NetBSD/sys/kern/vfs_cache.c

1320 lines
37 KiB
C

/* $NetBSD: vfs_cache.c,v 1.110 2016/07/07 06:55:43 msaitoh Exp $ */
/*-
* Copyright (c) 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vfs_cache.c 8.3 (Berkeley) 8/22/94
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.110 2016/07/07 06:55:43 msaitoh Exp $");
#ifdef _KERNEL_OPT
#include "opt_ddb.h"
#include "opt_revcache.h"
#include "opt_dtrace.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <sys/mount.h>
#include <sys/vnode.h>
#include <sys/namei.h>
#include <sys/errno.h>
#include <sys/pool.h>
#include <sys/mutex.h>
#include <sys/atomic.h>
#include <sys/kthread.h>
#include <sys/kernel.h>
#include <sys/cpu.h>
#include <sys/evcnt.h>
#include <sys/sdt.h>
#define NAMECACHE_ENTER_REVERSE
/*
* Name caching works as follows:
*
* Names found by directory scans are retained in a cache
* for future reference. It is managed LRU, so frequently
* used names will hang around. Cache is indexed by hash value
* obtained from (dvp, name) where dvp refers to the directory
* containing name.
*
* For simplicity (and economy of storage), names longer than
* a maximum length of NCHNAMLEN are not cached; they occur
* infrequently in any case, and are almost never of interest.
*
* Upon reaching the last segment of a path, if the reference
* is for DELETE, or NOCACHE is set (rewrite), and the
* name is located in the cache, it will be dropped.
* The entry is dropped also when it was not possible to lock
* the cached vnode, either because vget() failed or the generation
* number has changed while waiting for the lock.
*/
/*
* The locking in this subsystem works as follows:
*
* When an entry is added to the cache, via cache_enter(),
* namecache_lock is taken to exclude other writers. The new
* entry is added to the hash list in a way which permits
* concurrent lookups and invalidations in the cache done on
* other CPUs to continue in parallel.
*
* When a lookup is done in the cache, via cache_lookup() or
* cache_lookup_raw(), the per-cpu lock below is taken. This
* protects calls to cache_lookup_entry() and cache_invalidate()
* against cache_reclaim() but allows lookups to continue in
* parallel with cache_enter().
*
* cache_revlookup() takes namecache_lock to exclude cache_enter()
* and cache_reclaim() since the list it operates on is not
* maintained to allow concurrent reads.
*
* When cache_reclaim() is called namecache_lock is held to hold
* off calls to cache_enter()/cache_revlookup() and each of the
* per-cpu locks is taken to hold off lookups. Holding all these
* locks essentially idles the subsystem, ensuring there are no
* concurrent references to the cache entries being freed.
*
* 32 bit per-cpu statistic counters (struct nchstats_percpu) are
* incremented when the operations they count are performed while
* running on the corresponding CPU. Frequently individual counters
* are incremented while holding a lock (either a per-cpu lock or
* namecache_lock) sufficient to preclude concurrent increments
* being done to the same counter, so non-atomic increments are
* done using the COUNT() macro. Counters which are incremented
* when one of these locks is not held use the COUNT_UNL() macro
* instead. COUNT_UNL() could be defined to do atomic increments
* but currently just does what COUNT() does, on the theory that
* it is unlikely the non-atomic increment will be interrupted
* by something on the same CPU that increments the same counter,
* but even if it does happen the consequences aren't serious.
*
* N.B.: Attempting to protect COUNT_UNL() increments by taking
* a per-cpu lock in the namecache_count_*() functions causes
* a deadlock. Don't do that, use atomic increments instead if
* the imperfections here bug you.
*
* The 64 bit system-wide statistic counts (struct nchstats) are
* maintained by sampling the per-cpu counters periodically, adding
* in the deltas since the last samples and recording the current
* samples to use to compute the next delta. The sampling is done
* as a side effect of cache_reclaim() which is run periodically,
* for its own purposes, often enough to avoid overflow of the 32
* bit counters. While sampling in this fashion requires no locking
* it is never-the-less done only after all locks have been taken by
* cache_reclaim() to allow cache_stat_sysctl() to hold off
* cache_reclaim() with minimal locking.
*
* cache_stat_sysctl() takes its CPU's per-cpu lock to hold off
* cache_reclaim() so that it can copy the subsystem total stats
* without them being concurrently modified. If CACHE_STATS_CURRENT
* is defined it also harvests the per-cpu increments into the total,
* which again requires cache_reclaim() to be held off.
*
* The per-cpu data (a lock and the per-cpu stats structures)
* are defined next.
*/
struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t);
struct nchcpu {
kmutex_t cpu_lock;
struct nchstats_percpu cpu_stats;
/* XXX maybe __cacheline_aligned would improve this? */
struct nchstats_percpu cpu_stats_last; /* from last sample */
};
/*
* The type for the hash code. While the hash function generates a
* u32, the hash code has historically been passed around as a u_long,
* and the value is modified by xor'ing a uintptr_t, so it's not
* entirely clear what the best type is. For now I'll leave it
* unchanged as u_long.
*/
typedef u_long nchash_t;
/*
* Structures associated with name cacheing.
*/
static kmutex_t *namecache_lock __read_mostly;
static pool_cache_t namecache_cache __read_mostly;
static TAILQ_HEAD(, namecache) nclruhead __cacheline_aligned;
static LIST_HEAD(nchashhead, namecache) *nchashtbl __read_mostly;
static u_long nchash __read_mostly;
#define NCHASH2(hash, dvp) \
(((hash) ^ ((uintptr_t)(dvp) >> 3)) & nchash)
static LIST_HEAD(ncvhashhead, namecache) *ncvhashtbl __read_mostly;
static u_long ncvhash __read_mostly;
#define NCVHASH(vp) (((uintptr_t)(vp) >> 3) & ncvhash)
/* Number of cache entries allocated. */
static long numcache __cacheline_aligned;
/* Garbage collection queue and number of entries pending in it. */
static void *cache_gcqueue;
static u_int cache_gcpend;
/* Cache effectiveness statistics. This holds total from per-cpu stats */
struct nchstats nchstats __cacheline_aligned;
/*
* Macros to count an event, update the central stats with per-cpu
* values and add current per-cpu increments to the subsystem total
* last collected by cache_reclaim().
*/
#define CACHE_STATS_CURRENT /* nothing */
#define COUNT(cpup, f) ((cpup)->cpu_stats.f++)
#define UPDATE(cpup, f) do { \
struct nchcpu *Xcpup = (cpup); \
uint32_t Xcnt = (volatile uint32_t) Xcpup->cpu_stats.f; \
nchstats.f += Xcnt - Xcpup->cpu_stats_last.f; \
Xcpup->cpu_stats_last.f = Xcnt; \
} while (/* CONSTCOND */ 0)
#define ADD(stats, cpup, f) do { \
struct nchcpu *Xcpup = (cpup); \
stats.f += Xcpup->cpu_stats.f - Xcpup->cpu_stats_last.f; \
} while (/* CONSTCOND */ 0)
/* Do unlocked stats the same way. Use a different name to allow mind changes */
#define COUNT_UNL(cpup, f) COUNT((cpup), f)
static const int cache_lowat = 95;
static const int cache_hiwat = 98;
static const int cache_hottime = 5; /* number of seconds */
static int doingcache = 1; /* 1 => enable the cache */
static struct evcnt cache_ev_scan;
static struct evcnt cache_ev_gc;
static struct evcnt cache_ev_over;
static struct evcnt cache_ev_under;
static struct evcnt cache_ev_forced;
static void cache_invalidate(struct namecache *);
static struct namecache *cache_lookup_entry(
const struct vnode *, const char *, size_t);
static void cache_thread(void *);
static void cache_invalidate(struct namecache *);
static void cache_disassociate(struct namecache *);
static void cache_reclaim(void);
static int cache_ctor(void *, void *, int);
static void cache_dtor(void *, void *);
static struct sysctllog *sysctllog;
static void sysctl_cache_stat_setup(void);
SDT_PROVIDER_DEFINE(vfs);
SDT_PROBE_DEFINE1(vfs, namecache, invalidate, done, "struct vnode *");
SDT_PROBE_DEFINE1(vfs, namecache, purge, parents, "struct vnode *");
SDT_PROBE_DEFINE1(vfs, namecache, purge, children, "struct vnode *");
SDT_PROBE_DEFINE2(vfs, namecache, purge, name, "char *", "size_t");
SDT_PROBE_DEFINE1(vfs, namecache, purge, vfs, "struct mount *");
SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *",
"char *", "size_t");
SDT_PROBE_DEFINE3(vfs, namecache, lookup, miss, "struct vnode *",
"char *", "size_t");
SDT_PROBE_DEFINE3(vfs, namecache, lookup, toolong, "struct vnode *",
"char *", "size_t");
SDT_PROBE_DEFINE2(vfs, namecache, revlookup, success, "struct vnode *",
"struct vnode *");
SDT_PROBE_DEFINE2(vfs, namecache, revlookup, fail, "struct vnode *",
"int");
SDT_PROBE_DEFINE2(vfs, namecache, prune, done, "int", "int");
SDT_PROBE_DEFINE3(vfs, namecache, enter, toolong, "struct vnode *",
"char *", "size_t");
SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *",
"char *", "size_t");
/*
* Compute the hash for an entry.
*
* (This is for now a wrapper around namei_hash, whose interface is
* for the time being slightly inconvenient.)
*/
static nchash_t
cache_hash(const char *name, size_t namelen)
{
const char *endptr;
endptr = name + namelen;
return namei_hash(name, &endptr);
}
/*
* Invalidate a cache entry and enqueue it for garbage collection.
* The caller needs to hold namecache_lock or a per-cpu lock to hold
* off cache_reclaim().
*/
static void
cache_invalidate(struct namecache *ncp)
{
void *head;
KASSERT(mutex_owned(&ncp->nc_lock));
if (ncp->nc_dvp != NULL) {
SDT_PROBE(vfs, namecache, invalidate, done, ncp->nc_dvp,
0, 0, 0, 0);
ncp->nc_vp = NULL;
ncp->nc_dvp = NULL;
do {
head = cache_gcqueue;
ncp->nc_gcqueue = head;
} while (atomic_cas_ptr(&cache_gcqueue, head, ncp) != head);
atomic_inc_uint(&cache_gcpend);
}
}
/*
* Disassociate a namecache entry from any vnodes it is attached to,
* and remove from the global LRU list.
*/
static void
cache_disassociate(struct namecache *ncp)
{
KASSERT(mutex_owned(namecache_lock));
KASSERT(ncp->nc_dvp == NULL);
if (ncp->nc_lru.tqe_prev != NULL) {
TAILQ_REMOVE(&nclruhead, ncp, nc_lru);
ncp->nc_lru.tqe_prev = NULL;
}
if (ncp->nc_vhash.le_prev != NULL) {
LIST_REMOVE(ncp, nc_vhash);
ncp->nc_vhash.le_prev = NULL;
}
if (ncp->nc_vlist.le_prev != NULL) {
LIST_REMOVE(ncp, nc_vlist);
ncp->nc_vlist.le_prev = NULL;
}
if (ncp->nc_dvlist.le_prev != NULL) {
LIST_REMOVE(ncp, nc_dvlist);
ncp->nc_dvlist.le_prev = NULL;
}
}
/*
* Lock all CPUs to prevent any cache lookup activity. Conceptually,
* this locks out all "readers".
*/
static void
cache_lock_cpus(void)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
struct nchcpu *cpup;
/*
* Lock out all CPUs first, then harvest per-cpu stats. This
* is probably not quite as cache-efficient as doing the lock
* and harvest at the same time, but allows cache_stat_sysctl()
* to make do with a per-cpu lock.
*/
for (CPU_INFO_FOREACH(cii, ci)) {
cpup = ci->ci_data.cpu_nch;
mutex_enter(&cpup->cpu_lock);
}
for (CPU_INFO_FOREACH(cii, ci)) {
cpup = ci->ci_data.cpu_nch;
UPDATE(cpup, ncs_goodhits);
UPDATE(cpup, ncs_neghits);
UPDATE(cpup, ncs_badhits);
UPDATE(cpup, ncs_falsehits);
UPDATE(cpup, ncs_miss);
UPDATE(cpup, ncs_long);
UPDATE(cpup, ncs_pass2);
UPDATE(cpup, ncs_2passes);
UPDATE(cpup, ncs_revhits);
UPDATE(cpup, ncs_revmiss);
}
}
/*
* Release all CPU locks.
*/
static void
cache_unlock_cpus(void)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
struct nchcpu *cpup;
for (CPU_INFO_FOREACH(cii, ci)) {
cpup = ci->ci_data.cpu_nch;
mutex_exit(&cpup->cpu_lock);
}
}
/*
* Find a single cache entry and return it locked.
* The caller needs to hold namecache_lock or a per-cpu lock to hold
* off cache_reclaim().
*/
static struct namecache *
cache_lookup_entry(const struct vnode *dvp, const char *name, size_t namelen)
{
struct nchashhead *ncpp;
struct namecache *ncp;
nchash_t hash;
KASSERT(dvp != NULL);
hash = cache_hash(name, namelen);
ncpp = &nchashtbl[NCHASH2(hash, dvp)];
LIST_FOREACH(ncp, ncpp, nc_hash) {
membar_datadep_consumer(); /* for Alpha... */
if (ncp->nc_dvp != dvp ||
ncp->nc_nlen != namelen ||
memcmp(ncp->nc_name, name, (u_int)ncp->nc_nlen))
continue;
mutex_enter(&ncp->nc_lock);
if (__predict_true(ncp->nc_dvp == dvp)) {
ncp->nc_hittime = hardclock_ticks;
SDT_PROBE(vfs, namecache, lookup, hit, dvp,
name, namelen, 0, 0);
return ncp;
}
/* Raced: entry has been nullified. */
mutex_exit(&ncp->nc_lock);
}
SDT_PROBE(vfs, namecache, lookup, miss, dvp,
name, namelen, 0, 0);
return NULL;
}
/*
* Look for a the name in the cache. We don't do this
* if the segment name is long, simply so the cache can avoid
* holding long names (which would either waste space, or
* add greatly to the complexity).
*
* Lookup is called with DVP pointing to the directory to search,
* and CNP providing the name of the entry being sought: cn_nameptr
* is the name, cn_namelen is its length, and cn_flags is the flags
* word from the namei operation.
*
* DVP must be locked.
*
* There are three possible non-error return states:
* 1. Nothing was found in the cache. Nothing is known about
* the requested name.
* 2. A negative entry was found in the cache, meaning that the
* requested name definitely does not exist.
* 3. A positive entry was found in the cache, meaning that the
* requested name does exist and that we are providing the
* vnode.
* In these cases the results are:
* 1. 0 returned; VN is set to NULL.
* 2. 1 returned; VN is set to NULL.
* 3. 1 returned; VN is set to the vnode found.
*
* The additional result argument ISWHT is set to zero, unless a
* negative entry is found that was entered as a whiteout, in which
* case ISWHT is set to one.
*
* The ISWHT_RET argument pointer may be null. In this case an
* assertion is made that the whiteout flag is not set. File systems
* that do not support whiteouts can/should do this.
*
* Filesystems that do support whiteouts should add ISWHITEOUT to
* cnp->cn_flags if ISWHT comes back nonzero.
*
* When a vnode is returned, it is locked, as per the vnode lookup
* locking protocol.
*
* There is no way for this function to fail, in the sense of
* generating an error that requires aborting the namei operation.
*
* (Prior to October 2012, this function returned an integer status,
* and a vnode, and mucked with the flags word in CNP for whiteouts.
* The integer status was -1 for "nothing found", ENOENT for "a
* negative entry found", 0 for "a positive entry found", and possibly
* other errors, and the value of VN might or might not have been set
* depending on what error occurred.)
*/
int
cache_lookup(struct vnode *dvp, const char *name, size_t namelen,
uint32_t nameiop, uint32_t cnflags,
int *iswht_ret, struct vnode **vn_ret)
{
struct namecache *ncp;
struct vnode *vp;
struct nchcpu *cpup;
int error, ret_value;
/* Establish default result values */
if (iswht_ret != NULL) {
*iswht_ret = 0;
}
*vn_ret = NULL;
if (__predict_false(!doingcache)) {
return 0;
}
cpup = curcpu()->ci_data.cpu_nch;
mutex_enter(&cpup->cpu_lock);
if (__predict_false(namelen > NCHNAMLEN)) {
SDT_PROBE(vfs, namecache, lookup, toolong, dvp,
name, namelen, 0, 0);
COUNT(cpup, ncs_long);
mutex_exit(&cpup->cpu_lock);
/* found nothing */
return 0;
}
ncp = cache_lookup_entry(dvp, name, namelen);
if (__predict_false(ncp == NULL)) {
COUNT(cpup, ncs_miss);
mutex_exit(&cpup->cpu_lock);
/* found nothing */
return 0;
}
if ((cnflags & MAKEENTRY) == 0) {
COUNT(cpup, ncs_badhits);
/*
* Last component and we are renaming or deleting,
* the cache entry is invalid, or otherwise don't
* want cache entry to exist.
*/
cache_invalidate(ncp);
mutex_exit(&ncp->nc_lock);
mutex_exit(&cpup->cpu_lock);
/* found nothing */
return 0;
}
if (ncp->nc_vp == NULL) {
if (iswht_ret != NULL) {
/*
* Restore the ISWHITEOUT flag saved earlier.
*/
KASSERT((ncp->nc_flags & ~ISWHITEOUT) == 0);
*iswht_ret = (ncp->nc_flags & ISWHITEOUT) != 0;
} else {
KASSERT(ncp->nc_flags == 0);
}
if (__predict_true(nameiop != CREATE ||
(cnflags & ISLASTCN) == 0)) {
COUNT(cpup, ncs_neghits);
/* found neg entry; vn is already null from above */
ret_value = 1;
} else {
COUNT(cpup, ncs_badhits);
/*
* Last component and we are preparing to create
* the named object, so flush the negative cache
* entry.
*/
cache_invalidate(ncp);
/* found nothing */
ret_value = 0;
}
mutex_exit(&ncp->nc_lock);
mutex_exit(&cpup->cpu_lock);
return ret_value;
}
vp = ncp->nc_vp;
mutex_enter(vp->v_interlock);
mutex_exit(&ncp->nc_lock);
mutex_exit(&cpup->cpu_lock);
/*
* Unlocked except for the vnode interlock. Call vget().
*/
error = vget(vp, LK_NOWAIT, false /* !wait */);
if (error) {
KASSERT(error == EBUSY);
/*
* This vnode is being cleaned out.
* XXX badhits?
*/
COUNT_UNL(cpup, ncs_falsehits);
/* found nothing */
return 0;
}
COUNT_UNL(cpup, ncs_goodhits);
/* found it */
*vn_ret = vp;
return 1;
}
/*
* Cut-'n-pasted version of the above without the nameiop argument.
*/
int
cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen,
uint32_t cnflags,
int *iswht_ret, struct vnode **vn_ret)
{
struct namecache *ncp;
struct vnode *vp;
struct nchcpu *cpup;
int error;
/* Establish default results. */
if (iswht_ret != NULL) {
*iswht_ret = 0;
}
*vn_ret = NULL;
if (__predict_false(!doingcache)) {
/* found nothing */
return 0;
}
cpup = curcpu()->ci_data.cpu_nch;
mutex_enter(&cpup->cpu_lock);
if (__predict_false(namelen > NCHNAMLEN)) {
COUNT(cpup, ncs_long);
mutex_exit(&cpup->cpu_lock);
/* found nothing */
return 0;
}
ncp = cache_lookup_entry(dvp, name, namelen);
if (__predict_false(ncp == NULL)) {
COUNT(cpup, ncs_miss);
mutex_exit(&cpup->cpu_lock);
/* found nothing */
return 0;
}
vp = ncp->nc_vp;
if (vp == NULL) {
/*
* Restore the ISWHITEOUT flag saved earlier.
*/
if (iswht_ret != NULL) {
KASSERT((ncp->nc_flags & ~ISWHITEOUT) == 0);
/*cnp->cn_flags |= ncp->nc_flags;*/
*iswht_ret = (ncp->nc_flags & ISWHITEOUT) != 0;
}
COUNT(cpup, ncs_neghits);
mutex_exit(&ncp->nc_lock);
mutex_exit(&cpup->cpu_lock);
/* found negative entry; vn is already null from above */
return 1;
}
mutex_enter(vp->v_interlock);
mutex_exit(&ncp->nc_lock);
mutex_exit(&cpup->cpu_lock);
/*
* Unlocked except for the vnode interlock. Call vget().
*/
error = vget(vp, LK_NOWAIT, false /* !wait */);
if (error) {
KASSERT(error == EBUSY);
/*
* This vnode is being cleaned out.
* XXX badhits?
*/
COUNT_UNL(cpup, ncs_falsehits);
/* found nothing */
return 0;
}
COUNT_UNL(cpup, ncs_goodhits); /* XXX can be "badhits" */
/* found it */
*vn_ret = vp;
return 1;
}
/*
* Scan cache looking for name of directory entry pointing at vp.
*
* If the lookup succeeds the vnode is referenced and stored in dvpp.
*
* If bufp is non-NULL, also place the name in the buffer which starts
* at bufp, immediately before *bpp, and move bpp backwards to point
* at the start of it. (Yes, this is a little baroque, but it's done
* this way to cater to the whims of getcwd).
*
* Returns 0 on success, -1 on cache miss, positive errno on failure.
*/
int
cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp)
{
struct namecache *ncp;
struct vnode *dvp;
struct ncvhashhead *nvcpp;
struct nchcpu *cpup;
char *bp;
int error, nlen;
if (!doingcache)
goto out;
nvcpp = &ncvhashtbl[NCVHASH(vp)];
/*
* We increment counters in the local CPU's per-cpu stats.
* We don't take the per-cpu lock, however, since this function
* is the only place these counters are incremented so no one
* will be racing with us to increment them.
*/
cpup = curcpu()->ci_data.cpu_nch;
mutex_enter(namecache_lock);
LIST_FOREACH(ncp, nvcpp, nc_vhash) {
mutex_enter(&ncp->nc_lock);
if (ncp->nc_vp == vp &&
(dvp = ncp->nc_dvp) != NULL &&
dvp != vp) { /* avoid pesky . entries.. */
#ifdef DIAGNOSTIC
if (ncp->nc_nlen == 1 &&
ncp->nc_name[0] == '.')
panic("cache_revlookup: found entry for .");
if (ncp->nc_nlen == 2 &&
ncp->nc_name[0] == '.' &&
ncp->nc_name[1] == '.')
panic("cache_revlookup: found entry for ..");
#endif
COUNT(cpup, ncs_revhits);
nlen = ncp->nc_nlen;
if (bufp) {
bp = *bpp;
bp -= nlen;
if (bp <= bufp) {
*dvpp = NULL;
mutex_exit(&ncp->nc_lock);
mutex_exit(namecache_lock);
SDT_PROBE(vfs, namecache, revlookup,
fail, vp, ERANGE, 0, 0, 0);
return (ERANGE);
}
memcpy(bp, ncp->nc_name, nlen);
*bpp = bp;
}
mutex_enter(dvp->v_interlock);
mutex_exit(&ncp->nc_lock);
mutex_exit(namecache_lock);
error = vget(dvp, LK_NOWAIT, false /* !wait */);
if (error) {
KASSERT(error == EBUSY);
if (bufp)
(*bpp) += nlen;
*dvpp = NULL;
SDT_PROBE(vfs, namecache, revlookup, fail, vp,
error, 0, 0, 0);
return -1;
}
*dvpp = dvp;
SDT_PROBE(vfs, namecache, revlookup, success, vp, dvp,
0, 0, 0);
return (0);
}
mutex_exit(&ncp->nc_lock);
}
COUNT(cpup, ncs_revmiss);
mutex_exit(namecache_lock);
out:
*dvpp = NULL;
return (-1);
}
/*
* Add an entry to the cache
*/
void
cache_enter(struct vnode *dvp, struct vnode *vp,
const char *name, size_t namelen, uint32_t cnflags)
{
struct namecache *ncp;
struct namecache *oncp;
struct nchashhead *ncpp;
struct ncvhashhead *nvcpp;
nchash_t hash;
/* First, check whether we can/should add a cache entry. */
if ((cnflags & MAKEENTRY) == 0 ||
__predict_false(namelen > NCHNAMLEN || !doingcache)) {
SDT_PROBE(vfs, namecache, enter, toolong, vp, name, namelen,
0, 0);
return;
}
SDT_PROBE(vfs, namecache, enter, done, vp, name, namelen, 0, 0);
if (numcache > desiredvnodes) {
mutex_enter(namecache_lock);
cache_ev_forced.ev_count++;
cache_reclaim();
mutex_exit(namecache_lock);
}
ncp = pool_cache_get(namecache_cache, PR_WAITOK);
mutex_enter(namecache_lock);
numcache++;
/*
* Concurrent lookups in the same directory may race for a
* cache entry. if there's a duplicated entry, free it.
*/
oncp = cache_lookup_entry(dvp, name, namelen);
if (oncp) {
cache_invalidate(oncp);
mutex_exit(&oncp->nc_lock);
}
/* Grab the vnode we just found. */
mutex_enter(&ncp->nc_lock);
ncp->nc_vp = vp;
ncp->nc_flags = 0;
ncp->nc_hittime = 0;
ncp->nc_gcqueue = NULL;
if (vp == NULL) {
/*
* For negative hits, save the ISWHITEOUT flag so we can
* restore it later when the cache entry is used again.
*/
ncp->nc_flags = cnflags & ISWHITEOUT;
}
/* Fill in cache info. */
ncp->nc_dvp = dvp;
LIST_INSERT_HEAD(&dvp->v_dnclist, ncp, nc_dvlist);
if (vp)
LIST_INSERT_HEAD(&vp->v_nclist, ncp, nc_vlist);
else {
ncp->nc_vlist.le_prev = NULL;
ncp->nc_vlist.le_next = NULL;
}
KASSERT(namelen <= NCHNAMLEN);
ncp->nc_nlen = namelen;
memcpy(ncp->nc_name, name, (unsigned)ncp->nc_nlen);
TAILQ_INSERT_TAIL(&nclruhead, ncp, nc_lru);
hash = cache_hash(name, namelen);
ncpp = &nchashtbl[NCHASH2(hash, dvp)];
/*
* Flush updates before making visible in table. No need for a
* memory barrier on the other side: to see modifications the
* list must be followed, meaning a dependent pointer load.
* The below is LIST_INSERT_HEAD() inlined, with the memory
* barrier included in the correct place.
*/
if ((ncp->nc_hash.le_next = ncpp->lh_first) != NULL)
ncpp->lh_first->nc_hash.le_prev = &ncp->nc_hash.le_next;
ncp->nc_hash.le_prev = &ncpp->lh_first;
membar_producer();
ncpp->lh_first = ncp;
ncp->nc_vhash.le_prev = NULL;
ncp->nc_vhash.le_next = NULL;
/*
* Create reverse-cache entries (used in getcwd) for directories.
* (and in linux procfs exe node)
*/
if (vp != NULL &&
vp != dvp &&
#ifndef NAMECACHE_ENTER_REVERSE
vp->v_type == VDIR &&
#endif
(ncp->nc_nlen > 2 ||
(ncp->nc_nlen > 1 && ncp->nc_name[1] != '.') ||
(/* ncp->nc_nlen > 0 && */ ncp->nc_name[0] != '.'))) {
nvcpp = &ncvhashtbl[NCVHASH(vp)];
LIST_INSERT_HEAD(nvcpp, ncp, nc_vhash);
}
mutex_exit(&ncp->nc_lock);
mutex_exit(namecache_lock);
}
/*
* Name cache initialization, from vfs_init() when we are booting
*/
void
nchinit(void)
{
int error;
TAILQ_INIT(&nclruhead);
namecache_cache = pool_cache_init(sizeof(struct namecache),
coherency_unit, 0, 0, "ncache", NULL, IPL_NONE, cache_ctor,
cache_dtor, NULL);
KASSERT(namecache_cache != NULL);
namecache_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
nchashtbl = hashinit(desiredvnodes, HASH_LIST, true, &nchash);
ncvhashtbl =
#ifdef NAMECACHE_ENTER_REVERSE
hashinit(desiredvnodes, HASH_LIST, true, &ncvhash);
#else
hashinit(desiredvnodes/8, HASH_LIST, true, &ncvhash);
#endif
error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, cache_thread,
NULL, NULL, "cachegc");
if (error != 0)
panic("nchinit %d", error);
evcnt_attach_dynamic(&cache_ev_scan, EVCNT_TYPE_MISC, NULL,
"namecache", "entries scanned");
evcnt_attach_dynamic(&cache_ev_gc, EVCNT_TYPE_MISC, NULL,
"namecache", "entries collected");
evcnt_attach_dynamic(&cache_ev_over, EVCNT_TYPE_MISC, NULL,
"namecache", "over scan target");
evcnt_attach_dynamic(&cache_ev_under, EVCNT_TYPE_MISC, NULL,
"namecache", "under scan target");
evcnt_attach_dynamic(&cache_ev_forced, EVCNT_TYPE_MISC, NULL,
"namecache", "forced reclaims");
sysctl_cache_stat_setup();
}
static int
cache_ctor(void *arg, void *obj, int flag)
{
struct namecache *ncp;
ncp = obj;
mutex_init(&ncp->nc_lock, MUTEX_DEFAULT, IPL_NONE);
return 0;
}
static void
cache_dtor(void *arg, void *obj)
{
struct namecache *ncp;
ncp = obj;
mutex_destroy(&ncp->nc_lock);
}
/*
* Called once for each CPU in the system as attached.
*/
void
cache_cpu_init(struct cpu_info *ci)
{
struct nchcpu *cpup;
size_t sz;
sz = roundup2(sizeof(*cpup), coherency_unit) + coherency_unit;
cpup = kmem_zalloc(sz, KM_SLEEP);
cpup = (void *)roundup2((uintptr_t)cpup, coherency_unit);
mutex_init(&cpup->cpu_lock, MUTEX_DEFAULT, IPL_NONE);
ci->ci_data.cpu_nch = cpup;
}
/*
* Name cache reinitialization, for when the maximum number of vnodes increases.
*/
void
nchreinit(void)
{
struct namecache *ncp;
struct nchashhead *oldhash1, *hash1;
struct ncvhashhead *oldhash2, *hash2;
u_long i, oldmask1, oldmask2, mask1, mask2;
hash1 = hashinit(desiredvnodes, HASH_LIST, true, &mask1);
hash2 =
#ifdef NAMECACHE_ENTER_REVERSE
hashinit(desiredvnodes, HASH_LIST, true, &mask2);
#else
hashinit(desiredvnodes/8, HASH_LIST, true, &mask2);
#endif
mutex_enter(namecache_lock);
cache_lock_cpus();
oldhash1 = nchashtbl;
oldmask1 = nchash;
nchashtbl = hash1;
nchash = mask1;
oldhash2 = ncvhashtbl;
oldmask2 = ncvhash;
ncvhashtbl = hash2;
ncvhash = mask2;
for (i = 0; i <= oldmask1; i++) {
while ((ncp = LIST_FIRST(&oldhash1[i])) != NULL) {
LIST_REMOVE(ncp, nc_hash);
ncp->nc_hash.le_prev = NULL;
}
}
for (i = 0; i <= oldmask2; i++) {
while ((ncp = LIST_FIRST(&oldhash2[i])) != NULL) {
LIST_REMOVE(ncp, nc_vhash);
ncp->nc_vhash.le_prev = NULL;
}
}
cache_unlock_cpus();
mutex_exit(namecache_lock);
hashdone(oldhash1, HASH_LIST, oldmask1);
hashdone(oldhash2, HASH_LIST, oldmask2);
}
/*
* Cache flush, a particular vnode; called when a vnode is renamed to
* hide entries that would now be invalid
*/
void
cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags)
{
struct namecache *ncp, *ncnext;
mutex_enter(namecache_lock);
if (flags & PURGE_PARENTS) {
SDT_PROBE(vfs, namecache, purge, parents, vp, 0, 0, 0, 0);
for (ncp = LIST_FIRST(&vp->v_nclist); ncp != NULL;
ncp = ncnext) {
ncnext = LIST_NEXT(ncp, nc_vlist);
mutex_enter(&ncp->nc_lock);
cache_invalidate(ncp);
mutex_exit(&ncp->nc_lock);
cache_disassociate(ncp);
}
}
if (flags & PURGE_CHILDREN) {
SDT_PROBE(vfs, namecache, purge, children, vp, 0, 0, 0, 0);
for (ncp = LIST_FIRST(&vp->v_dnclist); ncp != NULL;
ncp = ncnext) {
ncnext = LIST_NEXT(ncp, nc_dvlist);
mutex_enter(&ncp->nc_lock);
cache_invalidate(ncp);
mutex_exit(&ncp->nc_lock);
cache_disassociate(ncp);
}
}
if (name != NULL) {
SDT_PROBE(vfs, namecache, purge, name, name, namelen, 0, 0, 0);
ncp = cache_lookup_entry(vp, name, namelen);
if (ncp) {
cache_invalidate(ncp);
mutex_exit(&ncp->nc_lock);
cache_disassociate(ncp);
}
}
mutex_exit(namecache_lock);
}
/*
* Cache flush, a whole filesystem; called when filesys is umounted to
* remove entries that would now be invalid.
*/
void
cache_purgevfs(struct mount *mp)
{
struct namecache *ncp, *nxtcp;
SDT_PROBE(vfs, namecache, purge, vfs, mp, 0, 0, 0, 0);
mutex_enter(namecache_lock);
for (ncp = TAILQ_FIRST(&nclruhead); ncp != NULL; ncp = nxtcp) {
nxtcp = TAILQ_NEXT(ncp, nc_lru);
mutex_enter(&ncp->nc_lock);
if (ncp->nc_dvp != NULL && ncp->nc_dvp->v_mount == mp) {
/* Free the resources we had. */
cache_invalidate(ncp);
cache_disassociate(ncp);
}
mutex_exit(&ncp->nc_lock);
}
cache_reclaim();
mutex_exit(namecache_lock);
}
/*
* Scan global list invalidating entries until we meet a preset target.
* Prefer to invalidate entries that have not scored a hit within
* cache_hottime seconds. We sort the LRU list only for this routine's
* benefit.
*/
static void
cache_prune(int incache, int target)
{
struct namecache *ncp, *nxtcp, *sentinel;
int items, recent, tryharder;
KASSERT(mutex_owned(namecache_lock));
SDT_PROBE(vfs, namecache, prune, done, incache, target, 0, 0, 0);
items = 0;
tryharder = 0;
recent = hardclock_ticks - hz * cache_hottime;
sentinel = NULL;
for (ncp = TAILQ_FIRST(&nclruhead); ncp != NULL; ncp = nxtcp) {
if (incache <= target)
break;
items++;
nxtcp = TAILQ_NEXT(ncp, nc_lru);
if (ncp == sentinel) {
/*
* If we looped back on ourself, then ignore
* recent entries and purge whatever we find.
*/
tryharder = 1;
}
if (ncp->nc_dvp == NULL)
continue;
if (!tryharder && (ncp->nc_hittime - recent) > 0) {
if (sentinel == NULL)
sentinel = ncp;
TAILQ_REMOVE(&nclruhead, ncp, nc_lru);
TAILQ_INSERT_TAIL(&nclruhead, ncp, nc_lru);
continue;
}
mutex_enter(&ncp->nc_lock);
if (ncp->nc_dvp != NULL) {
cache_invalidate(ncp);
cache_disassociate(ncp);
incache--;
}
mutex_exit(&ncp->nc_lock);
}
cache_ev_scan.ev_count += items;
}
/*
* Collect dead cache entries from all CPUs and garbage collect.
*/
static void
cache_reclaim(void)
{
struct namecache *ncp, *next;
int items;
KASSERT(mutex_owned(namecache_lock));
/*
* If the number of extant entries not awaiting garbage collection
* exceeds the high water mark, then reclaim stale entries until we
* reach our low water mark.
*/
items = numcache - cache_gcpend;
if (items > (uint64_t)desiredvnodes * cache_hiwat / 100) {
cache_prune(items, (int)((uint64_t)desiredvnodes *
cache_lowat / 100));
cache_ev_over.ev_count++;
} else
cache_ev_under.ev_count++;
/*
* Stop forward lookup activity on all CPUs and garbage collect dead
* entries.
*/
cache_lock_cpus();
ncp = cache_gcqueue;
cache_gcqueue = NULL;
items = cache_gcpend;
cache_gcpend = 0;
while (ncp != NULL) {
next = ncp->nc_gcqueue;
cache_disassociate(ncp);
KASSERT(ncp->nc_dvp == NULL);
if (ncp->nc_hash.le_prev != NULL) {
LIST_REMOVE(ncp, nc_hash);
ncp->nc_hash.le_prev = NULL;
}
pool_cache_put(namecache_cache, ncp);
ncp = next;
}
cache_unlock_cpus();
numcache -= items;
cache_ev_gc.ev_count += items;
}
/*
* Cache maintainence thread, awakening once per second to:
*
* => keep number of entries below the high water mark
* => sort pseudo-LRU list
* => garbage collect dead entries
*/
static void
cache_thread(void *arg)
{
mutex_enter(namecache_lock);
for (;;) {
cache_reclaim();
kpause("cachegc", false, hz, namecache_lock);
}
}
#ifdef DDB
void
namecache_print(struct vnode *vp, void (*pr)(const char *, ...))
{
struct vnode *dvp = NULL;
struct namecache *ncp;
TAILQ_FOREACH(ncp, &nclruhead, nc_lru) {
if (ncp->nc_vp == vp && ncp->nc_dvp != NULL) {
(*pr)("name %.*s\n", ncp->nc_nlen, ncp->nc_name);
dvp = ncp->nc_dvp;
}
}
if (dvp == NULL) {
(*pr)("name not found\n");
return;
}
vp = dvp;
TAILQ_FOREACH(ncp, &nclruhead, nc_lru) {
if (ncp->nc_vp == vp) {
(*pr)("parent %.*s\n", ncp->nc_nlen, ncp->nc_name);
}
}
}
#endif
void
namecache_count_pass2(void)
{
struct nchcpu *cpup = curcpu()->ci_data.cpu_nch;
COUNT_UNL(cpup, ncs_pass2);
}
void
namecache_count_2passes(void)
{
struct nchcpu *cpup = curcpu()->ci_data.cpu_nch;
COUNT_UNL(cpup, ncs_2passes);
}
/*
* Fetch the current values of the stats. We return the most
* recent values harvested into nchstats by cache_reclaim(), which
* will be less than a second old.
*/
static int
cache_stat_sysctl(SYSCTLFN_ARGS)
{
struct nchstats stats;
struct nchcpu *my_cpup;
#ifdef CACHE_STATS_CURRENT
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
#endif /* CACHE_STATS_CURRENT */
if (oldp == NULL) {
*oldlenp = sizeof(stats);
return 0;
}
if (*oldlenp < sizeof(stats)) {
*oldlenp = 0;
return 0;
}
/*
* Take this CPU's per-cpu lock to hold off cache_reclaim()
* from doing a stats update while doing minimal damage to
* concurrent operations.
*/
sysctl_unlock();
my_cpup = curcpu()->ci_data.cpu_nch;
mutex_enter(&my_cpup->cpu_lock);
stats = nchstats;
#ifdef CACHE_STATS_CURRENT
for (CPU_INFO_FOREACH(cii, ci)) {
struct nchcpu *cpup = ci->ci_data.cpu_nch;
ADD(stats, cpup, ncs_goodhits);
ADD(stats, cpup, ncs_neghits);
ADD(stats, cpup, ncs_badhits);
ADD(stats, cpup, ncs_falsehits);
ADD(stats, cpup, ncs_miss);
ADD(stats, cpup, ncs_long);
ADD(stats, cpup, ncs_pass2);
ADD(stats, cpup, ncs_2passes);
ADD(stats, cpup, ncs_revhits);
ADD(stats, cpup, ncs_revmiss);
}
#endif /* CACHE_STATS_CURRENT */
mutex_exit(&my_cpup->cpu_lock);
sysctl_relock();
*oldlenp = sizeof(stats);
return sysctl_copyout(l, &stats, oldp, sizeof(stats));
}
static void
sysctl_cache_stat_setup(void)
{
KASSERT(sysctllog == NULL);
sysctl_createv(&sysctllog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "namecache_stats",
SYSCTL_DESCR("namecache statistics"),
cache_stat_sysctl, 0, NULL, 0,
CTL_VFS, CTL_CREATE, CTL_EOL);
}