NetBSD/sys/arch/i386/isa/aha1742.c

1214 lines
27 KiB
C

/*
* Written by Julian Elischer (julian@tfs.com)
* for TRW Financial Systems for use under the MACH(2.5) operating system.
*
* TRW Financial Systems, in accordance with their agreement with Carnegie
* Mellon University, makes this software available to CMU to distribute
* or use in any manner that they see fit as long as this message is kept with
* the software. For this reason TFS also grants any other persons or
* organisations permission to use or modify this software.
*
* TFS supplies this software to be publicly redistributed
* on the understanding that TFS is not responsible for the correct
* functioning of this software in any circumstances.
*
* $Id: aha1742.c,v 1.12 1993/06/09 22:36:46 deraadt Exp $
*/
#include "ahb.h"
#include "sys/types.h"
#include "sys/param.h"
#include "sys/systm.h"
#include "sys/errno.h"
#include "sys/ioctl.h"
#include "sys/buf.h"
#include "sys/proc.h"
#include "sys/user.h"
#include "i386/include/pio.h"
#include "i386/isa/isa_device.h"
#include "sys/dkbad.h"
#include "sys/disklabel.h"
#include "scsi/scsi_all.h"
#include "scsi/scsiconf.h"
#ifdef DDB
int Debugger();
#else DDB
#define Debugger() panic("should call debugger here (adaptec.c)")
#endif DDB
typedef unsigned long int physaddr;
#define PHYSTOKV(x) (x | 0xFE000000)
#define KVTOPHYS(x) vtophys(x)
extern int delaycount; /* from clock setup code */
#define NUM_CONCURRENT 16 /* number of concurrent ops per board */
#define AHB_NSEG 33 /* number of dma segments supported */
#define FUDGE(X) (X>>1) /* our loops are slower than spinwait() */
/*
* AHA1740 standard EISA Host ID regs (Offset from slot base)
*/
#define HID0 0xC80 /* 0,1: msb of ID2, 3-7: ID1 */
#define HID1 0xC81 /* 0-4: ID3, 4-7: LSB ID2 */
#define HID2 0xC82 /* product, 0=174[20] 1 = 1744 */
#define HID3 0xC83 /* firmware revision */
#define CHAR1(B1,B2) (((B1>>2) & 0x1F) | '@')
#define CHAR2(B1,B2) (((B1<<3) & 0x18) | ((B2>>5) & 0x7)|'@')
#define CHAR3(B1,B2) ((B2 & 0x1F) | '@')
/* AHA1740 EISA board control registers (Offset from slot base) */
#define EBCTRL 0xC84
#define CDEN 0x01
/*
* AHA1740 EISA board mode registers (Offset from slot base)
*/
#define PORTADDR 0xCC0
#define PORTADDR_ENHANCED 0x80
#define BIOSADDR 0xCC1
#define INTDEF 0xCC2
#define SCSIDEF 0xCC3
#define BUSDEF 0xCC4
#define RESV0 0xCC5
#define RESV1 0xCC6
#define RESV2 0xCC7
/* bit definitions for INTDEF */
#define INT9 0x00
#define INT10 0x01
#define INT11 0x02
#define INT12 0x03
#define INT14 0x05
#define INT15 0x06
#define INTHIGH 0x08 /* int high=ACTIVE (else edge) */
#define INTEN 0x10
/* bit definitions for SCSIDEF */
#define HSCSIID 0x0F /* our SCSI ID */
#define RSTPWR 0x10 /* reset scsi bus on power up or reset */
/* bit definitions for BUSDEF */
#define B0uS 0x00 /* give up bus immediatly */
#define B4uS 0x01 /* delay 4uSec. */
#define B8uS 0x02
/*
* AHA1740 ENHANCED mode mailbox control regs (Offset from slot base)
*/
#define MBOXOUT0 0xCD0
#define MBOXOUT1 0xCD1
#define MBOXOUT2 0xCD2
#define MBOXOUT3 0xCD3
#define ATTN 0xCD4
#define G2CNTRL 0xCD5
#define G2INTST 0xCD6
#define G2STAT 0xCD7
#define MBOXIN0 0xCD8
#define MBOXIN1 0xCD9
#define MBOXIN2 0xCDA
#define MBOXIN3 0xCDB
#define G2STAT2 0xCDC
/*
* Bit definitions for the 5 control/status registers
*/
#define ATTN_TARGET 0x0F
#define ATTN_OPCODE 0xF0
#define OP_IMMED 0x10
#define AHB_TARG_RESET 0x80
#define OP_START_ECB 0x40
#define OP_ABORT_ECB 0x50
#define G2CNTRL_SET_HOST_READY 0x20
#define G2CNTRL_CLEAR_EISA_INT 0x40
#define G2CNTRL_HARD_RESET 0x80
#define G2INTST_TARGET 0x0F
#define G2INTST_INT_STAT 0xF0
#define AHB_ECB_OK 0x10
#define AHB_ECB_RECOVERED 0x50
#define AHB_HW_ERR 0x70
#define AHB_IMMED_OK 0xA0
#define AHB_ECB_ERR 0xC0
#define AHB_ASN 0xD0 /* for target mode */
#define AHB_IMMED_ERR 0xE0
#define G2STAT_BUSY 0x01
#define G2STAT_INT_PEND 0x02
#define G2STAT_MBOX_EMPTY 0x04
#define G2STAT2_HOST_READY 0x01
struct ahb_dma_seg {
physaddr addr;
long len;
};
struct ahb_ecb_status {
u_short status;
# define ST_DON 0x0001
# define ST_DU 0x0002
# define ST_QF 0x0008
# define ST_SC 0x0010
# define ST_DO 0x0020
# define ST_CH 0x0040
# define ST_INT 0x0080
# define ST_ASA 0x0100
# define ST_SNS 0x0200
# define ST_INI 0x0800
# define ST_ME 0x1000
# define ST_ECA 0x4000
u_char ha_status;
# define HS_OK 0x00
# define HS_CMD_ABORTED_HOST 0x04
# define HS_CMD_ABORTED_ADAPTER 0x05
# define HS_TIMED_OUT 0x11
# define HS_HARDWARE_ERR 0x20
# define HS_SCSI_RESET_ADAPTER 0x22
# define HS_SCSI_RESET_INCOMING 0x23
u_char targ_status;
# define TS_OK 0x00
# define TS_CHECK_CONDITION 0x02
# define TS_BUSY 0x08
u_long resid_count;
u_long resid_addr;
u_short addit_status;
u_char sense_len;
u_char unused[9];
u_char cdb[6];
};
struct ecb {
u_char opcode;
# define ECB_SCSI_OP 0x01
u_char :4;
u_char options:3;
u_char :1;
short opt1;
# define ECB_CNE 0x0001
# define ECB_DI 0x0080
# define ECB_SES 0x0400
# define ECB_S_G 0x1000
# define ECB_DSB 0x4000
# define ECB_ARS 0x8000
short opt2;
# define ECB_LUN 0x0007
# define ECB_TAG 0x0008
# define ECB_TT 0x0030
# define ECB_ND 0x0040
# define ECB_DAT 0x0100
# define ECB_DIR 0x0200
# define ECB_ST 0x0400
# define ECB_CHK 0x0800
# define ECB_REC 0x4000
# define ECB_NRB 0x8000
u_short unused1;
physaddr data;
u_long datalen;
physaddr status;
physaddr chain;
short unused2;
short unused3;
physaddr sense;
u_char senselen;
u_char cdblen;
short cksum;
u_char cdb[12];
/*-----------------end of hardware supported fields----------------*/
struct ecb *next; /* in free list */
struct scsi_xfer *xs; /* the scsi_xfer for this cmd */
long int delta; /* difference from previous*/
struct ecb *later,*sooner;
int flags;
#define ECB_FREE 0
#define ECB_ACTIVE 1
#define ECB_ABORTED 2
#define ECB_IMMED 4
#define ECB_IMMED_FAIL 8
struct ahb_dma_seg ahb_dma[AHB_NSEG];
struct ahb_ecb_status ecb_status;
struct scsi_sense_data ecb_sense;
};
struct ecb *ahb_soonest = (struct ecb *)0;
struct ecb *ahb_latest = (struct ecb *)0;
long int ahb_furtherest = 0; /* longest time in the timeout queue */
struct ahb_data {
int flags;
#define AHB_INIT 0x01;
int baseport;
struct ecb ecbs[NUM_CONCURRENT];
struct ecb *free_ecb;
int our_id; /* our scsi id */
int vect;
struct ecb *immed_ecb; /* an outstanding immediete command */
} ahb_data[NAHB];
struct ecb *cheat;
#define MAX_SLOTS 8
static ahb_slot = 0; /* slot last board was found in */
static ahb_unit = 0;
int ahb_debug = 0;
#define AHB_SHOWECBS 0x01
#define AHB_SHOWINTS 0x02
#define AHB_SHOWCMDS 0x04
#define AHB_SHOWMISC 0x08
#define FAIL 1
#define SUCCESS 0
#define PAGESIZ 4096
int ahbprobe(struct isa_device *);
int ahbprobe1(struct isa_device *);
int ahb_attach(struct isa_device *);
long int ahb_adapter_info(int);
int ahbintr(int);
void ahb_done(int, struct ecb *, int);
void ahb_free_ecb(int, struct ecb *, int);
struct ecb * ahb_get_ecb(int, int);
int ahb_init(int);
void ahbminphys(struct buf *);
int ahb_scsi_cmd(struct scsi_xfer *);
void ahb_add_timeout(struct ecb *, int);
void ahb_remove_timeout(struct ecb *);
void ahb_timeout(int);
void ahb_show_scsi_cmd(struct scsi_xfer *);
void ahb_print_ecb(struct ecb *);
void ahb_print_active_ecb(void);
struct isa_driver ahbdriver = {
ahbprobe,
ahb_attach,
"ahb"
};
struct scsi_switch ahb_switch = {
"ahb",
ahb_scsi_cmd,
ahbminphys,
0,
0,
ahb_adapter_info,
0, 0, 0
};
/*
* Function to send a command out through a mailbox
*/
void
ahb_send_mbox(int unit, int opcode, int target, struct ecb *ecb)
{
int port = ahb_data[unit].baseport;
int spincount = FUDGE(delaycount) * 1; /* 1ms should be enough */
int stport = port + G2STAT, s;
s = splbio();
while( ((inb(stport) &
(G2STAT_BUSY | G2STAT_MBOX_EMPTY)) != G2STAT_MBOX_EMPTY)
&& spincount--)
;
if(spincount == -1) {
printf("ahb%d: board not responding\n",unit);
Debugger();
}
outl(port+MBOXOUT0, KVTOPHYS(ecb)); /* don't know this will work */
outb(port+ATTN, opcode|target);
splx(s);
}
/*
* Function to poll for command completion when in poll mode
* wait is in msec
*/
int
ahb_poll(int unit, int wait)
{
int port = ahb_data[unit].baseport;
int spincount = FUDGE(delaycount) * wait; /* in msec */
int stport = port + G2STAT;
int start = spincount;
retry:
while( spincount-- && (!(inb(stport) & G2STAT_INT_PEND)))
;
if(spincount == -1) {
printf("ahb%d: board not responding\n",unit);
return(EIO);
}
if( (int)cheat != PHYSTOKV(inl(port+MBOXIN0)) ) {
printf("discarding %x ", inl(port+MBOXIN0));
outb(port + G2CNTRL, G2CNTRL_CLEAR_EISA_INT);
spinwait(50);
goto retry;
}
ahbintr(unit);
return(0);
}
/*
* Function to send an immediate type command to the adapter
*/
void
ahb_send_immed(int unit, int target, u_long cmd)
{
int port = ahb_data[unit].baseport;
int spincount = FUDGE(delaycount) * 1; /* 1ms should be enough */
int s = splbio();
int stport = port + G2STAT;
while( ((inb(stport) &
(G2STAT_BUSY | G2STAT_MBOX_EMPTY)) != (G2STAT_MBOX_EMPTY)) &&
spincount--)
;
if(spincount == -1) {
printf("ahb%d: board not responding\n",unit);
Debugger();
}
outl(port + MBOXOUT0, cmd); /* don't know this will work */
outb(port + G2CNTRL, G2CNTRL_SET_HOST_READY);
outb(port + ATTN, OP_IMMED | target);
splx(s);
}
/*
* Check the slots looking for a board we recognise
* If we find one, note it's address (slot) and call
* the actual probe routine to check it out.
*/
int
ahbprobe(struct isa_device *dev)
{
int port;
u_char byte1,byte2,byte3;
ahb_slot++;
while (ahb_slot<8) {
port = 0x1000 * ahb_slot;
byte1 = inb(port + HID0);
byte2 = inb(port + HID1);
byte3 = inb(port + HID2);
if(byte1 == 0xff) {
ahb_slot++;
continue;
}
if ((CHAR1(byte1,byte2) == 'A')
&& (CHAR2(byte1,byte2) == 'D')
&& (CHAR3(byte1,byte2) == 'P')
&& ((byte3 == 0 ) || (byte3 == 1))) {
dev->id_iobase = port;
return ahbprobe1(dev);
}
ahb_slot++;
}
return 0;
}
/*
* Check if the device can be found at the port given *
* and if so, set it up ready for further work *
* as an argument, takes the isa_device structure from *
* autoconf.c *
*/
int
ahbprobe1(struct isa_device *dev)
{
int unit = ahb_unit;
dev->id_unit = unit;
ahb_data[unit].baseport = dev->id_iobase;
if(unit >= NAHB) {
printf("ahb: unit number (%d) too high\n",unit);
return 0;
}
/*
* Try initialise a unit at this location
* sets up dma and bus speed, loads ahb_data[unit].vect*
*/
if (ahb_init(unit) != 0)
return 0;
/* If it's there, put in it's interrupt vectors */
dev->id_irq = (1 << ahb_data[unit].vect);
dev->id_drq = -1; /* using EISA dma */
ahb_unit++;
return 0x1000;
}
/*
* Attach all the sub-devices we can find
*/
int
ahb_attach(struct isa_device *dev)
{
static int firsttime;
int masunit = dev->id_masunit;
int r;
r = scsi_attach(masunit, ahb_data[masunit].our_id, &ahb_switch,
&dev->id_physid, &dev->id_unit, dev->id_flags);
/* only one for all boards */
if(firsttime==0) {
firsttime = 1;
ahb_timeout(0);
}
return r;
}
/*
* Return some information to the caller about *
* the adapter and it's capabilities *
* 2 outstanding requests at a time per device
*/
long int
ahb_adapter_info(int unit)
{
return 2;
}
/*
* Catch an interrupt from the adaptor
*/
int
ahbintr(int unit)
{
struct ecb *ecb;
unsigned char stat;
register i;
u_char ahbstat;
int target;
long int mboxval;
int port = ahb_data[unit].baseport;
if(scsi_debug & PRINTROUTINES)
printf("ahbintr ");
while(inb(port + G2STAT) & G2STAT_INT_PEND) {
/*
* First get all the information and then
* acknowlege the interrupt
*/
ahbstat = inb(port + G2INTST);
target = ahbstat & G2INTST_TARGET;
stat = ahbstat & G2INTST_INT_STAT;
mboxval = inl(port + MBOXIN0);/* don't know this will work */
outb(port + G2CNTRL, G2CNTRL_CLEAR_EISA_INT);
if(scsi_debug & TRACEINTERRUPTS)
printf("status = 0x%x ",stat);
/*
* Process the completed operation
*/
if(stat == AHB_ECB_OK)
ecb = (struct ecb *)PHYSTOKV(mboxval);
else {
switch(stat) {
case AHB_IMMED_OK:
ecb = ahb_data[unit].immed_ecb;
ahb_data[unit].immed_ecb = 0;
break;
case AHB_IMMED_ERR:
ecb = ahb_data[unit].immed_ecb;
ecb->flags |= ECB_IMMED_FAIL;
ahb_data[unit].immed_ecb = 0;
break;
case AHB_ASN: /* for target mode */
ecb = 0;
break;
case AHB_HW_ERR:
ecb = 0;
break;
case AHB_ECB_RECOVERED:
ecb = (struct ecb *)PHYSTOKV(mboxval);
break;
case AHB_ECB_ERR:
ecb = (struct ecb *)PHYSTOKV(mboxval);
break;
default:
printf(" Unknown return from ahb%d(%x)\n",unit,ahbstat);
ecb=0;
}
}
if(ecb) {
if(ahb_debug & AHB_SHOWCMDS )
ahb_show_scsi_cmd(ecb->xs);
if((ahb_debug & AHB_SHOWECBS) && ecb)
printf("<int ecb(%x)>",ecb);
ahb_remove_timeout(ecb);
ahb_done(unit, ecb, (stat==AHB_ECB_OK)? SUCCESS: FAIL);
}
}
return 1;
}
/*
* We have a ecb which has been processed by the
* adaptor, now we look to see how the operation
* went.
*/
void
ahb_done(int unit, struct ecb *ecb, int state)
{
struct ahb_ecb_status *stat = &ecb->ecb_status;
struct scsi_sense_data *s1,*s2;
struct scsi_xfer *xs = ecb->xs;
if(scsi_debug & (PRINTROUTINES | TRACEINTERRUPTS))
printf("ahb_done ");
/*
* Otherwise, put the results of the operation
* into the xfer and call whoever started it
*/
if(ecb->flags & ECB_IMMED) {
if(ecb->flags & ECB_IMMED_FAIL)
xs->error = XS_DRIVER_STUFFUP;
goto done;
}
if ( (state == SUCCESS) || (xs->flags & SCSI_ERR_OK)) {
/* All went correctly OR errors expected */
xs->resid = 0;
xs->error = 0;
} else {
s1 = &(ecb->ecb_sense);
s2 = &(xs->sense);
if(stat->ha_status) {
switch(stat->ha_status) {
case HS_SCSI_RESET_ADAPTER:
break;
case HS_SCSI_RESET_INCOMING:
break;
case HS_CMD_ABORTED_HOST: /* No response */
case HS_CMD_ABORTED_ADAPTER: /* No response */
break;
case HS_TIMED_OUT: /* No response */
if (ahb_debug & AHB_SHOWMISC)
printf("timeout reported back\n");
xs->error = XS_TIMEOUT;
break;
default:
/* Other scsi protocol messes */
xs->error = XS_DRIVER_STUFFUP;
if (ahb_debug & AHB_SHOWMISC)
printf("unexpected ha_status: %x\n",
stat->ha_status);
}
} else {
switch(stat->targ_status) {
case TS_CHECK_CONDITION:
*s2 = *s1;
xs->error = XS_SENSE;
break;
case TS_BUSY:
xs->error = XS_BUSY;
break;
default:
if (ahb_debug & AHB_SHOWMISC)
printf("unexpected targ_status: %x\n",
stat->targ_status);
xs->error = XS_DRIVER_STUFFUP;
}
}
}
done:
xs->flags |= ITSDONE;
ahb_free_ecb(unit, ecb, xs->flags);
if(xs->when_done)
(*(xs->when_done))(xs->done_arg,xs->done_arg2);
}
/*
* A ecb (and hence a mbx-out is put onto the
* free list.
*/
void
ahb_free_ecb(int unit, struct ecb *ecb, int flags)
{
unsigned int opri;
if(scsi_debug & PRINTROUTINES)
printf("ecb%d(0x%x)> ",unit,flags);
if (!(flags & SCSI_NOMASK))
opri = splbio();
ecb->next = ahb_data[unit].free_ecb;
ahb_data[unit].free_ecb = ecb;
ecb->flags = ECB_FREE;
/*
* If there were none, wake abybody waiting for
* one to come free, starting with queued entries*
*/
if (!ecb->next)
wakeup(&ahb_data[unit].free_ecb);
if (!(flags & SCSI_NOMASK))
splx(opri);
}
/*
* Get a free ecb (and hence mbox-out entry)
*/
struct ecb *
ahb_get_ecb(int unit, int flags)
{
unsigned opri;
struct ecb *rc;
if(scsi_debug & PRINTROUTINES)
printf("<ecb%d(0x%x) ", unit, flags);
if (!(flags & SCSI_NOMASK))
opri = splbio();
/*
* If we can and have to, sleep waiting for one
* to come free
*/
while ((!(rc = ahb_data[unit].free_ecb)) && (!(flags & SCSI_NOSLEEP)))
sleep(&ahb_data[unit].free_ecb, PRIBIO);
if (rc) {
ahb_data[unit].free_ecb = rc->next;
rc->flags = ECB_ACTIVE;
}
if (!(flags & SCSI_NOMASK))
splx(opri);
return rc;
}
/*
* Start the board, ready for normal operation
*/
int
ahb_init(int unit)
{
int port = ahb_data[unit].baseport;
int intdef;
int spincount = FUDGE(delaycount) * 1000; /* 1 sec enough? */
int i;
int stport = port + G2STAT;
#define NO_NO 1
#ifdef NO_NO
/*
* reset board, If it doesn't respond, assume
* that it's not there.. good for the probe
*/
outb(port + EBCTRL,CDEN); /* enable full card */
outb(port + PORTADDR,PORTADDR_ENHANCED);
outb(port + G2CNTRL,G2CNTRL_HARD_RESET);
spinwait(1);
outb(port + G2CNTRL,0);
spinwait(10);
while( (inb(stport) & G2STAT_BUSY ) && spincount--)
;
if(spincount == -1) {
if (ahb_debug & AHB_SHOWMISC)
printf("ahb_init: No answer from bt742a board\n");
return(ENXIO);
}
i = inb(port + MBOXIN0) & 0xff;
if(i) {
printf("self test failed, val = 0x%x\n",i);
return(EIO);
}
#endif
while( inb(stport) & G2STAT_INT_PEND) {
printf(".");
outb(port + G2CNTRL, G2CNTRL_CLEAR_EISA_INT);
spinwait(10);
}
outb(port + EBCTRL,CDEN); /* enable full card */
outb(port + PORTADDR,PORTADDR_ENHANCED);
/*
* Assume we have a board at this stage
* setup dma channel from jumpers and save int
* level
*/
intdef = inb(port + INTDEF);
switch(intdef & 0x07) {
case INT9:
ahb_data[unit].vect = 9;
break;
case INT10:
ahb_data[unit].vect = 10;
break;
case INT11:
ahb_data[unit].vect = 11;
break;
case INT12:
ahb_data[unit].vect = 12;
break;
case INT14:
ahb_data[unit].vect = 14;
break;
case INT15:
ahb_data[unit].vect = 15;
break;
default:
ahb_data[unit].vect = -1;
printf("ahb%d: illegal irq setting\n", unit);
return(EIO);
}
outb(port + INTDEF, intdef|INTEN); /* make sure we can interrupt */
ahb_data[unit].our_id = (inb(port + SCSIDEF) & HSCSIID);
/*
* link up all our ECBs into a free list
*/
for (i=0; i < NUM_CONCURRENT; i++) {
ahb_data[unit].ecbs[i].next = ahb_data[unit].free_ecb;
ahb_data[unit].free_ecb = &ahb_data[unit].ecbs[i];
ahb_data[unit].free_ecb->flags = ECB_FREE;
}
/*
* Note that we are going and return (to probe)
*/
ahb_data[unit].flags |= AHB_INIT;
return 0;
}
void
ahbminphys(struct buf *bp)
{
if(bp->b_bcount > ((AHB_NSEG-1) * PAGESIZ))
bp->b_bcount = ((AHB_NSEG-1) * PAGESIZ);
}
/*
* start a scsi operation given the command and
* the data address. Also needs the unit, target
* and lu
*/
int
ahb_scsi_cmd(struct scsi_xfer *xs)
{
struct scsi_sense_data *s1,*s2;
struct ecb *ecb;
struct ahb_dma_seg *sg;
int seg; /* scatter gather seg being worked on */
int i = 0;
int rc = 0;
int thiskv;
physaddr thisphys,nextphys;
int unit =xs->adapter;
int bytes_this_seg,bytes_this_page,datalen,flags;
struct iovec *iovp;
int s;
if(scsi_debug & PRINTROUTINES)
printf("ahb_scsi_cmd ");
/*
* get a ecb (mbox-out) to use. If the transfer
* is from a buf (possibly from interrupt time)
* then we can't allow it to sleep
*/
flags = xs->flags;
if(xs->bp) flags |= (SCSI_NOSLEEP); /* just to be sure */
if(flags & ITSDONE) {
printf("Already done?");
xs->flags &= ~ITSDONE;
}
if( !(flags & INUSE) ) {
printf("Not in use?");
xs->flags |= INUSE;
}
if (!(ecb = ahb_get_ecb(unit,flags))) {
xs->error = XS_DRIVER_STUFFUP;
return(TRY_AGAIN_LATER);
}
cheat = ecb;
if(ahb_debug & AHB_SHOWECBS)
printf("<start ecb(%x)>",ecb);
if(scsi_debug & SHOWCOMMANDS)
ahb_show_scsi_cmd(xs);
ecb->xs = xs;
/*
* If it's a reset, we need to do an 'immediate'
* command, and store it's ccb for later
* if there is already an immediate waiting,
* then WE must wait
*/
if(flags & SCSI_RESET) {
ecb->flags |= ECB_IMMED;
if(ahb_data[unit].immed_ecb)
return(TRY_AGAIN_LATER);
ahb_data[unit].immed_ecb = ecb;
if (!(flags & SCSI_NOMASK)) {
s = splbio();
ahb_send_immed(unit,xs->targ,AHB_TARG_RESET);
ahb_add_timeout(ecb,xs->timeout);
splx(s);
return(SUCCESSFULLY_QUEUED);
} else {
ahb_send_immed(unit,xs->targ,AHB_TARG_RESET);
/*
* If we can't use interrupts, poll on completion*
*/
if(scsi_debug & TRACEINTERRUPTS)
printf("wait ");
if( ahb_poll(unit,xs->timeout)) {
ahb_free_ecb(unit,ecb,flags);
xs->error = XS_TIMEOUT;
return(HAD_ERROR);
}
return(COMPLETE);
}
}
/*
* Put all the arguments for the xfer in the ecb
*/
ecb->opcode = ECB_SCSI_OP;
ecb->opt1 = ECB_SES|ECB_DSB|ECB_ARS;
if(xs->datalen)
ecb->opt1 |= ECB_S_G;
ecb->opt2 = xs->lu | ECB_NRB;
ecb->cdblen = xs->cmdlen;
ecb->sense = KVTOPHYS(&(ecb->ecb_sense));
ecb->senselen = sizeof(ecb->ecb_sense);
ecb->status = KVTOPHYS(&(ecb->ecb_status));
if(xs->datalen) {
/* should use S/G only if not zero length */
ecb->data = KVTOPHYS(ecb->ahb_dma);
sg = ecb->ahb_dma ;
seg = 0;
if(flags & SCSI_DATA_UIO) {
iovp = ((struct uio *)xs->data)->uio_iov;
datalen = ((struct uio *)xs->data)->uio_iovcnt;
xs->datalen = 0;
while ((datalen) && (seg < AHB_NSEG)) {
sg->addr = (physaddr)iovp->iov_base;
xs->datalen += sg->len = iovp->iov_len;
if(scsi_debug & SHOWSCATGATH)
printf("(0x%x@0x%x)", iovp->iov_len,
iovp->iov_base);
sg++;
iovp++;
seg++;
datalen--;
}
} else {
/* Set up the scatter gather block */
if(scsi_debug & SHOWSCATGATH)
printf("%d @0x%x:- ", xs->datalen, xs->data);
datalen = xs->datalen;
thiskv = (int)xs->data;
thisphys = KVTOPHYS(thiskv);
while ((datalen) && (seg < AHB_NSEG)) {
bytes_this_seg = 0;
/* put in the base address */
sg->addr = thisphys;
if(scsi_debug & SHOWSCATGATH)
printf("0x%x",thisphys);
/* do it at least once */
nextphys = thisphys;
while ((datalen) && (thisphys == nextphys)) {
/*
* This page is contiguous (physically) with *
* the the last, just extend the length *
*/
nextphys= (thisphys & (~(PAGESIZ - 1)))
+ PAGESIZ;
bytes_this_page = min(nextphys - thisphys,
datalen);
bytes_this_seg += bytes_this_page;
datalen -= bytes_this_page;
/* get more ready for the next page */
thiskv = (thiskv & (~(PAGESIZ - 1)))
+ PAGESIZ;
if(datalen)
thisphys = KVTOPHYS(thiskv);
}
/*
* next page isn't contiguous, finish the seg *
*/
if(scsi_debug & SHOWSCATGATH)
printf("(0x%x)",bytes_this_seg);
sg->len = bytes_this_seg;
sg++;
seg++;
}
}
ecb->datalen = seg * sizeof(struct ahb_dma_seg);
if(scsi_debug & SHOWSCATGATH)
printf("\n");
if (datalen) {
/* there's still data, must have run out of segs! */
printf("ahb_scsi_cmd%d: more than %d DMA segs\n",
unit, AHB_NSEG);
xs->error = XS_DRIVER_STUFFUP;
ahb_free_ecb(unit,ecb,flags);
return(HAD_ERROR);
}
} else {
/* No data xfer, use non S/G values */
ecb->data = (physaddr)0;
ecb->datalen = 0;
}
ecb->chain = (physaddr)0;
/*
* Put the scsi command in the ecb and start it
*/
bcopy(xs->cmd, ecb->cdb, xs->cmdlen);
/* Usually return SUCCESSFULLY QUEUED */
if( !(flags & SCSI_NOMASK) ) {
s = splbio();
ahb_send_mbox(unit,OP_START_ECB,xs->targ,ecb);
ahb_add_timeout(ecb,xs->timeout);
splx(s);
if(scsi_debug & TRACEINTERRUPTS)
printf("cmd_sent ");
return(SUCCESSFULLY_QUEUED);
}
/* If we can't use interrupts, poll on completion */
ahb_send_mbox(unit,OP_START_ECB,xs->targ,ecb);
if(scsi_debug & TRACEINTERRUPTS)
printf("cmd_wait ");
do {
if(ahb_poll(unit,xs->timeout)) {
if (!(xs->flags & SCSI_SILENT)) printf("cmd fail\n");
ahb_send_mbox(unit,OP_ABORT_ECB,xs->targ,ecb);
if(ahb_poll(unit, 2000)) {
printf("abort failed in wait\n");
ahb_free_ecb(unit,ecb,flags);
}
xs->error = XS_DRIVER_STUFFUP;
splx(s);
return(HAD_ERROR);
}
} while (!(xs->flags & ITSDONE));
splx(s);
scsi_debug = 0;
ahb_debug = 0;
if(xs->error)
return HAD_ERROR;
return COMPLETE;
}
/*
* +----------+ +----------+ +----------+
* ahb_soonest--->| later |--->| later|--->| later|--->0
* | [Delta] | | [Delta] | | [Delta] |
* 0<---|sooner |<---|sooner |<---|sooner |<---ahb_latest
* +----------+ +----------+ +----------+
*
* ahb_furtherest = sum(Delta[1..n])
*/
void
ahb_add_timeout(struct ecb *ecb, int time)
{
int timeprev;
struct ecb *prev;
int s = splbio();
prev = ahb_latest;
if(prev)
timeprev = ahb_furtherest;
else
timeprev = 0;
while(prev && (timeprev > time)) {
timeprev -= prev->delta;
prev = prev->sooner;
}
if(prev) {
ecb->delta = time - timeprev;
ecb->later = prev->later;
if(ecb->later) {
ecb->later->sooner = ecb;
ecb->later->delta -= ecb->delta;
} else {
ahb_furtherest = time;
ahb_latest = ecb;
}
ecb->sooner = prev;
prev->later = ecb;
}
else
{
ecb->later = ahb_soonest;
if(ahb_soonest) {
ecb->later->sooner = ecb;
ecb->later->delta -= time;
} else {
ahb_furtherest = time;
ahb_latest = ecb;
}
ecb->delta = time;
ecb->sooner = (struct ecb *)0;
ahb_soonest = ecb;
}
splx(s);
}
void
ahb_remove_timeout(struct ecb *ecb)
{
int s = splbio();
if(ecb->sooner)
ecb->sooner->later = ecb->later;
else
ahb_soonest = ecb->later;
if(ecb->later) {
ecb->later->sooner = ecb->sooner;
ecb->later->delta += ecb->delta;
} else {
ahb_latest = ecb->sooner;
ahb_furtherest -= ecb->delta;
}
ecb->sooner = ecb->later = (struct ecb *)0;
splx(s);
}
extern int hz;
#define ONETICK 500 /* milliseconds */
#define SLEEPTIME ((hz * 1000) / ONETICK)
void
ahb_timeout(int arg)
{
struct ecb *ecb;
int unit;
int s = splbio();
while( ecb = ahb_soonest ) {
if(ecb->delta <= ONETICK) {
/* It has timed out, we need to do some work */
unit = ecb->xs->adapter;
printf("ahb%d targ %d: device timed out\n", unit,
ecb->xs->targ);
if(ahb_debug & AHB_SHOWECBS)
ahb_print_active_ecb();
/* Unlink it from the queue */
ahb_remove_timeout(ecb);
/*
* If it's immediate, don't try abort it *
*/
if(ecb->flags & ECB_IMMED) {
ecb->xs->retries = 0; /* I MEAN IT ! */
ecb->flags |= ECB_IMMED_FAIL;
ahb_done(unit,ecb,FAIL);
continue;
}
/*
* If it has been through before, then
* a previous abort has failed, don't
* try abort again
*/
if(ecb->flags == ECB_ABORTED) {
printf("AGAIN");
ecb->xs->retries = 0; /* I MEAN IT ! */
ecb->ecb_status.ha_status = HS_CMD_ABORTED_HOST;
ahb_done(unit,ecb,FAIL);
} else {
printf("\n");
ahb_send_mbox(unit,OP_ABORT_ECB,ecb->xs->targ,ecb);
/* 2 secs for the abort */
ahb_add_timeout(ecb,2000 + ONETICK);
ecb->flags = ECB_ABORTED;
}
} else {
ecb->delta -= ONETICK;
ahb_furtherest -= ONETICK;
break;
}
}
splx(s);
timeout(ahb_timeout,arg,SLEEPTIME);
}
void
ahb_show_scsi_cmd(struct scsi_xfer *xs)
{
u_char *b = (u_char *)xs->cmd;
int i = 0;
if( !(xs->flags & SCSI_RESET) ) {
printf("ahb%d targ %d lun %d:", xs->adapter,
xs->targ, xs->lu);
while(i < xs->cmdlen ) {
if(i)
printf(",");
printf("%x", b[i++]);
}
printf("\n");
} else {
printf("ahb%d targ %d lun%d: RESET\n", xs->adapter,
xs->targ, xs->lu);
}
}
void
ahb_print_ecb(struct ecb *ecb)
{
printf("ecb:%x op:%x cmdlen:%d senlen:%d\n", ecb, ecb->opcode,
ecb->cdblen, ecb->senselen);
printf(" datlen:%d hstat:%x tstat:%x delta:%d flags:%x\n",
ecb->datalen, ecb->ecb_status.ha_status,
ecb->ecb_status.targ_status, ecb->delta, ecb->flags);
ahb_show_scsi_cmd(ecb->xs);
}
void
ahb_print_active_ecb(void)
{
struct ecb *ecb;
ecb = ahb_soonest;
while(ecb) {
ahb_print_ecb(ecb);
ecb = ecb->later;
}
printf("Furtherest = %d\n", ahb_furtherest);
}