identical.
* XXX code above is redundant?
*/
drvname = dev->dv_cfdriver->cd_name;
TAILQ_FOREACH(ct, &allcftables, ct_list) {
for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
if (STREQ(cf->cf_name, drvname) &&
cf->cf_unit == dev->dv_unit) {
if (cf->cf_fstate == FSTATE_NOTFOUND)
cf->cf_fstate = FSTATE_FOUND;
#ifdef __BROKEN_CONFIG_UNIT_USAGE
/*
* Bump the unit number on all starred cfdata
* entries for this device.
*/
if (cf->cf_fstate == FSTATE_STAR)
cf->cf_unit++;
#endif /* __BROKEN_CONFIG_UNIT_USAGE */
}
}
}
#ifdef __HAVE_DEVICE_REGISTER
device_register(dev, aux);
#endif
/* Let userland know */
devmon_report_device(dev, true);
#if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
if (splash_progress_state)
splash_progress_update(splash_progress_state);
#endif
(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
#if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
if (splash_progress_state)
splash_progress_update(splash_progress_state);
#endif
if (!device_pmf_is_registered(dev))
aprint_debug_dev(dev, "WARNING: power management not supported\n");
config_process_deferred(&deferred_config_queue, dev);
return (dev);
}
device_t
config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
{
return (config_attach_loc(parent, cf, NULL, aux, print));
}
/*
* As above, but for pseudo-devices. Pseudo-devices attached in this
* way are silently inserted into the device tree, and their children
* attached.
*
* Note that because pseudo-devices are attached silently, any information
* the attach routine wishes to print should be prefixed with the device
* name by the attach routine.
*/
device_t
config_attach_pseudo(cfdata_t cf)
{
device_t dev;
dev = config_devalloc(ROOT, cf, NULL);
if (!dev)
return (NULL);
/* XXX mark busy in cfdata */
config_devlink(dev);
#if 0 /* XXXJRT not yet */
#ifdef __HAVE_DEVICE_REGISTER
device_register(dev, NULL); /* like a root node */
#endif
#endif
(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
config_process_deferred(&deferred_config_queue, dev);
return (dev);
}
/*
* Detach a device. Optionally forced (e.g. because of hardware
* removal) and quiet. Returns zero if successful, non-zero
* (an error code) otherwise.
*
* Note that this code wants to be run from a process context, so
* that the detach can sleep to allow processes which have a device
* open to run and unwind their stacks.
*/
int
config_detach(device_t dev, int flags)
{
struct cftable *ct;
cfdata_t cf;
const struct cfattach *ca;
struct cfdriver *cd;
#ifdef DIAGNOSTIC
device_t d;
#endif
int rv = 0;
#ifdef DIAGNOSTIC
cf = dev->dv_cfdata;
if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
cf->cf_fstate != FSTATE_STAR)
panic("config_detach: %s: bad device fstate %d",
device_xname(dev), cf ? cf->cf_fstate : -1);
#endif
cd = dev->dv_cfdriver;
KASSERT(cd != NULL);
ca = dev->dv_cfattach;
KASSERT(ca != NULL);
KASSERT(curlwp != NULL);
mutex_enter(&alldevs_mtx);
if (alldevs_nwrite > 0 && alldevs_writer == NULL)
;
else while (alldevs_nread != 0 ||
(alldevs_nwrite != 0 && alldevs_writer != curlwp))
cv_wait(&alldevs_cv, &alldevs_mtx);
if (alldevs_nwrite++ == 0)
alldevs_writer = curlwp;
mutex_exit(&alldevs_mtx);
/*
* Ensure the device is deactivated. If the device doesn't
* have an activation entry point, we allow DVF_ACTIVE to
* remain set. Otherwise, if DVF_ACTIVE is still set, the
* device is busy, and the detach fails.
*/
if (ca->ca_activate != NULL)
rv = config_deactivate(dev);
/*
* Try to detach the device. If that's not possible, then
* we either panic() (for the forced but failed case), or
* return an error.
*/
if (rv == 0) {
if (ca->ca_detach != NULL)
rv = (*ca->ca_detach)(dev, flags);
else
rv = EOPNOTSUPP;
}
if (rv != 0) {
if ((flags & DETACH_FORCE) == 0)
goto out;
else
panic("config_detach: forced detach of %s failed (%d)",
device_xname(dev), rv);
}
/*
* The device has now been successfully detached.
*/
/* Let userland know */
devmon_report_device(dev, false);
#ifdef DIAGNOSTIC
/*
* Sanity: If you're successfully detached, you should have no
* children. (Note that because children must be attached
* after parents, we only need to search the latter part of
* the list.)
*/
for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
d = TAILQ_NEXT(d, dv_list)) {
if (d->dv_parent == dev) {
printf("config_detach: detached device %s"
" has children %s\n", device_xname(dev), device_xname(d));
panic("config_detach");
}
}
#endif
/* notify the parent that the child is gone */
if (dev->dv_parent) {
device_t p = dev->dv_parent;
if (p->dv_cfattach->ca_childdetached)
(*p->dv_cfattach->ca_childdetached)(p, dev);
}
/*
* Mark cfdata to show that the unit can be reused, if possible.
*/
TAILQ_FOREACH(ct, &allcftables, ct_list) {
for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
if (STREQ(cf->cf_name, cd->cd_name)) {
if (cf->cf_fstate == FSTATE_FOUND &&
cf->cf_unit == dev->dv_unit)
cf->cf_fstate = FSTATE_NOTFOUND;
#ifdef __BROKEN_CONFIG_UNIT_USAGE
/*
* Note that we can only re-use a starred
* unit number if the unit being detached
* had the last assigned unit number.
*/
if (cf->cf_fstate == FSTATE_STAR &&
cf->cf_unit == dev->dv_unit + 1)
cf->cf_unit--;
#endif /* __BROKEN_CONFIG_UNIT_USAGE */
}
}
}
config_devunlink(dev);
if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
aprint_normal_dev(dev, "detached\n");
config_devdealloc(dev);
out:
mutex_enter(&alldevs_mtx);
if (--alldevs_nwrite == 0)
alldevs_writer = NULL;
cv_signal(&alldevs_cv);
mutex_exit(&alldevs_mtx);
return rv;
}
int
config_detach_children(device_t parent, int flags)
{
device_t dv;
deviter_t di;
int error = 0;
for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
dv = deviter_next(&di)) {
if (device_parent(dv) != parent)
continue;
if ((error = config_detach(dv, flags)) != 0)
break;
}
deviter_release(&di);
return error;
}
int
config_activate(device_t dev)
{
const struct cfattach *ca = dev->dv_cfattach;
int rv = 0, oflags = dev->dv_flags;
if (ca->ca_activate == NULL)
return (EOPNOTSUPP);
if ((dev->dv_flags & DVF_ACTIVE) == 0) {
dev->dv_flags |= DVF_ACTIVE;
rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
if (rv)
dev->dv_flags = oflags;
}
return (rv);
}
int
config_deactivate(device_t dev)
{
const struct cfattach *ca = dev->dv_cfattach;
int rv = 0, oflags = dev->dv_flags;
if (ca->ca_activate == NULL)
return (EOPNOTSUPP);
if (dev->dv_flags & DVF_ACTIVE) {
dev->dv_flags &= ~DVF_ACTIVE;
rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
if (rv)
dev->dv_flags = oflags;
}
return (rv);
}
/*
* Defer the configuration of the specified device until all
* of its parent's devices have been attached.
*/
void
config_defer(device_t dev, void (*func)(device_t))
{
const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP);
struct deferred_config *dc;
if (dev->dv_parent == NULL)
panic("config_defer: can't defer config of a root device");
#ifdef DIAGNOSTIC
for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
dc = TAILQ_NEXT(dc, dc_queue)) {
if (dc->dc_dev == dev)
panic("config_defer: deferred twice");
}
#endif
dc = kmem_alloc(sizeof(*dc), kmflags);
if (dc == NULL)
panic("config_defer: unable to allocate callback");
dc->dc_dev = dev;
dc->dc_func = func;
TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
config_pending_incr();
}
/*
* Defer some autoconfiguration for a device until after interrupts
* are enabled.
*/
void
config_interrupts(device_t dev, void (*func)(device_t))
{
const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP);
struct deferred_config *dc;
/*
* If interrupts are enabled, callback now.
*/
if (cold == 0) {
(*func)(dev);
return;
}
#ifdef DIAGNOSTIC
for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
dc = TAILQ_NEXT(dc, dc_queue)) {
if (dc->dc_dev == dev)
panic("config_interrupts: deferred twice");
}
#endif
dc = kmem_alloc(sizeof(*dc), kmflags);
if (dc == NULL)
panic("config_interrupts: unable to allocate callback");
dc->dc_dev = dev;
dc->dc_func = func;
TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
config_pending_incr();
}
/*
* Process a deferred configuration queue.
*/
static void
config_process_deferred(struct deferred_config_head *queue,
device_t parent)
{
struct deferred_config *dc, *ndc;
for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
ndc = TAILQ_NEXT(dc, dc_queue);
if (parent == NULL || dc->dc_dev->dv_parent == parent) {
TAILQ_REMOVE(queue, dc, dc_queue);
(*dc->dc_func)(dc->dc_dev);
kmem_free(dc, sizeof(*dc));
config_pending_decr();
}
}
}
/*
* Manipulate the config_pending semaphore.
*/
void
config_pending_incr(void)
{
mutex_enter(&config_misc_lock);
config_pending++;
mutex_exit(&config_misc_lock);
}
void
config_pending_decr(void)
{
#ifdef DIAGNOSTIC
if (config_pending == 0)
panic("config_pending_decr: config_pending == 0");
#endif
mutex_enter(&config_misc_lock);
config_pending--;
if (config_pending == 0)
cv_broadcast(&config_misc_cv);
mutex_exit(&config_misc_lock);
}
/*
* Register a "finalization" routine. Finalization routines are
* called iteratively once all real devices have been found during
* autoconfiguration, for as long as any one finalizer has done
* any work.
*/
int
config_finalize_register(device_t dev, int (*fn)(device_t))
{
struct finalize_hook *f;
/*
* If finalization has already been done, invoke the
* callback function now.
*/
if (config_finalize_done) {
while ((*fn)(dev) != 0)
/* loop */ ;
}
/* Ensure this isn't already on the list. */
TAILQ_FOREACH(f, &config_finalize_list, f_list) {
if (f->f_func == fn && f->f_dev == dev)
return (EEXIST);
}
f = kmem_alloc(sizeof(*f), KM_SLEEP);
f->f_func = fn;
f->f_dev = dev;
TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
return (0);
}
void
config_finalize(void)
{
struct finalize_hook *f;
struct pdevinit *pdev;
extern struct pdevinit pdevinit[];
int errcnt, rv;
/*
* Now that device driver threads have been created, wait for
* them to finish any deferred autoconfiguration.
*/
mutex_enter(&config_misc_lock);
while (config_pending != 0)
cv_wait(&config_misc_cv, &config_misc_lock);
mutex_exit(&config_misc_lock);
/* Attach pseudo-devices. */
for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
(*pdev->pdev_attach)(pdev->pdev_count);
/* Run the hooks until none of them does any work. */
do {
rv = 0;
TAILQ_FOREACH(f, &config_finalize_list, f_list)
rv |= (*f->f_func)(f->f_dev);
} while (rv != 0);
config_finalize_done = 1;
/* Now free all the hooks. */
while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
TAILQ_REMOVE(&config_finalize_list, f, f_list);
kmem_free(f, sizeof(*f));
}
errcnt = aprint_get_error_count();
if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
(boothowto & AB_VERBOSE) == 0) {
if (config_do_twiddle) {
config_do_twiddle = 0;
printf_nolog("done.\n");
}
if (errcnt != 0) {
printf("WARNING: %d error%s while detecting hardware; "
"check system log.\n", errcnt,
errcnt == 1 ? "" : "s");
}
}
}
/*
* device_lookup:
*
* Look up a device instance for a given driver.
*/
device_t
device_lookup(cfdriver_t cd, int unit)
{
if (unit < 0 || unit >= cd->cd_ndevs)
return (NULL);
return (cd->cd_devs[unit]);
}
/*
* device_lookup:
*
* Look up a device instance for a given driver.
*/
void *
device_lookup_private(cfdriver_t cd, int unit)
{
device_t dv;
if (unit < 0 || unit >= cd->cd_ndevs)
return NULL;
if ((dv = cd->cd_devs[unit]) == NULL)
return NULL;
return dv->dv_private;
}
/*
* Accessor functions for the device_t type.
*/
devclass_t
device_class(device_t dev)
{
return (dev->dv_class);
}
cfdata_t
device_cfdata(device_t dev)
{
return (dev->dv_cfdata);
}
cfdriver_t
device_cfdriver(device_t dev)
{
return (dev->dv_cfdriver);
}
cfattach_t
device_cfattach(device_t dev)
{
return (dev->dv_cfattach);
}
int
device_unit(device_t dev)
{
return (dev->dv_unit);
}
const char *
device_xname(device_t dev)
{
return (dev->dv_xname);
}
device_t
device_parent(device_t dev)
{
return (dev->dv_parent);
}
bool
device_is_active(device_t dev)
{
int active_flags;
active_flags = DVF_ACTIVE;
active_flags |= DVF_CLASS_SUSPENDED;
active_flags |= DVF_DRIVER_SUSPENDED;
active_flags |= DVF_BUS_SUSPENDED;
return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
}
bool
device_is_enabled(device_t dev)
{
return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
}
bool
device_has_power(device_t dev)
{
int active_flags;
active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
}
int
device_locator(device_t dev, u_int locnum)
{
KASSERT(dev->dv_locators != NULL);
return (dev->dv_locators[locnum]);
}
void *
device_private(device_t dev)
{
/*
* The reason why device_private(NULL) is allowed is to simplify the
* work of a lot of userspace request handlers (i.e., c/bdev
* handlers) which grab cfdriver_t->cd_units[n].
* It avoids having them test for it to be NULL and only then calling
* device_private.
*/
return dev == NULL ? NULL : dev->dv_private;
}
prop_dictionary_t
device_properties(device_t dev)
{
return (dev->dv_properties);
}
/*
* device_is_a:
*
* Returns true if the device is an instance of the specified
* driver.
*/
bool
device_is_a(device_t dev, const char *dname)
{
return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
}
/*
* device_find_by_xname:
*
* Returns the device of the given name or NULL if it doesn't exist.
*/
device_t
device_find_by_xname(const char *name)
{
device_t dv;
deviter_t di;
for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
if (strcmp(device_xname(dv), name) == 0)
break;
}
deviter_release(&di);
return dv;
}
/*
* device_find_by_driver_unit:
*
* Returns the device of the given driver name and unit or
* NULL if it doesn't exist.
*/
device_t
device_find_by_driver_unit(const char *name, int unit)
{
struct cfdriver *cd;
if ((cd = config_cfdriver_lookup(name)) == NULL)
return NULL;
return device_lookup(cd, unit);
}
/*
* Power management related functions.
*/
bool
device_pmf_is_registered(device_t dev)
{
return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
}
bool
device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
{
if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
return true;
if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
return false;
if (*dev->dv_driver_suspend != NULL &&
!(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
return false;
dev->dv_flags |= DVF_DRIVER_SUSPENDED;
return true;
}
bool
device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
{
if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
return true;
if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
return false;
if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
return false;
if (*dev->dv_driver_resume != NULL &&
!(*dev->dv_driver_resume)(dev PMF_FN_CALL))
return false;
dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
return true;
}
bool
device_pmf_driver_shutdown(device_t dev, int how)
{
if (*dev->dv_driver_shutdown != NULL &&
!(*dev->dv_driver_shutdown)(dev, how))
return false;
return true;
}
bool
device_pmf_driver_register(device_t dev,
bool (*suspend)(device_t PMF_FN_PROTO),
bool (*resume)(device_t PMF_FN_PROTO),
bool (*shutdown)(device_t, int))
{
pmf_private_t *pp;
if ((pp = kmem_zalloc(sizeof(*pp), KM_NOSLEEP)) == NULL)
return false;
mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE);
cv_init(&pp->pp_cv, "pmfsusp");
dev->dv_pmf_private = pp;
dev->dv_driver_suspend = suspend;
dev->dv_driver_resume = resume;
dev->dv_driver_shutdown = shutdown;
dev->dv_flags |= DVF_POWER_HANDLERS;
return true;
}
static const char *
curlwp_name(void)
{
if (curlwp->l_name != NULL)
return curlwp->l_name;
else
return curlwp->l_proc->p_comm;
}
void
device_pmf_driver_deregister(device_t dev)
{
pmf_private_t *pp = dev->dv_pmf_private;
/* XXX avoid crash in case we are not initialized */
if (!pp)
return;
dev->dv_driver_suspend = NULL;
dev->dv_driver_resume = NULL;
mutex_enter(&pp->pp_mtx);
dev->dv_flags &= ~DVF_POWER_HANDLERS;
while (pp->pp_nlock > 0 || pp->pp_nwait > 0) {
/* Wake a thread that waits for the lock. That
* thread will fail to acquire the lock, and then
* it will wake the next thread that waits for the
* lock, or else it will wake us.
*/
cv_signal(&pp->pp_cv);
pmflock_debug(dev, __func__, __LINE__);
cv_wait(&pp->pp_cv, &pp->pp_mtx);
pmflock_debug(dev, __func__, __LINE__);
}
dev->dv_pmf_private = NULL;
mutex_exit(&pp->pp_mtx);
cv_destroy(&pp->pp_cv);
mutex_destroy(&pp->pp_mtx);
kmem_free(pp, sizeof(*pp));
}
bool
device_pmf_driver_child_register(device_t dev)
{
device_t parent = device_parent(dev);
if (parent == NULL || parent->dv_driver_child_register == NULL)
return true;
return (*parent->dv_driver_child_register)(dev);
}
void
device_pmf_driver_set_child_register(device_t dev,
bool (*child_register)(device_t))
{
dev->dv_driver_child_register = child_register;
}
void
device_pmf_self_resume(device_t dev PMF_FN_ARGS)
{
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
dev->dv_flags &= ~DVF_SELF_SUSPENDED;
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
}
bool
device_is_self_suspended(device_t dev)
{
return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
}
void
device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
{
bool self = (flags & PMF_F_SELF) != 0;
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
if (!self)
dev->dv_flags &= ~DVF_SELF_SUSPENDED;
else if (device_is_active(dev))
dev->dv_flags |= DVF_SELF_SUSPENDED;
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
}
static void
pmflock_debug(device_t dev, const char *func, int line)
{
pmf_private_t *pp = device_pmf_private(dev);
aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n",
func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait,
dev->dv_flags);
}
static void
pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
{
pmf_private_t *pp = device_pmf_private(dev);
aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x "
"flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL);
}
static bool
device_pmf_lock1(device_t dev PMF_FN_ARGS)
{
pmf_private_t *pp = device_pmf_private(dev);
while (device_pmf_is_registered(dev) &&
pp->pp_nlock > 0 && pp->pp_holder != curlwp) {
pp->pp_nwait++;
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
cv_wait(&pp->pp_cv, &pp->pp_mtx);
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
pp->pp_nwait--;
}
if (!device_pmf_is_registered(dev)) {
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
/* We could not acquire the lock, but some other thread may
* wait for it, also. Wake that thread.
*/
cv_signal(&pp->pp_cv);
return false;
}
pp->pp_nlock++;
pp->pp_holder = curlwp;
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
return true;
}
bool
device_pmf_lock(device_t dev PMF_FN_ARGS)
{
bool rc;
pmf_private_t *pp = device_pmf_private(dev);
mutex_enter(&pp->pp_mtx);
rc = device_pmf_lock1(dev PMF_FN_CALL);
mutex_exit(&pp->pp_mtx);
return rc;
}
void
device_pmf_unlock(device_t dev PMF_FN_ARGS)
{
pmf_private_t *pp = device_pmf_private(dev);
KASSERT(pp->pp_nlock > 0);
mutex_enter(&pp->pp_mtx);
if (--pp->pp_nlock == 0)
pp->pp_holder = NULL;
cv_signal(&pp->pp_cv);
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
mutex_exit(&pp->pp_mtx);
}
void *
device_pmf_private(device_t dev)
{
return dev->dv_pmf_private;
}
void *
device_pmf_bus_private(device_t dev)
{
return dev->dv_bus_private;
}
bool
device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
{
if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
return true;
if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
(dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
return false;
if (*dev->dv_bus_suspend != NULL &&
!(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
return false;
dev->dv_flags |= DVF_BUS_SUSPENDED;
return true;
}
bool
device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
{
if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
return true;
if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
return false;
if (*dev->dv_bus_resume != NULL &&
!(*dev->dv_bus_resume)(dev PMF_FN_CALL))
return false;
dev->dv_flags &= ~DVF_BUS_SUSPENDED;
return true;
}
bool
device_pmf_bus_shutdown(device_t dev, int how)
{
if (*dev->dv_bus_shutdown != NULL &&
!(*dev->dv_bus_shutdown)(dev, how))
return false;
return true;
}
void
device_pmf_bus_register(device_t dev, void *priv,
bool (*suspend)(device_t PMF_FN_PROTO),
bool (*resume)(device_t PMF_FN_PROTO),
bool (*shutdown)(device_t, int), void (*deregister)(device_t))
{
dev->dv_bus_private = priv;
dev->dv_bus_resume = resume;
dev->dv_bus_suspend = suspend;
dev->dv_bus_shutdown = shutdown;
dev->dv_bus_deregister = deregister;
}
void
device_pmf_bus_deregister(device_t dev)
{
if (dev->dv_bus_deregister == NULL)
return;
(*dev->dv_bus_deregister)(dev);
dev->dv_bus_private = NULL;
dev->dv_bus_suspend = NULL;
dev->dv_bus_resume = NULL;
dev->dv_bus_deregister = NULL;
}
void *
device_pmf_class_private(device_t dev)
{
return dev->dv_class_private;
}
bool
device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
{
if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
return true;
if (*dev->dv_class_suspend != NULL &&
!(*dev->dv_class_suspend)(dev PMF_FN_CALL))
return false;
dev->dv_flags |= DVF_CLASS_SUSPENDED;
return true;
}
bool
device_pmf_class_resume(device_t dev PMF_FN_ARGS)
{
if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
return true;
if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
(dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
return false;
if (*dev->dv_class_resume != NULL &&
!(*dev->dv_class_resume)(dev PMF_FN_CALL))
return false;
dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
return true;
}
void
device_pmf_class_register(device_t dev, void *priv,
bool (*suspend)(device_t PMF_FN_PROTO),
bool (*resume)(device_t PMF_FN_PROTO),
void (*deregister)(device_t))
{
dev->dv_class_private = priv;
dev->dv_class_suspend = suspend;
dev->dv_class_resume = resume;
dev->dv_class_deregister = deregister;
}
void
device_pmf_class_deregister(device_t dev)
{
if (dev->dv_class_deregister == NULL)
return;
(*dev->dv_class_deregister)(dev);
dev->dv_class_private = NULL;
dev->dv_class_suspend = NULL;
dev->dv_class_resume = NULL;
dev->dv_class_deregister = NULL;
}
bool
device_active(device_t dev, devactive_t type)
{
size_t i;
if (dev->dv_activity_count == 0)
return false;
for (i = 0; i < dev->dv_activity_count; ++i) {
if (dev->dv_activity_handlers[i] == NULL)
break;
(*dev->dv_activity_handlers[i])(dev, type);
}
return true;
}
bool
device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
{
void (**new_handlers)(device_t, devactive_t);
void (**old_handlers)(device_t, devactive_t);
size_t i, old_size, new_size;
int s;
old_handlers = dev->dv_activity_handlers;
old_size = dev->dv_activity_count;
for (i = 0; i < old_size; ++i) {
KASSERT(old_handlers[i] != handler);
if (old_handlers[i] == NULL) {
old_handlers[i] = handler;
return true;
}
}
new_size = old_size + 4;
new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
new_handlers[old_size] = handler;
memset(new_handlers + old_size + 1, 0,
sizeof(int [new_size - (old_size+1)]));
s = splhigh();
dev->dv_activity_count = new_size;
dev->dv_activity_handlers = new_handlers;
splx(s);
if (old_handlers != NULL)
kmem_free(old_handlers, sizeof(void * [old_size]));
return true;
}
void
device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
{
void (**old_handlers)(device_t, devactive_t);
size_t i, old_size;
int s;
old_handlers = dev->dv_activity_handlers;
old_size = dev->dv_activity_count;
for (i = 0; i < old_size; ++i) {
if (old_handlers[i] == handler)
break;
if (old_handlers[i] == NULL)
return; /* XXX panic? */
}
if (i == old_size)
return; /* XXX panic? */
for (; i < old_size - 1; ++i) {
if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
continue;
if (i == 0) {
s = splhigh();
dev->dv_activity_count = 0;
dev->dv_activity_handlers = NULL;
splx(s);
kmem_free(old_handlers, sizeof(void *[old_size]));
}
return;
}
old_handlers[i] = NULL;
}
/*
* Device Iteration
*
* deviter_t: a device iterator. Holds state for a "walk" visiting
* each device_t's in the device tree.
*
* deviter_init(di, flags): initialize the device iterator `di'
* to "walk" the device tree. deviter_next(di) will return
* the first device_t in the device tree, or NULL if there are
* no devices.
*
* `flags' is one or more of DEVITER_F_RW, indicating that the
* caller intends to modify the device tree by calling
* config_detach(9) on devices in the order that the iterator
* returns them; DEVITER_F_ROOT_FIRST, asking for the devices
* nearest the "root" of the device tree to be returned, first;
* DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
* the root of the device tree, first; and DEVITER_F_SHUTDOWN,
* indicating both that deviter_init() should not respect any
* locks on the device tree, and that deviter_next(di) may run
* in more than one LWP before the walk has finished.
*
* Only one DEVITER_F_RW iterator may be in the device tree at
* once.
*
* DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
*
* Results are undefined if the flags DEVITER_F_ROOT_FIRST and
* DEVITER_F_LEAVES_FIRST are used in combination.
*
* deviter_first(di, flags): initialize the device iterator `di'
* and return the first device_t in the device tree, or NULL
* if there are no devices. The statement
*
* dv = deviter_first(di);
*
* is shorthand for
*
* deviter_init(di);
* dv = deviter_next(di);
*
* deviter_next(di): return the next device_t in the device tree,
* or NULL if there are no more devices. deviter_next(di)
* is undefined if `di' was not initialized with deviter_init() or
* deviter_first().
*
* deviter_release(di): stops iteration (subsequent calls to
* deviter_next() will return NULL), releases any locks and
* resources held by the device iterator.
*
* Device iteration does not return device_t's in any particular
* order. An iterator will never return the same device_t twice.
* Device iteration is guaranteed to complete---i.e., if deviter_next(di)
* is called repeatedly on the same `di', it will eventually return
* NULL. It is ok to attach/detach devices during device iteration.
*/
void
deviter_init(deviter_t *di, deviter_flags_t flags)
{
device_t dv;
bool rw;
mutex_enter(&alldevs_mtx);
if ((flags & DEVITER_F_SHUTDOWN) != 0) {
flags |= DEVITER_F_RW;
alldevs_nwrite++;
alldevs_writer = NULL;
alldevs_nread = 0;
} else {
rw = (flags & DEVITER_F_RW) != 0;
if (alldevs_nwrite > 0 && alldevs_writer == NULL)
;
else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
(rw && alldevs_nread != 0))
cv_wait(&alldevs_cv, &alldevs_mtx);
if (rw) {
if (alldevs_nwrite++ == 0)
alldevs_writer = curlwp;
} else
alldevs_nread++;
}
mutex_exit(&alldevs_mtx);
memset(di, 0, sizeof(*di));
di->di_flags = flags;
switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
case DEVITER_F_LEAVES_FIRST:
TAILQ_FOREACH(dv, &alldevs, dv_list)
di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
break;
case DEVITER_F_ROOT_FIRST:
TAILQ_FOREACH(dv, &alldevs, dv_list)
di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
break;
default:
break;
}
deviter_reinit(di);
}
static void
deviter_reinit(deviter_t *di)
{
if ((di->di_flags & DEVITER_F_RW) != 0)
di->di_prev = TAILQ_LAST(&alldevs, devicelist);
else
di->di_prev = TAILQ_FIRST(&alldevs);
}
device_t
deviter_first(deviter_t *di, deviter_flags_t flags)
{
deviter_init(di, flags);
return deviter_next(di);
}
static device_t
deviter_next1(deviter_t *di)
{
device_t dv;
dv = di->di_prev;
if (dv == NULL)
;
else if ((di->di_flags & DEVITER_F_RW) != 0)
di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
else
di->di_prev = TAILQ_NEXT(dv, dv_list);
return dv;
}
device_t
deviter_next(deviter_t *di)
{
device_t dv = NULL;
switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
case 0:
return deviter_next1(di);
case DEVITER_F_LEAVES_FIRST:
while (di->di_curdepth >= 0) {
if ((dv = deviter_next1(di)) == NULL) {
di->di_curdepth--;
deviter_reinit(di);
} else if (dv->dv_depth == di->di_curdepth)
break;
}
return dv;
case DEVITER_F_ROOT_FIRST:
while (di->di_curdepth <= di->di_maxdepth) {
if ((dv = deviter_next1(di)) == NULL) {
di->di_curdepth++;
deviter_reinit(di);
} else if (dv->dv_depth == di->di_curdepth)
break;
}
return dv;
default:
return NULL;
}
}
void
deviter_release(deviter_t *di)
{
bool rw = (di->di_flags & DEVITER_F_RW) != 0;
mutex_enter(&alldevs_mtx);
if (alldevs_nwrite > 0 && alldevs_writer == NULL)
--alldevs_nwrite;
else {
if (rw) {
if (--alldevs_nwrite == 0)
alldevs_writer = NULL;
} else
--alldevs_nread;
cv_signal(&alldevs_cv);
}
mutex_exit(&alldevs_mtx);
}