NetBSD/sys/arch/amiga/dev/if_ae.c

1136 lines
26 KiB
C

/* $NetBSD: if_ae.c,v 1.9 1996/05/25 16:30:16 is Exp $ */
/*
* Copyright (c) 1995 Bernd Ernesti and Klaus Burkert. All rights reserved.
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Ralph Campbell and Rick Macklem.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bernd Ernesti, by Klaus
* Burkert, by Michael van Elst, and by the University of California,
* Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)if_le.c 8.1 (Berkeley) 6/10/93
*
* This is based on the original LANCE files, as the PCnet-ISA used on
* the Ariadne is a LANCE-descendant optimized for the PC-ISA bus.
* This causes some modifications, all data that is to go into registers
* or to structures (buffer-descriptors, init-block) has to be
* byte-swapped. In addition ALL write accesses to the board have to be
* WORD or LONG, BYTE-access is prohibited!!
*/
#include "ae.h"
#if NAE > 0
#include "bpfilter.h"
/*
* AMD 79C960 PCnet-ISA
*
* This driver will generate and accept tailer encapsulated packets even
* though it buys us nothing. The motivation was to avoid incompatibilities
* with VAXen, SUNs, and others that handle and benefit from them.
* This reasoning is dubious.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/buf.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <net/if.h>
#include <net/netisr.h>
#include <net/route.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if defined(CCITT) && defined(LLC)
#include <sys/socketvar.h>
#include <netccitt/x25.h>
#include <net/if_dl.h>
#include <net/if_llc.h>
#include <netccitt/dll.h>
#include <netccitt/llc_var.h>
#include <netccitt/pk.h>
#include <netccitt/pk_var.h>
#include <netccitt/pk_extern.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include <machine/cpu.h>
#include <machine/mtpr.h>
#include <amiga/amiga/device.h>
#include <amiga/amiga/isr.h>
#include <amiga/dev/zbusvar.h>
#include <amiga/dev/if_aereg.h>
/*
* Ethernet software status per interface.
*
* Each interface is referenced by a network interface structure,
* ae_if, which the routing code uses to locate the interface.
* This structure contains the output queue for the interface, its address, ...
*/
struct ae_softc {
struct device sc_dev;
struct isr sc_isr;
struct arpcom sc_arpcom; /* common Ethernet structures */
void *sc_base; /* base address of board */
struct aereg1 *sc_r1; /* LANCE registers */
struct aereg2 *sc_r2; /* dual-port RAM */
int sc_rmd; /* predicted next rmd to process */
int sc_tmd; /* next tmd to use */
int sc_no_td; /* number of tmds in use */
} ae_softc[NAE];
/* offsets for: ID, REGS, MEM */
int aestd[] = { 0, 0x0370, 0x8000 };
static u_int16_t revision;
int aematch __P((struct device *, void *, void *));
void aeattach __P((struct device *, struct device *, void *));
void aewatchdog __P((struct ifnet *));
void aestop __P((struct ae_softc *));
void aememinit __P((struct ae_softc *));
void aereset __P((struct ae_softc *));
void aeinit __P((struct ae_softc *));
void aestart __P((struct ifnet *));
int aeintr __P((void *));
void aetint __P((struct ae_softc *));
void aerint __P((struct ae_softc *));
void aeread __P((struct ae_softc *, u_char *, int));
static void wcopyfrom __P((char *, char *, int));
static void wcopyto __P((char *, char *, int));
static void wzero __P((char *, int));
int aeput __P((char *, struct mbuf *));
struct mbuf *aeget __P((struct ae_softc *, u_char *, int));
int aeioctl __P((struct ifnet *, u_long, caddr_t));
void aesetladrf __P((struct arpcom *, u_int16_t *));
struct cfattach ae_ca = {
sizeof(struct ae_softc), aematch, aeattach
};
struct cfdriver ae_cd = {
NULL, "ae", DV_IFNET
};
int
aematch(parent, match, aux)
struct device *parent;
void *match, *aux;
{
struct zbus_args *zap;
zap = (struct zbus_args *)aux;
/* Ariadne ethernet card */
if (zap->manid == 2167 && zap->prodid == 201)
return (1);
return (0);
}
/*
* Interface exists: make available by filling in network interface
* record. System will initialize the interface when it is ready
* to accept packets.
*/
void
aeattach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
register struct aereg2 *aer2;
struct zbus_args *zap;
struct ae_softc *sc = (void *)self;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
unsigned long ser;
int s = splhigh ();
zap =(struct zbus_args *)aux;
/*
* Make config msgs look nicer.
*/
printf("\n");
sc->sc_base = zap->va;
sc->sc_r1 = (struct aereg1 *)(aestd[1] + (int)zap->va);
aer2 = sc->sc_r2 = (struct aereg2 *)(aestd[2] + (int)zap->va);
/*
* Serial number for board is used as host ID.
*/
ser = (unsigned long) zap->serno;
/*
* Manufacturer decides the 3 first bytes, i.e. ethernet vendor ID.
*/
sc->sc_arpcom.ac_enaddr[0] = 0x00;
sc->sc_arpcom.ac_enaddr[1] = 0x60;
sc->sc_arpcom.ac_enaddr[2] = 0x30;
sc->sc_arpcom.ac_enaddr[3] = (ser >> 16) & 0xff;
sc->sc_arpcom.ac_enaddr[4] = (ser >> 8) & 0xff;
sc->sc_arpcom.ac_enaddr[5] = ser & 0xff;
printf("%s: hardware address %s 32K", sc->sc_dev.dv_xname,
ether_sprintf(sc->sc_arpcom.ac_enaddr));
aestop(sc);
delay(100);
/* get the chip version of the lance chip */
sc->sc_r1->aer1_rap = 0x5900;
revision = ((sc->sc_r1->aer1_rdp >> 4) -2);
printf(" chip-revision: B%x\n", revision);
splx (s);
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_ioctl = aeioctl;
ifp->if_watchdog = aewatchdog;
ifp->if_output = ether_output;
ifp->if_start = aestart;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
if_attach(ifp);
ether_ifattach(ifp);
#if NBPFILTER > 0
bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
sc->sc_isr.isr_intr = aeintr;
sc->sc_isr.isr_arg = sc;
sc->sc_isr.isr_ipl = 2;
add_isr (&sc->sc_isr);
return;
}
void
aewatchdog(ifp)
struct ifnet *ifp;
{
struct ae_softc *sc = ifp->if_softc;
log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
++sc->sc_arpcom.ac_if.if_oerrors;
aereset(sc);
}
void
aestop(sc)
struct ae_softc *sc;
{
sc->sc_r1->aer1_rap = AE_CSR0;
sc->sc_r1->aer1_rdp = AE_STOP;
}
/*
* Set up the initialization block and the descriptor rings.
*/
void
aememinit(sc)
register struct ae_softc *sc;
{
#if NBPFILTER > 0
register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
#endif
/*
* This structure is referenced from the CARD's/PCnet-ISA's point
* of view, thus the 0x8000 address which is the buffer RAM area
* of the Ariadne card. This pointer is manipulated
* with the PCnet-ISA's view of memory and NOT the Amiga's. FYI.
*/
register struct aereg2 *aemem = (struct aereg2 *) 0x8000;
register struct aereg2 *aer2 = sc->sc_r2;
register int i;
#if NBPFILTER > 0
if (ifp->if_flags & IFF_PROMISC)
/* set the promiscuous bit */
aer2->aer2_mode = AE_MODE | AE_PROM;
else
#endif
aer2->aer2_mode = AE_MODE;
/* you know: no BYTE access.... */
aer2->aer2_padr[0] =
(sc->sc_arpcom.ac_enaddr[0] << 8) | sc->sc_arpcom.ac_enaddr[1];
aer2->aer2_padr[1] =
(sc->sc_arpcom.ac_enaddr[2] << 8) | sc->sc_arpcom.ac_enaddr[3];
aer2->aer2_padr[2] =
(sc->sc_arpcom.ac_enaddr[4] << 8) | sc->sc_arpcom.ac_enaddr[5];
aesetladrf(&sc->sc_arpcom, aer2->aer2_ladrf);
sc->sc_no_td = sc->sc_tmd = sc->sc_rmd = 0;
aer2->aer2_rlen = SWAP(AE_RLEN);
aer2->aer2_rdra = SWAP((int)aemem->aer2_rmd);
aer2->aer2_tlen = SWAP(AE_TLEN);
aer2->aer2_tdra = SWAP((int)aemem->aer2_tmd);
for (i = 0; i < AERBUF; i++) {
aer2->aer2_rmd[i].rmd0 = SWAP((int)aemem->aer2_rbuf[i]);
aer2->aer2_rmd[i].rmd1 = AE_OWN;
aer2->aer2_rmd[i].rmd2 = SWAP(-ETHER_MAX_LEN);
aer2->aer2_rmd[i].rmd3 = 0;
}
for (i = 0; i < AETBUF; i++) {
aer2->aer2_tmd[i].tmd0 = SWAP((int)aemem->aer2_tbuf[i]);
aer2->aer2_tmd[i].tmd1 = 0;
aer2->aer2_tmd[i].tmd2 = 0;
aer2->aer2_tmd[i].tmd3 = 0;
}
}
void
aereset(sc)
struct ae_softc *sc;
{
int s;
s = splnet();
aeinit(sc);
splx(s);
}
/*
* Initialization of interface; set up initialization block
* and transmit/receive descriptor rings.
*/
void
aeinit(sc)
struct ae_softc *sc;
{
register struct aereg1 *aer1 = sc->sc_r1;
register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
register struct aereg2 *aemem = (struct aereg2 *) 0x8000;
register int timo = 0;
volatile int dummy;
aestop(sc);
delay(100);
dummy = aer1->aer1_reset; /* Reset PCNet-ISA */
aememinit(sc);
/* Give LANCE the physical address of its init block. */
aer1->aer1_rap = AE_CSR1;
aer1->aer1_rdp = SWAP((int)&aemem->aer2_mode);
aer1->aer1_rap = AE_CSR2;
aer1->aer1_rdp = 0;
/*
* re-program LEDs to match meaning used on the Ariadne board
*/
aer1->aer1_rap = 0x0500;
aer1->aer1_idp = 0x9000;
aer1->aer1_rap = 0x0600;
aer1->aer1_idp = 0x8100;
aer1->aer1_rap = 0x0700;
aer1->aer1_idp = 0x8400;
/*
* you can `ifconfig (link0|-link0) ae0' to get the following
* behaviour:
* -link0 enable autoselect between 10Base-T (UTP) and 10Base2 (BNC)
* if an active 10Base-T line is connected then 10Base-T
* is used otherwise 10Base2.
* this is the default behaviour, so there is no need to set
* -link0 when you want autoselect.
* link0 -link1 disable autoselect. enable BNC.
* link0 link1 disable autoselect. enable UTP.
*/
if (!(ifp->if_flags & IFF_LINK0)) {
/* enable autoselect */
aer1->aer1_rap = 0x0200;
aer1->aer1_idp = 0x0200;
} else {
/* disable autoselect */
aer1->aer1_rap = 0x0200;
aer1->aer1_idp = 0x0000;
if (!(ifp->if_flags & IFF_LINK1)) {
/* enable BNC */
sc->sc_r2->aer2_mode = 0x0000;
} else {
/* enable UTP */
sc->sc_r2->aer2_mode = 0x8000;
}
}
/* Try to initialize the LANCE. */
delay(100);
aer1->aer1_rap = AE_CSR0;
aer1->aer1_rdp = AE_INIT;
/* Wait for initialization to finish. */
do {
if (++timo == 10000) {
printf("%s: card failed to initialize\n", sc->sc_dev.dv_xname);
break;
}
} while ((aer1->aer1_rdp & AE_IDON) == 0);
/* Start the LANCE. */
aer1->aer1_rap = AE_CSR0;
aer1->aer1_rdp = AE_STRT | AE_INEA | AE_IDON;
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_timer = 0;
aestart(ifp);
}
#define AENEXTTMP \
if (++bix == AETBUF) bix = 0, tmd = sc->sc_r2->aer2_tmd; else ++tmd
/*
* Start output on interface. Get another datagram to send
* off of the interface queue, and copy it to the interface
* before starting the output.
*/
void
aestart(ifp)
struct ifnet *ifp;
{
register struct ae_softc *sc = ifp->if_softc;
register int bix;
register struct aetmd *tmd;
register struct mbuf *m;
int len;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
bix = sc->sc_tmd;
tmd = &sc->sc_r2->aer2_tmd[bix];
for (;;) {
if (sc->sc_no_td >= AETBUF) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
IF_DEQUEUE(&ifp->if_snd, m);
if (m == 0)
break;
++sc->sc_no_td;
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
sc->sc_r1->aer1_rdp = AE_TINT | AE_INEA;
len = aeput(sc->sc_r2->aer2_tbuf[bix], m);
#ifdef AEDEBUG
if (len > ETHER_MAX_LEN)
printf("packet length %d\n", len);
#endif
ifp->if_timer = 5;
tmd->tmd1 = AE_OWN | AE_STP | AE_ENP;
tmd->tmd2 = SWAP(-len);
tmd->tmd3 = 0;
sc->sc_r1->aer1_rdp = AE_INEA | AE_TDMD;
AENEXTTMP;
}
sc->sc_tmd = bix;
}
int
aeintr(arg)
void *arg;
{
register struct ae_softc *sc = arg;
register struct aereg1 *aer1;
register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
register u_int16_t stat;
/* if not even initialized, don't do anything further.. */
if (sc->sc_base == 0)
return (0);
aer1 = sc->sc_r1;
stat = aer1->aer1_rdp;
if ((stat & AE_INTR) == 0)
return (0);
aer1->aer1_rdp = (stat & (AE_INEA | AE_BABL | AE_MISS | AE_MERR |
AE_RINT | AE_TINT | AE_IDON));
if (stat & AE_SERR) {
if (stat & AE_MERR) {
printf("%s: memory error\n", sc->sc_dev.dv_xname);
aereset(sc);
return (1);
}
if (stat & AE_BABL) {
printf("%s: babble\n", sc->sc_dev.dv_xname);
ifp->if_oerrors++;
}
#if 0
if (stat & AE_CERR) {
printf("%s: collision error\n", sc->sc_dev.dv_xname);
ifp->if_collisions++;
}
#endif
if (stat & AE_MISS) {
printf("%s: missed packet\n", sc->sc_dev.dv_xname);
ifp->if_ierrors++;
}
aer1->aer1_rdp = AE_BABL | AE_CERR | AE_MISS | AE_INEA;
}
if ((stat & AE_RXON) == 0) {
printf("%s: receiver disabled\n", sc->sc_dev.dv_xname);
ifp->if_ierrors++;
aereset(sc);
return (1);
}
if ((stat & AE_TXON) == 0) {
printf("%s: transmitter disabled\n", sc->sc_dev.dv_xname);
ifp->if_oerrors++;
aereset(sc);
return (1);
}
if (stat & AE_RINT) {
/* Reset watchdog timer. */
ifp->if_timer = 0;
aerint(sc);
}
if (stat & AE_TINT) {
/* Reset watchdog timer. */
ifp->if_timer = 0;
aetint(sc);
}
return (1);
}
/*
* Ethernet interface transmitter interrupt.
* Start another output if more data to send.
*/
void
aetint(sc)
struct ae_softc *sc;
{
register int bix = (sc->sc_tmd - sc->sc_no_td + AETBUF) % AETBUF;
struct aetmd *tmd = &sc->sc_r2->aer2_tmd[bix];
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
if (tmd->tmd1 & AE_OWN) {
#ifdef AEDEBUG
printf("%s: extra tint\n", sc->sc_dev.dv_xname);
#endif
return;
}
ifp->if_flags &= ~IFF_OACTIVE;
do {
if (sc->sc_no_td <= 0)
break;
ifp->if_opackets++;
--sc->sc_no_td;
if (tmd->tmd1 & AE_ERR) {
if (tmd->tmd3 & AE_TBUFF)
printf("%s: transmit buffer error\n", sc->sc_dev.dv_xname);
if (tmd->tmd3 & AE_UFLO)
printf("%s: underflow\n", sc->sc_dev.dv_xname);
if (tmd->tmd3 & (AE_TBUFF | AE_UFLO)) {
aereset(sc);
return;
}
if (tmd->tmd3 & AE_LCAR)
printf("%s: lost carrier\n", sc->sc_dev.dv_xname);
if (tmd->tmd3 & AE_LCOL) {
printf("%s: late collision\n", sc->sc_dev.dv_xname);
ifp->if_collisions++;
}
if (tmd->tmd3 & AE_RTRY) {
printf("%s: excessive collisions, tdr %d\n",
sc->sc_dev.dv_xname, tmd->tmd3 & AE_TDR_MASK);
ifp->if_collisions += 16;
}
} else if (tmd->tmd1 & AE_ONE) {
ifp->if_collisions++;
}
else if (tmd->tmd1 & AE_MORE) {
/* Real number is unknown. */
ifp->if_collisions += 2;
}
AENEXTTMP;
} while ((tmd->tmd1 & AE_OWN) == 0);
aestart(ifp);
if (sc->sc_no_td == 0)
ifp->if_timer = 0;
}
#define AENEXTRMP \
if (++bix == AERBUF) bix = 0, rmd = sc->sc_r2->aer2_rmd; else ++rmd
/*
* Ethernet interface receiver interrupt.
* If input error just drop packet.
* Decapsulate packet based on type and pass to type specific
* higher-level input routine.
*/
void
aerint(sc)
struct ae_softc *sc;
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
register int bix = sc->sc_rmd;
register struct aermd *rmd = &sc->sc_r2->aer2_rmd[bix];
/*
* Out of sync with hardware, should never happen?
*/
if (rmd->rmd1 & AE_OWN) {
#ifdef AEDEBUG
printf("%s: extra rint\n", sc->sc_dev.dv_xname);
#endif
return;
}
/*
* Process all buffers with valid data
*/
do {
sc->sc_r1->aer1_rdp = AE_RINT | AE_INEA;
if (rmd->rmd1 & (AE_FRAM | AE_OFLO | AE_CRC | AE_RBUFF)) {
ifp->if_ierrors++;
if ((rmd->rmd1 & (AE_FRAM | AE_OFLO | AE_ENP)) == (AE_FRAM | AE_ENP))
printf("%s: framing error\n", sc->sc_dev.dv_xname);
if ((rmd->rmd1 & (AE_OFLO | AE_ENP)) == AE_OFLO)
printf("%s: overflow\n", sc->sc_dev.dv_xname);
if ((rmd->rmd1 & (AE_CRC | AE_OFLO | AE_ENP)) == (AE_CRC | AE_ENP))
printf("%s: crc mismatch\n", sc->sc_dev.dv_xname);
if (rmd->rmd1 & AE_RBUFF)
printf("%s: receive buffer error\n", sc->sc_dev.dv_xname);
} else if ((rmd->rmd1 & (AE_STP | AE_ENP)) != (AE_STP | AE_ENP)) {
do {
rmd->rmd3 = 0;
rmd->rmd1 = AE_OWN;
AENEXTRMP;
} while ((rmd->rmd1 & (AE_OWN | AE_ERR | AE_STP | AE_ENP)) == 0);
sc->sc_rmd = bix;
printf("%s: chained buffer\n", sc->sc_dev.dv_xname);
if ((rmd->rmd1 & (AE_OWN | AE_ERR | AE_STP | AE_ENP)) != AE_ENP) {
aereset(sc);
return;
}
} else
aeread(sc, sc->sc_r2->aer2_rbuf[bix], SWAP(rmd->rmd3) - 4);
rmd->rmd1 = AE_OWN;
rmd->rmd2 = SWAP(-ETHER_MAX_LEN);
rmd->rmd3 = 0;
AENEXTRMP;
} while ((rmd->rmd1 & AE_OWN) == 0);
sc->sc_rmd = bix;
}
void
aeread(sc, buf, len)
register struct ae_softc *sc;
u_char *buf;
int len;
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct mbuf *m;
struct ether_header *eh;
if (len <= sizeof(struct ether_header) || len > ETHER_MAX_LEN) {
printf("%s: invalid packet size %d; dropping\n",
sc->sc_dev.dv_xname, len);
ifp->if_ierrors++;
return;
}
/* Pull packet off interface. */
m = aeget(sc, buf, len);
if (m == 0) {
ifp->if_ierrors++;
return;
}
ifp->if_ipackets++;
/* We assume that the header fit entirely in one mbuf. */
eh = mtod(m, struct ether_header *);
#if NBPFILTER > 0
/*
* Check if there's a bpf filter listening on this interface.
* If so, hand off the raw packet to bpf, which must deal with
* trailers in its own way.
*/
if (ifp->if_bpf) {
bpf_mtap(ifp->if_bpf, m);
/*
* Note that the interface cannot be in promiscuous mode if
* there are no bpf listeners. And if we are in promiscuous
* mode, we have to check if this packet is really ours.
*/
if ((ifp->if_flags & IFF_PROMISC) &&
(eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr,
sizeof(eh->ether_dhost)) != 0) {
m_freem(m);
return;
}
}
#endif
/* We assume that the header fit entirely in one mbuf. */
m_adj(m, sizeof(struct ether_header));
ether_input(ifp, eh, m);
}
/*
* Here come the two replacements for bcopy() and bzero() as
* WORD-access for writing to the board is absolutely required!
* They could use some tuning as this is time-critical (copying
* packet-data) and should be processed as fast as possible.
*
* Thanks to Michael van Elst for pointing me to the problems
* that kept the 1.3 code from running under NetBSD current
* although it did mystically under 1.0 ...
*/
#define isodd(p) (((size_t)(p)) & 1)
#define align(p) ((ushort *)(((size_t)(p)) & ~1))
/*
* the first function copies WORD-aligned from the source to
* an arbitrary destination. It assumes that the CPU can handle
* mis-aligned writes to the destination itself.
*/
static void
wcopyfrom(a1, a2, length) /* bcopy() word-wise */
char *a1, *a2;
int length;
{
ushort i, *b1, *b2;
if (length > 0 && isodd(a1)) {
b1 = align(a1);
*a2 = *b1 & 0x00ff; /* copy first byte with word access */
++a2;
++b1;
--length;
} else
b1 = (ushort *)a1;
b2 = (ushort *)a2;
i = length / 2;
while(i--) /* copy all words */
*b2++ = *b1++;
if (length & 0x0001) /* copy trailing byte */
a2[length-1] = *b1 >> 8;
}
/*
* the second function copies WORD-aligned from an arbitrary
* source to the destination. It assumes that the CPU can handle
* mis-aligned reads from the source itself.
*/
static void
wcopyto(a1, a2, length) /* bcopy() word-wise */
char *a1, *a2;
int length;
{
ushort i, *b1, *b2;
if (length > 0 && isodd(a2)) {
b2 = align(a2);
i = (*b2 & 0xff00) | (*a1 & 0x00ff); /* copy first byte with word access */
*b2 = i;
++a1;
++b2;
--length;
} else
b2 = (ushort *)a2;
b1 = (ushort *)a1;
i = length / 2;
while(i--) /* copy all words */
*b2++ = *b1++;
if (length & 0x0001) {
i = (*b2 & 0x00ff) | (a1[length-1] & 0x00ff)<<8; /* copy trailing byte */
*b2 = i;
}
}
static void
wzero(a1, length) /* bzero() word-wise */
char *a1;
int length;
{
ushort i, *b1;
/*
* Is the destination word-aligned?
* If not, handle the leading byte...
*/
if((length > 0) && ((size_t)a1 & 1)) {
b1 = (ushort *)((size_t)a1 & ~1);
*b1 &= 0xff00;
--length;
++a1;
}
/*
* Perform the main zeroing word-wise...
*/
b1 = (ushort *)a1;
i = length / 2;
while(i--)
*b1++ = 0;
/*
* Do we have to handle a trailing byte?
*/
if (length & 0x0001)
*b1 &= 0x00ff;
}
/*
* Routine to copy from mbuf chain to transmit
* buffer in board local memory.
*/
int
aeput(buffer, m)
register char *buffer;
register struct mbuf *m;
{
register struct mbuf *n;
register int len = 0, tlen = 0;
for (; m; m = n) {
len = m->m_len;
if (len == 0) {
MFREE(m, n);
continue;
}
wcopyto(mtod(m, char *), buffer, len);
buffer += len;
tlen += len;
MFREE(m, n);
}
if (tlen < ETHER_MIN_LEN) {
wzero(buffer, ETHER_MIN_LEN - tlen);
tlen = ETHER_MIN_LEN;
}
return(tlen);
}
/*
* Routine to copy from board local memory into mbufs.
*/
struct mbuf *
aeget(sc, buffer, totlen)
struct ae_softc *sc;
u_char *buffer;
int totlen;
{
register struct mbuf *m;
struct mbuf *top, **mp;
int len;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == 0)
return (0);
m->m_pkthdr.rcvif = &sc->sc_arpcom.ac_if;
m->m_pkthdr.len = totlen;
len = MHLEN;
top = 0;
mp = &top;
while (totlen > 0) {
if (top) {
MGET(m, M_DONTWAIT, MT_DATA);
if (m == 0) {
m_freem(top);
return (0);
}
len = MLEN;
}
if (totlen >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if (m->m_flags & M_EXT)
len = MCLBYTES;
}
m->m_len = len = min(totlen, len);
wcopyfrom((caddr_t)buffer, mtod(m, caddr_t), len);
buffer += len;
totlen -= len;
*mp = m;
mp = &m->m_next;
}
return (top);
}
/*
* Process an ioctl request.
*/
int
aeioctl(ifp, cmd, data)
register struct ifnet *ifp;
u_long cmd;
caddr_t data;
{
struct ae_softc *sc = ifp->if_softc;
struct ifaddr *ifa = (struct ifaddr *)data;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
aeinit(sc);
arp_ifinit(&sc->sc_arpcom, ifa);
break;
#endif
#ifdef NS
case AF_NS:
{
register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
if (ns_nullhost(*ina))
ina->x_host =
*(union ns_host *)(sc->sc_arpcom.ac_enaddr);
else
wcopyto(ina->x_host.c_host,
sc->sc_arpcom.ac_enaddr,
sizeof(sc->sc_arpcom.ac_enaddr));
aeinit(sc); /* does ae_setaddr() */
break;
}
#endif
default:
aeinit(sc);
break;
}
break;
#if defined(CCITT) && defined(LLC)
case SIOCSIFCONF_X25:
ifp->if_flags |= IFF_UP;
ifa->ifa_rtrequest = cons_rtrequest; /* XXX */
error = x25_llcglue(PRC_IFUP, ifa->ifa_addr);
if (error == 0)
aeinit(sc);
break;
#endif /* CCITT && LLC */
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_flags & IFF_RUNNING) != 0) {
/*
* If interface is marked down and it is running, then
* stop it.
*/
aestop(sc);
ifp->if_flags &= ~IFF_RUNNING;
} else if ((ifp->if_flags & IFF_UP) != 0 &&
(ifp->if_flags & IFF_RUNNING) == 0) {
/*
* If interface is marked up and it is stopped, then
* start it.
*/
aeinit(sc);
} else {
/*
* Reset the interface to pick up changes in any other
* flags that affect hardware registers.
*/
aeinit(sc);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
error = (cmd == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->sc_arpcom):
ether_delmulti(ifr, &sc->sc_arpcom);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
aereset(sc);
error = 0;
}
break;
default:
error = EINVAL;
break;
}
splx(s);
return (error);
}
/*
* Set up the logical address filter.
*/
void
aesetladrf(ac, af)
struct arpcom *ac;
u_int16_t *af;
{
struct ifnet *ifp = &ac->ac_if;
struct ether_multi *enm;
register u_char *cp, c;
register u_int32_t crc;
register int i, len;
struct ether_multistep step;
/*
* Set up multicast address filter by passing all multicast addresses
* through a crc generator, and then using the high order 6 bits as an
* index into the 64 bit logical address filter. The high order bit
* selects the word, while the rest of the bits select the bit within
* the word.
*/
if (ifp->if_flags & IFF_PROMISC)
goto allmulti;
af[0] = af[1] = af[2] = af[3] = 0x0000;
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
sizeof(enm->enm_addrlo)) != 0) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
goto allmulti;
}
cp = enm->enm_addrlo;
crc = 0xffffffff;
for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
c = *cp++;
for (i = 8; --i >= 0;) {
if ((crc & 0x01) ^ (c & 0x01)) {
crc >>= 1;
crc ^= 0xedb88320;
} else
crc >>= 1;
c >>= 1;
}
}
/* Just want the 6 most significant bits. */
crc >>= 26;
/* Turn on the corresponding bit in the filter. */
af[crc >> 4] |= 1 << SWAP(crc & 0x1f);
ETHER_NEXT_MULTI(step, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
return;
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
af[0] = af[1] = af[2] = af[3] = 0xffff;
}
#endif /* NAE > 0 */