NetBSD/sys/arch/evbarm/rpi/rpi_machdep.c

1195 lines
29 KiB
C

/* $NetBSD: rpi_machdep.c,v 1.66 2015/05/31 08:13:18 skrll Exp $ */
/*-
* Copyright (c) 2012 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Nick Hudson
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rpi_machdep.c,v 1.66 2015/05/31 08:13:18 skrll Exp $");
#include "opt_arm_debug.h"
#include "opt_bcm283x.h"
#include "opt_cpuoptions.h"
#include "opt_ddb.h"
#include "opt_evbarm_boardtype.h"
#include "opt_kgdb.h"
#include "opt_rpi.h"
#include "opt_vcprop.h"
#include "sdhc.h"
#include "bcmdwctwo.h"
#include "bcmspi.h"
#include "bsciic.h"
#include "plcom.h"
#include "genfb.h"
#include "ukbd.h"
#include <sys/param.h>
#include <sys/device.h>
#include <sys/termios.h>
#include <sys/reboot.h>
#include <sys/sysctl.h>
#include <sys/bus.h>
#include <net/if_ether.h>
#include <prop/proplib.h>
#include <dev/cons.h>
#include <uvm/uvm_extern.h>
#include <arm/arm32/machdep.h>
#include <machine/autoconf.h>
#include <machine/vmparam.h>
#include <machine/bootconfig.h>
#include <machine/pmap.h>
#include <arm/broadcom/bcm2835reg.h>
#include <arm/broadcom/bcm2835var.h>
#include <arm/broadcom/bcm2835_pmvar.h>
#include <arm/broadcom/bcm2835_mbox.h>
#include <arm/broadcom/bcm_amba.h>
#include <evbarm/rpi/vcio.h>
#include <evbarm/rpi/vcpm.h>
#include <evbarm/rpi/vcprop.h>
#include <evbarm/rpi/rpi.h>
#include <arm/cortex/gtmr_var.h>
#ifdef DDB
#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#endif
#if NPLCOM > 0
#include <evbarm/dev/plcomreg.h>
#include <evbarm/dev/plcomvar.h>
#endif
#if NGENFB > 0
#include <dev/videomode/videomode.h>
#include <dev/videomode/edidvar.h>
#include <dev/wscons/wsconsio.h>
#endif
#if NUKBD > 0
#include <dev/usb/ukbdvar.h>
#endif
extern int KERNEL_BASE_phys[];
extern int KERNEL_BASE_virt[];
BootConfig bootconfig; /* Boot config storage */
static char bootargs[VCPROP_MAXCMDLINE];
char *boot_args = NULL;
static void rpi_bootparams(void);
static void rpi_device_register(device_t, void *);
/*
* Macros to translate between physical and virtual for a subset of the
* kernel address space. *Not* for general use.
*/
#define KERN_VTOPDIFF KERNEL_BASE_VOFFSET
#define KERN_VTOPHYS(va) ((paddr_t)((vaddr_t)va - KERN_VTOPDIFF))
#define KERN_PHYSTOV(pa) ((vaddr_t)((paddr_t)pa + KERN_VTOPDIFF))
#ifndef RPI_FB_WIDTH
#define RPI_FB_WIDTH 1280
#endif
#ifndef RPI_FB_HEIGHT
#define RPI_FB_HEIGHT 720
#endif
#if 0
#define PLCONADDR BCM2835_UART0_BASE
#endif
#ifdef BCM2836
#define PLCONADDR 0x3f201000
#else
#define PLCONADDR 0x20201000
#endif
#ifndef CONSDEVNAME
#define CONSDEVNAME "plcom"
#endif
#ifndef PLCONSPEED
#define PLCONSPEED B115200
#endif
#ifndef PLCONMODE
#define PLCONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif
#ifndef PLCOMCNUNIT
#define PLCOMCNUNIT -1
#endif
#if (NPLCOM > 0)
static const bus_addr_t consaddr = (bus_addr_t)PLCONADDR;
int plcomcnspeed = PLCONSPEED;
int plcomcnmode = PLCONMODE;
#endif
#include "opt_kgdb.h"
#if (NPLCOM == 0)
#error Enable plcom for KGDB support
#endif
#ifdef KGDB
#include <sys/kgdb.h>
static void kgdb_port_init(void);
#endif
#if (NPLCOM > 0 && (defined(PLCONSOLE) || defined(KGDB)))
static struct plcom_instance rpi_pi = {
.pi_type = PLCOM_TYPE_PL011,
.pi_flags = PLC_FLAG_32BIT_ACCESS,
.pi_iot = &bcm2835_bs_tag,
.pi_size = BCM2835_UART0_SIZE
};
#endif
/* Smallest amount of RAM start.elf could give us. */
#define RPI_MINIMUM_SPLIT (128U * 1024 * 1024)
static struct __aligned(16) {
struct vcprop_buffer_hdr vb_hdr;
struct vcprop_tag_fwrev vbt_fwrev;
struct vcprop_tag_boardmodel vbt_boardmodel;
struct vcprop_tag_boardrev vbt_boardrev;
struct vcprop_tag_macaddr vbt_macaddr;
struct vcprop_tag_memory vbt_memory;
struct vcprop_tag_boardserial vbt_serial;
struct vcprop_tag_dmachan vbt_dmachan;
struct vcprop_tag_cmdline vbt_cmdline;
struct vcprop_tag_clockrate vbt_emmcclockrate;
struct vcprop_tag_clockrate vbt_armclockrate;
struct vcprop_tag end;
} vb =
{
.vb_hdr = {
.vpb_len = sizeof(vb),
.vpb_rcode = VCPROP_PROCESS_REQUEST,
},
.vbt_fwrev = {
.tag = {
.vpt_tag = VCPROPTAG_GET_FIRMWAREREV,
.vpt_len = VCPROPTAG_LEN(vb.vbt_fwrev),
.vpt_rcode = VCPROPTAG_REQUEST
},
},
.vbt_boardmodel = {
.tag = {
.vpt_tag = VCPROPTAG_GET_BOARDMODEL,
.vpt_len = VCPROPTAG_LEN(vb.vbt_boardmodel),
.vpt_rcode = VCPROPTAG_REQUEST
},
},
.vbt_boardrev = {
.tag = {
.vpt_tag = VCPROPTAG_GET_BOARDREVISION,
.vpt_len = VCPROPTAG_LEN(vb.vbt_boardrev),
.vpt_rcode = VCPROPTAG_REQUEST
},
},
.vbt_macaddr = {
.tag = {
.vpt_tag = VCPROPTAG_GET_MACADDRESS,
.vpt_len = VCPROPTAG_LEN(vb.vbt_macaddr),
.vpt_rcode = VCPROPTAG_REQUEST
},
},
.vbt_memory = {
.tag = {
.vpt_tag = VCPROPTAG_GET_ARMMEMORY,
.vpt_len = VCPROPTAG_LEN(vb.vbt_memory),
.vpt_rcode = VCPROPTAG_REQUEST
},
},
.vbt_serial = {
.tag = {
.vpt_tag = VCPROPTAG_GET_BOARDSERIAL,
.vpt_len = VCPROPTAG_LEN(vb.vbt_serial),
.vpt_rcode = VCPROPTAG_REQUEST
},
},
.vbt_dmachan = {
.tag = {
.vpt_tag = VCPROPTAG_GET_DMACHAN,
.vpt_len = VCPROPTAG_LEN(vb.vbt_dmachan),
.vpt_rcode = VCPROPTAG_REQUEST
},
},
.vbt_cmdline = {
.tag = {
.vpt_tag = VCPROPTAG_GET_CMDLINE,
.vpt_len = VCPROPTAG_LEN(vb.vbt_cmdline),
.vpt_rcode = VCPROPTAG_REQUEST
},
},
.vbt_emmcclockrate = {
.tag = {
.vpt_tag = VCPROPTAG_GET_CLOCKRATE,
.vpt_len = VCPROPTAG_LEN(vb.vbt_emmcclockrate),
.vpt_rcode = VCPROPTAG_REQUEST
},
.id = VCPROP_CLK_EMMC
},
.vbt_armclockrate = {
.tag = {
.vpt_tag = VCPROPTAG_GET_CLOCKRATE,
.vpt_len = VCPROPTAG_LEN(vb.vbt_armclockrate),
.vpt_rcode = VCPROPTAG_REQUEST
},
.id = VCPROP_CLK_ARM
},
.end = {
.vpt_tag = VCPROPTAG_NULL
}
};
#if NGENFB > 0
static struct __aligned(16) {
struct vcprop_buffer_hdr vb_hdr;
struct vcprop_tag_edidblock vbt_edid;
struct vcprop_tag end;
} vb_edid =
{
.vb_hdr = {
.vpb_len = sizeof(vb_edid),
.vpb_rcode = VCPROP_PROCESS_REQUEST,
},
.vbt_edid = {
.tag = {
.vpt_tag = VCPROPTAG_GET_EDID_BLOCK,
.vpt_len = VCPROPTAG_LEN(vb_edid.vbt_edid),
.vpt_rcode = VCPROPTAG_REQUEST,
},
.blockno = 0,
},
.end = {
.vpt_tag = VCPROPTAG_NULL
}
};
static struct __aligned(16) {
struct vcprop_buffer_hdr vb_hdr;
struct vcprop_tag_fbres vbt_res;
struct vcprop_tag_fbres vbt_vres;
struct vcprop_tag_fbdepth vbt_depth;
struct vcprop_tag_fbalpha vbt_alpha;
struct vcprop_tag_allocbuf vbt_allocbuf;
struct vcprop_tag_blankscreen vbt_blank;
struct vcprop_tag_fbpitch vbt_pitch;
struct vcprop_tag end;
} vb_setfb =
{
.vb_hdr = {
.vpb_len = sizeof(vb_setfb),
.vpb_rcode = VCPROP_PROCESS_REQUEST,
},
.vbt_res = {
.tag = {
.vpt_tag = VCPROPTAG_SET_FB_RES,
.vpt_len = VCPROPTAG_LEN(vb_setfb.vbt_res),
.vpt_rcode = VCPROPTAG_REQUEST,
},
.width = 0,
.height = 0,
},
.vbt_vres = {
.tag = {
.vpt_tag = VCPROPTAG_SET_FB_VRES,
.vpt_len = VCPROPTAG_LEN(vb_setfb.vbt_vres),
.vpt_rcode = VCPROPTAG_REQUEST,
},
.width = 0,
.height = 0,
},
.vbt_depth = {
.tag = {
.vpt_tag = VCPROPTAG_SET_FB_DEPTH,
.vpt_len = VCPROPTAG_LEN(vb_setfb.vbt_depth),
.vpt_rcode = VCPROPTAG_REQUEST,
},
.bpp = 32,
},
.vbt_alpha = {
.tag = {
.vpt_tag = VCPROPTAG_SET_FB_ALPHA_MODE,
.vpt_len = VCPROPTAG_LEN(vb_setfb.vbt_alpha),
.vpt_rcode = VCPROPTAG_REQUEST,
},
.state = VCPROP_ALPHA_IGNORED,
},
.vbt_allocbuf = {
.tag = {
.vpt_tag = VCPROPTAG_ALLOCATE_BUFFER,
.vpt_len = VCPROPTAG_LEN(vb_setfb.vbt_allocbuf),
.vpt_rcode = VCPROPTAG_REQUEST,
},
.address = PAGE_SIZE, /* alignment */
},
.vbt_blank = {
.tag = {
.vpt_tag = VCPROPTAG_BLANK_SCREEN,
.vpt_len = VCPROPTAG_LEN(vb_setfb.vbt_blank),
.vpt_rcode = VCPROPTAG_REQUEST,
},
.state = VCPROP_BLANK_OFF,
},
.vbt_pitch = {
.tag = {
.vpt_tag = VCPROPTAG_GET_FB_PITCH,
.vpt_len = VCPROPTAG_LEN(vb_setfb.vbt_pitch),
.vpt_rcode = VCPROPTAG_REQUEST,
},
},
.end = {
.vpt_tag = VCPROPTAG_NULL,
},
};
extern void bcmgenfb_set_console_dev(device_t dev);
void bcmgenfb_set_ioctl(int(*)(void *, void *, u_long, void *, int, struct lwp *));
extern void bcmgenfb_ddb_trap_callback(int where);
static int rpi_ioctl(void *, void *, u_long, void *, int, lwp_t *);
static int rpi_video_on = WSDISPLAYIO_VIDEO_ON;
#if defined(RPI_HWCURSOR)
#define CURSOR_BITMAP_SIZE (64 * 8)
#define CURSOR_ARGB_SIZE (64 * 64 * 4)
static uint32_t hcursor = 0;
static bus_addr_t pcursor = 0;
static uint32_t *cmem = NULL;
static int cursor_x = 0, cursor_y = 0, hot_x = 0, hot_y = 0, cursor_on = 0;
static uint32_t cursor_cmap[4];
static uint8_t cursor_mask[8 * 64], cursor_bitmap[8 * 64];
#endif
#endif
static void
rpi_bootparams(void)
{
bus_space_tag_t iot = &bcm2835_bs_tag;
bus_space_handle_t ioh = BCM2835_IOPHYSTOVIRT(BCM2835_ARMMBOX_BASE);
uint32_t res;
bcm2835_mbox_write(iot, ioh, BCMMBOX_CHANPM, (
#if (NSDHC > 0)
(1 << VCPM_POWER_SDCARD) |
#endif
#if (NPLCOM > 0)
(1 << VCPM_POWER_UART0) |
#endif
#if (NBCMDWCTWO > 0)
(1 << VCPM_POWER_USB) |
#endif
#if (NBSCIIC > 0)
(1 << VCPM_POWER_I2C0) | (1 << VCPM_POWER_I2C1) |
/* (1 << VCPM_POWER_I2C2) | */
#endif
#if (NBCMSPI > 0)
(1 << VCPM_POWER_SPI) |
#endif
0) << 4);
bcm2835_mbox_write(iot, ioh, BCMMBOX_CHANARM2VC, KERN_VTOPHYS(&vb));
bcm2835_mbox_read(iot, ioh, BCMMBOX_CHANARM2VC, &res);
cpu_dcache_inv_range((vaddr_t)&vb, sizeof(vb));
if (!vcprop_buffer_success_p(&vb.vb_hdr)) {
bootconfig.dramblocks = 1;
bootconfig.dram[0].address = 0x0;
bootconfig.dram[0].pages = atop(RPI_MINIMUM_SPLIT);
return;
}
struct vcprop_tag_memory *vptp_mem = &vb.vbt_memory;
if (vcprop_tag_success_p(&vptp_mem->tag)) {
size_t n = vcprop_tag_resplen(&vptp_mem->tag) /
sizeof(struct vcprop_memory);
bootconfig.dramblocks = 0;
for (int i = 0; i < n && i < DRAM_BLOCKS; i++) {
bootconfig.dram[i].address = vptp_mem->mem[i].base;
bootconfig.dram[i].pages = atop(vptp_mem->mem[i].size);
bootconfig.dramblocks++;
}
}
if (vcprop_tag_success_p(&vb.vbt_armclockrate.tag))
curcpu()->ci_data.cpu_cc_freq = vb.vbt_armclockrate.rate;
#ifdef VERBOSE_INIT_ARM
if (vcprop_tag_success_p(&vb.vbt_fwrev.tag))
printf("%s: firmware rev %x\n", __func__,
vb.vbt_fwrev.rev);
if (vcprop_tag_success_p(&vb.vbt_macaddr.tag))
printf("%s: mac-address %llx\n", __func__,
vb.vbt_macaddr.addr);
if (vcprop_tag_success_p(&vb.vbt_boardmodel.tag))
printf("%s: board model %x\n", __func__,
vb.vbt_boardmodel.model);
if (vcprop_tag_success_p(&vb.vbt_boardrev.tag))
printf("%s: board rev %x\n", __func__,
vb.vbt_boardrev.rev);
if (vcprop_tag_success_p(&vb.vbt_serial.tag))
printf("%s: board serial %llx\n", __func__,
vb.vbt_serial.sn);
if (vcprop_tag_success_p(&vb.vbt_dmachan.tag))
printf("%s: DMA channel mask 0x%08x\n", __func__,
vb.vbt_dmachan.mask);
if (vcprop_tag_success_p(&vb.vbt_cmdline.tag))
printf("%s: cmdline %s\n", __func__,
vb.vbt_cmdline.cmdline);
#endif
}
static void
rpi_bootstrap(void)
{
#if defined(BCM2836)
arm_cpu_max = 4;
extern int cortex_mmuinfo;
#ifdef VERBOSE_INIT_ARM
printf("%s: %d cpus present\n", __func__, arm_cpu_max);
#endif
cortex_mmuinfo = armreg_ttbr_read();
#ifdef VERBOSE_INIT_ARM
printf("%s: cortex_mmuinfo %x\n", __func__, cortex_mmuinfo);
#endif
extern void cortex_mpstart(void);
for (size_t i = 1; i < arm_cpu_max; i++) {
bus_space_tag_t iot = &bcm2835_bs_tag;
bus_space_handle_t ioh = BCM2836_ARM_LOCAL_VBASE;
bus_space_write_4(iot, ioh,
BCM2836_LOCAL_MAILBOX3_SETN(i),
(uint32_t)cortex_mpstart);
int timeout = 20;
while (timeout-- > 0) {
uint32_t val;
val = bus_space_read_4(iot, ioh,
BCM2836_LOCAL_MAILBOX3_CLRN(i));
if (val == 0)
break;
}
}
for (int loop = 0; loop < 16; loop++) {
if (arm_cpu_hatched == __BITS(arm_cpu_max - 1, 1))
break;
gtmr_delay(10000);
}
for (size_t i = 1; i < arm_cpu_max; i++) {
if ((arm_cpu_hatched & (1 << i)) == 0) {
printf("%s: warning: cpu%zu failed to hatch\n",
__func__, i);
}
}
/*
* XXXNH: Disable non-boot CPUs for now
*/
arm_cpu_hatched = 0;
#endif
}
/*
* Static device mappings. These peripheral registers are mapped at
* fixed virtual addresses very early in initarm() so that we can use
* them while booting the kernel, and stay at the same address
* throughout whole kernel's life time.
*
* We use this table twice; once with bootstrap page table, and once
* with kernel's page table which we build up in initarm().
*
* Since we map these registers into the bootstrap page table using
* pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
* registers segment-aligned and segment-rounded in order to avoid
* using the 2nd page tables.
*/
#define _A(a) ((a) & ~L1_S_OFFSET)
#define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
static const struct pmap_devmap rpi_devmap[] = {
{
_A(RPI_KERNEL_IO_VBASE),
_A(RPI_KERNEL_IO_PBASE),
_S(RPI_KERNEL_IO_VSIZE), /* 16Mb */
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
#if defined(BCM2836)
{
_A(RPI_KERNEL_LOCAL_VBASE),
_A(RPI_KERNEL_LOCAL_PBASE),
_S(RPI_KERNEL_LOCAL_VSIZE),
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
#endif
{ 0, 0, 0, 0, 0 }
};
#undef _A
#undef _S
/*
* u_int initarm(...)
*
* Initial entry point on startup. This gets called before main() is
* entered.
* It should be responsible for setting up everything that must be
* in place when main is called.
* This includes
* Taking a copy of the boot configuration structure.
* Initialising the physical console so characters can be printed.
* Setting up page tables for the kernel
*/
u_int
initarm(void *arg)
{
/*
* Heads up ... Setup the CPU / MMU / TLB functions
*/
if (set_cpufuncs())
panic("cpu not recognized!");
/* map some peripheral registers */
pmap_devmap_bootstrap((vaddr_t)armreg_ttbr_read() & -L1_TABLE_SIZE,
rpi_devmap);
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
consinit();
/* Talk to the user */
#define BDSTR(s) _BDSTR(s)
#define _BDSTR(s) #s
printf("\nNetBSD/evbarm (" BDSTR(EVBARM_BOARDTYPE) ") booting ...\n");
#ifdef CORTEX_PMC
cortex_pmc_ccnt_init();
#endif
rpi_bootparams();
rpi_bootstrap();
if (vcprop_tag_success_p(&vb.vbt_armclockrate.tag)) {
curcpu()->ci_data.cpu_cc_freq = vb.vbt_armclockrate.rate;
#ifdef VERBOSE_INIT_ARM
printf("%s: arm clock %d\n", __func__,
vb.vbt_armclockrate.rate);
#endif
}
#ifdef VERBOSE_INIT_ARM
printf("initarm: Configuring system ...\n");
#endif
psize_t ram_size = bootconfig.dram[0].pages * PAGE_SIZE;
#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
if (ram_size > KERNEL_VM_BASE - KERNEL_BASE) {
printf("%s: dropping RAM size from %luMB to %uMB\n",
__func__, (unsigned long) (ram_size >> 20),
(KERNEL_VM_BASE - KERNEL_BASE) >> 20);
ram_size = KERNEL_VM_BASE - KERNEL_BASE;
}
#endif
/*
* If MEMSIZE specified less than what we really have, limit ourselves
* to that.
*/
#ifdef MEMSIZE
if (ram_size == 0 || ram_size > (unsigned)MEMSIZE * 1024 * 1024)
ram_size = (unsigned)MEMSIZE * 1024 * 1024;
#else
KASSERTMSG(ram_size > 0, "RAM size unknown and MEMSIZE undefined");
#endif
arm32_bootmem_init(bootconfig.dram[0].address, ram_size,
(uintptr_t)KERNEL_BASE_phys);
#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
const bool mapallmem_p = true;
KASSERT(ram_size <= KERNEL_VM_BASE - KERNEL_BASE);
#else
const bool mapallmem_p = false;
#endif
arm32_kernel_vm_init(KERNEL_VM_BASE, ARM_VECTORS_HIGH, 0, rpi_devmap,
mapallmem_p);
cpu_reset_address = bcm2835_system_reset;
#ifdef VERBOSE_INIT_ARM
printf("done.\n");
#endif
#ifdef KGDB
kgdb_port_init();
#endif
#ifdef __HAVE_MEMORY_DISK__
md_root_setconf(memory_disk, sizeof memory_disk);
#endif
if (vcprop_tag_success_p(&vb.vbt_cmdline.tag))
strlcpy(bootargs, vb.vbt_cmdline.cmdline, sizeof(bootargs));
boot_args = bootargs;
parse_mi_bootargs(boot_args);
#ifdef BOOTHOWTO
boothowto |= BOOTHOWTO;
#endif
/* we've a specific device_register routine */
evbarm_device_register = rpi_device_register;
return initarm_common(KERNEL_VM_BASE, KERNEL_VM_SIZE, NULL, 0);
}
void
consinit(void)
{
static int consinit_called = 0;
if (consinit_called != 0)
return;
consinit_called = 1;
#if (NPLCOM > 0 && defined(PLCONSOLE))
/*
* Initialise the diagnostic serial console
* This allows a means of generating output during initarm().
*/
rpi_pi.pi_iobase = consaddr;
plcomcnattach(&rpi_pi, plcomcnspeed, BCM2835_UART0_CLK,
plcomcnmode, PLCOMCNUNIT);
#endif
}
#ifdef KGDB
#if !defined(KGDB_PLCOMUNIT) || !defined(KGDB_DEVRATE) || !defined(KGDB_CONMODE)
#error Specify KGDB_PLCOMUNIT, KGDB_DEVRATE and KGDB_CONMODE for KGDB.
#endif
void
static kgdb_port_init(void)
{
static int kgdbsinit_called = 0;
int res;
if (kgdbsinit_called != 0)
return;
kgdbsinit_called = 1;
rpi_pi.pi_iobase = consaddr;
res = plcom_kgdb_attach(&rpi_pi, KGDB_DEVRATE, BCM2835_UART0_CLK,
KGDB_CONMODE, KGDB_PLCOMUNIT);
if (res)
panic("KGDB uart can not be initialized, err=%d.", res);
}
#endif
#if NGENFB > 0
static bool
rpi_fb_parse_mode(const char *s, uint32_t *pwidth, uint32_t *pheight)
{
char *x;
if (strncmp(s, "disable", 7) == 0)
return false;
x = strchr(s, 'x');
if (x) {
*pwidth = strtoul(s, NULL, 10);
*pheight = strtoul(x + 1, NULL, 10);
}
return true;
}
static bool
rpi_fb_get_edid_mode(uint32_t *pwidth, uint32_t *pheight)
{
struct edid_info ei;
uint8_t edid_data[1024];
uint32_t res;
int error;
error = bcmmbox_request(BCMMBOX_CHANARM2VC, &vb_edid,
sizeof(vb_edid), &res);
if (error) {
printf("%s: mbox request failed (%d)\n", __func__, error);
return false;
}
if (!vcprop_buffer_success_p(&vb_edid.vb_hdr) ||
!vcprop_tag_success_p(&vb_edid.vbt_edid.tag) ||
vb_edid.vbt_edid.status != 0)
return false;
memset(edid_data, 0, sizeof(edid_data));
memcpy(edid_data, vb_edid.vbt_edid.data,
sizeof(vb_edid.vbt_edid.data));
edid_parse(edid_data, &ei);
#ifdef VERBOSE_INIT_ARM
edid_print(&ei);
#endif
if (ei.edid_preferred_mode) {
*pwidth = ei.edid_preferred_mode->hdisplay;
*pheight = ei.edid_preferred_mode->vdisplay;
}
return true;
}
/*
* Initialize framebuffer console.
*
* Some notes about boot parameters:
* - If "fb=disable" is present, ignore framebuffer completely.
* - If "fb=<width>x<height> is present, use the specified mode.
* - If "console=fb" is present, attach framebuffer to console.
*/
static bool
rpi_fb_init(prop_dictionary_t dict, void *aux)
{
uint32_t width = 0, height = 0;
uint32_t res;
char *ptr;
int integer;
int error;
bool is_bgr = true;
if (get_bootconf_option(boot_args, "fb",
BOOTOPT_TYPE_STRING, &ptr)) {
if (rpi_fb_parse_mode(ptr, &width, &height) == false)
return false;
}
if (width == 0 || height == 0) {
rpi_fb_get_edid_mode(&width, &height);
}
if (width == 0 || height == 0) {
width = RPI_FB_WIDTH;
height = RPI_FB_HEIGHT;
}
vb_setfb.vbt_res.width = width;
vb_setfb.vbt_res.height = height;
vb_setfb.vbt_vres.width = width;
vb_setfb.vbt_vres.height = height;
error = bcmmbox_request(BCMMBOX_CHANARM2VC, &vb_setfb,
sizeof(vb_setfb), &res);
if (error) {
printf("%s: mbox request failed (%d)\n", __func__, error);
return false;
}
if (!vcprop_buffer_success_p(&vb_setfb.vb_hdr) ||
!vcprop_tag_success_p(&vb_setfb.vbt_res.tag) ||
!vcprop_tag_success_p(&vb_setfb.vbt_vres.tag) ||
!vcprop_tag_success_p(&vb_setfb.vbt_depth.tag) ||
!vcprop_tag_success_p(&vb_setfb.vbt_allocbuf.tag) ||
!vcprop_tag_success_p(&vb_setfb.vbt_blank.tag) ||
!vcprop_tag_success_p(&vb_setfb.vbt_pitch.tag)) {
printf("%s: prop tag failed\n", __func__);
return false;
}
#ifdef VERBOSE_INIT_ARM
printf("%s: addr = 0x%x size = %d\n", __func__,
vb_setfb.vbt_allocbuf.address,
vb_setfb.vbt_allocbuf.size);
printf("%s: depth = %d\n", __func__, vb_setfb.vbt_depth.bpp);
printf("%s: pitch = %d\n", __func__,
vb_setfb.vbt_pitch.linebytes);
printf("%s: width = %d height = %d\n", __func__,
vb_setfb.vbt_res.width, vb_setfb.vbt_res.height);
printf("%s: vwidth = %d vheight = %d\n", __func__,
vb_setfb.vbt_vres.width, vb_setfb.vbt_vres.height);
#endif
if (vb_setfb.vbt_allocbuf.address == 0 ||
vb_setfb.vbt_allocbuf.size == 0 ||
vb_setfb.vbt_res.width == 0 ||
vb_setfb.vbt_res.height == 0 ||
vb_setfb.vbt_vres.width == 0 ||
vb_setfb.vbt_vres.height == 0 ||
vb_setfb.vbt_pitch.linebytes == 0) {
printf("%s: failed to set mode %ux%u\n", __func__,
width, height);
return false;
}
prop_dictionary_set_uint32(dict, "width", vb_setfb.vbt_res.width);
prop_dictionary_set_uint32(dict, "height", vb_setfb.vbt_res.height);
prop_dictionary_set_uint8(dict, "depth", vb_setfb.vbt_depth.bpp);
prop_dictionary_set_uint16(dict, "linebytes",
vb_setfb.vbt_pitch.linebytes);
prop_dictionary_set_uint32(dict, "address",
vb_setfb.vbt_allocbuf.address);
/*
* Old firmware uses BGR. New firmware uses RGB. The get and set
* pixel order mailbox properties don't seem to work. The firmware
* adds a kernel cmdline option bcm2708_fb.fbswap=<0|1>, so use it
* to determine pixel order. 0 means BGR, 1 means RGB.
*
* See https://github.com/raspberrypi/linux/issues/514
*/
if (get_bootconf_option(boot_args, "bcm2708_fb.fbswap",
BOOTOPT_TYPE_INT, &integer)) {
is_bgr = integer == 0;
}
prop_dictionary_set_bool(dict, "is_bgr", is_bgr);
/* if "genfb.type=<n>" is passed in cmdline, override wsdisplay type */
if (get_bootconf_option(boot_args, "genfb.type",
BOOTOPT_TYPE_INT, &integer)) {
prop_dictionary_set_uint32(dict, "wsdisplay_type", integer);
}
#if defined(RPI_HWCURSOR)
struct amba_attach_args *aaa = aux;
bus_space_handle_t hc;
hcursor = rpi_alloc_mem(CURSOR_ARGB_SIZE, PAGE_SIZE,
MEM_FLAG_L1_NONALLOCATING | MEM_FLAG_HINT_PERMALOCK);
pcursor = rpi_lock_mem(hcursor);
#ifdef RPI_IOCTL_DEBUG
printf("hcursor: %08x\n", hcursor);
printf("pcursor: %08x\n", (uint32_t)pcursor);
printf("fb: %08x\n", (uint32_t)vb_setfb.vbt_allocbuf.address);
#endif
if (bus_space_map(aaa->aaa_iot, pcursor, CURSOR_ARGB_SIZE,
BUS_SPACE_MAP_LINEAR|BUS_SPACE_MAP_PREFETCHABLE, &hc) != 0) {
printf("couldn't map cursor memory\n");
} else {
int i, j, k;
cmem = bus_space_vaddr(aaa->aaa_iot, hc);
k = 0;
for (j = 0; j < 64; j++) {
for (i = 0; i < 64; i++) {
cmem[i + k] =
((i & 8) ^ (j & 8)) ? 0xa0ff0000 : 0xa000ff00;
}
k += 64;
}
cpu_dcache_wb_range((vaddr_t)cmem, CURSOR_ARGB_SIZE);
rpi_fb_initcursor(pcursor, 0, 0);
#ifdef RPI_IOCTL_DEBUG
rpi_fb_movecursor(600, 400, 1);
#else
rpi_fb_movecursor(cursor_x, cursor_y, cursor_on);
#endif
}
#endif
return true;
}
#if defined(RPI_HWCURSOR)
static int
rpi_fb_do_cursor(struct wsdisplay_cursor *cur)
{
int pos = 0;
int shape = 0;
if (cur->which & WSDISPLAY_CURSOR_DOCUR) {
if (cursor_on != cur->enable) {
cursor_on = cur->enable;
pos = 1;
}
}
if (cur->which & WSDISPLAY_CURSOR_DOHOT) {
hot_x = cur->hot.x;
hot_y = cur->hot.y;
pos = 1;
shape = 1;
}
if (cur->which & WSDISPLAY_CURSOR_DOPOS) {
cursor_x = cur->pos.x;
cursor_y = cur->pos.y;
pos = 1;
}
if (cur->which & WSDISPLAY_CURSOR_DOCMAP) {
int i;
uint32_t val;
for (i = 0; i < min(cur->cmap.count, 3); i++) {
val = (cur->cmap.red[i] << 16 ) |
(cur->cmap.green[i] << 8) |
(cur->cmap.blue[i] ) |
0xff000000;
cursor_cmap[i + cur->cmap.index + 2] = val;
}
shape = 1;
}
if (cur->which & WSDISPLAY_CURSOR_DOSHAPE) {
int err;
err = copyin(cur->mask, cursor_mask, CURSOR_BITMAP_SIZE);
err += copyin(cur->image, cursor_bitmap, CURSOR_BITMAP_SIZE);
if (err != 0)
return EFAULT;
shape = 1;
}
if (shape) {
int i, j, idx;
uint8_t mask;
for (i = 0; i < CURSOR_BITMAP_SIZE; i++) {
mask = 0x01;
for (j = 0; j < 8; j++) {
idx = ((cursor_mask[i] & mask) ? 2 : 0) |
((cursor_bitmap[i] & mask) ? 1 : 0);
cmem[i * 8 + j] = cursor_cmap[idx];
mask = mask << 1;
}
}
/* just in case */
cpu_dcache_wb_range((vaddr_t)cmem, CURSOR_ARGB_SIZE);
rpi_fb_initcursor(pcursor, hot_x, hot_y);
}
if (pos) {
rpi_fb_movecursor(cursor_x, cursor_y, cursor_on);
}
return 0;
}
#endif
static int
rpi_ioctl(void *v, void *vs, u_long cmd, void *data, int flag, lwp_t *l)
{
switch (cmd) {
case WSDISPLAYIO_SVIDEO:
{
int d = *(int *)data;
if (d == rpi_video_on)
return 0;
rpi_video_on = d;
rpi_fb_set_video(d);
#if defined(RPI_HWCURSOR)
rpi_fb_movecursor(cursor_x, cursor_y,
d ? cursor_on : 0);
#endif
}
return 0;
case WSDISPLAYIO_GVIDEO:
*(int *)data = rpi_video_on;
return 0;
#if defined(RPI_HWCURSOR)
case WSDISPLAYIO_GCURPOS:
{
struct wsdisplay_curpos *cp = (void *)data;
cp->x = cursor_x;
cp->y = cursor_y;
}
return 0;
case WSDISPLAYIO_SCURPOS:
{
struct wsdisplay_curpos *cp = (void *)data;
cursor_x = cp->x;
cursor_y = cp->y;
rpi_fb_movecursor(cursor_x, cursor_y, cursor_on);
}
return 0;
case WSDISPLAYIO_GCURMAX:
{
struct wsdisplay_curpos *cp = (void *)data;
cp->x = 64;
cp->y = 64;
}
return 0;
case WSDISPLAYIO_SCURSOR:
{
struct wsdisplay_cursor *cursor = (void *)data;
return rpi_fb_do_cursor(cursor);
}
#endif
default:
return EPASSTHROUGH;
}
}
#endif
static void
rpi_device_register(device_t dev, void *aux)
{
prop_dictionary_t dict = device_properties(dev);
#if defined(BCM2836)
if (device_is_a(dev, "armgtmr")) {
/*
* The frequency of the generic timer is the reference
* frequency.
*/
prop_dictionary_set_uint32(dict, "frequency", RPI_REF_FREQ);
return;
}
#endif
if (device_is_a(dev, "bcmdmac") &&
vcprop_tag_success_p(&vb.vbt_dmachan.tag)) {
prop_dictionary_set_uint32(dict,
"chanmask", vb.vbt_dmachan.mask);
}
#if NSDHC > 0
if (device_is_a(dev, "sdhc") &&
vcprop_tag_success_p(&vb.vbt_emmcclockrate.tag) &&
vb.vbt_emmcclockrate.rate > 0) {
prop_dictionary_set_uint32(dict,
"frequency", vb.vbt_emmcclockrate.rate);
}
if (booted_device == NULL &&
device_is_a(dev, "ld") &&
device_is_a(device_parent(dev), "sdmmc")) {
booted_partition = 0;
booted_device = dev;
}
#endif
if (device_is_a(dev, "usmsc") &&
vcprop_tag_success_p(&vb.vbt_macaddr.tag)) {
const uint8_t enaddr[ETHER_ADDR_LEN] = {
(vb.vbt_macaddr.addr >> 0) & 0xff,
(vb.vbt_macaddr.addr >> 8) & 0xff,
(vb.vbt_macaddr.addr >> 16) & 0xff,
(vb.vbt_macaddr.addr >> 24) & 0xff,
(vb.vbt_macaddr.addr >> 32) & 0xff,
(vb.vbt_macaddr.addr >> 40) & 0xff
};
prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
KASSERT(pd != NULL);
if (prop_dictionary_set(device_properties(dev), "mac-address",
pd) == false) {
aprint_error_dev(dev,
"WARNING: Unable to set mac-address property\n");
}
prop_object_release(pd);
}
#if NGENFB > 0
if (device_is_a(dev, "genfb")) {
char *ptr;
bcmgenfb_set_console_dev(dev);
bcmgenfb_set_ioctl(&rpi_ioctl);
#ifdef DDB
db_trap_callback = bcmgenfb_ddb_trap_callback;
#endif
if (rpi_fb_init(dict, aux) == false)
return;
if (get_bootconf_option(boot_args, "console",
BOOTOPT_TYPE_STRING, &ptr) && strncmp(ptr, "fb", 2) == 0) {
prop_dictionary_set_bool(dict, "is_console", true);
#if NUKBD > 0
/* allow ukbd to be the console keyboard */
ukbd_cnattach();
#endif
} else {
prop_dictionary_set_bool(dict, "is_console", false);
}
}
#endif
}
SYSCTL_SETUP(sysctl_machdep_rpi, "sysctl machdep subtree setup (rpi)")
{
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
CTLTYPE_INT, "firmware_revision", NULL, NULL, 0,
&vb.vbt_fwrev.rev, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
CTLTYPE_INT, "board_model", NULL, NULL, 0,
&vb.vbt_boardmodel.model, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
CTLTYPE_INT, "board_revision", NULL, NULL, 0,
&vb.vbt_boardrev.rev, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_HEX|CTLFLAG_PRIVATE,
CTLTYPE_QUAD, "serial", NULL, NULL, 0,
&vb.vbt_serial.sn, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL);
}