f8dddb3afe
this fixes programs that use listen(2) and accept(2), and makes unix domain sockets work both in tcp and udp.
165 lines
5.0 KiB
C
165 lines
5.0 KiB
C
/* $NetBSD: svr4_socket.c,v 1.2 1996/08/30 23:06:31 christos Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1996 Christos Zoulas. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Christos Zoulas.
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* In SVR4 unix domain sockets are referenced sometimes
|
|
* (in putmsg(2) for example) as a [device, inode] pair instead of a pathname.
|
|
* Since there is no iname() routine in the kernel, and we need access to
|
|
* a mapping from inode to pathname, we keep our own table. This is a simple
|
|
* linked list that contains the pathname, the [device, inode] pair, the
|
|
* file corresponding to that socket and the process. When the
|
|
* socket gets closed we remove the item from the list. The list gets loaded
|
|
* every time a stat(2) call finds a socket.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/file.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/un.h>
|
|
#include <sys/stat.h>
|
|
|
|
#include <compat/svr4/svr4_util.h>
|
|
#include <compat/svr4/svr4_socket.h>
|
|
|
|
struct svr4_sockcache_entry {
|
|
struct proc *p; /* Process for the socket */
|
|
void *cookie; /* Internal cookie used for matching */
|
|
struct sockaddr_un sock;/* Pathname for the socket */
|
|
dev_t dev; /* Device where the socket lives on */
|
|
ino_t ino; /* Inode where the socket lives on */
|
|
TAILQ_ENTRY(svr4_sockcache_entry) entries;
|
|
};
|
|
|
|
static TAILQ_HEAD(svr4_sockcache_head, svr4_sockcache_entry) svr4_head;
|
|
static int initialized = 0;
|
|
|
|
struct sockaddr_un *
|
|
svr4_find_socket(p, fp, dev, ino)
|
|
struct proc *p;
|
|
struct file *fp;
|
|
dev_t dev;
|
|
ino_t ino;
|
|
{
|
|
struct svr4_sockcache_entry *e;
|
|
void *cookie = ((struct socket *) fp->f_data)->so_internal;
|
|
|
|
if (!initialized) {
|
|
DPRINTF(("svr4_find_socket: uninitialized [%p,%d,%d]\n",
|
|
p, dev, ino));
|
|
TAILQ_INIT(&svr4_head);
|
|
initialized = 1;
|
|
return NULL;
|
|
}
|
|
|
|
|
|
DPRINTF(("svr4_find_socket: [%p,%d,%d]: ", p, dev, ino));
|
|
for (e = svr4_head.tqh_first; e != NULL; e = e->entries.tqe_next)
|
|
if (e->p == p && e->dev == dev && e->ino == ino) {
|
|
#ifdef DIAGNOSTIC
|
|
if (e->cookie != NULL && e->cookie != cookie)
|
|
panic("svr4 socket cookie mismatch");
|
|
#endif
|
|
e->cookie = cookie;
|
|
DPRINTF(("%s\n", e->sock.sun_path));
|
|
return &e->sock;
|
|
}
|
|
|
|
DPRINTF(("not found\n"));
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void
|
|
svr4_delete_socket(p, fp)
|
|
struct proc *p;
|
|
struct file *fp;
|
|
{
|
|
struct svr4_sockcache_entry *e;
|
|
void *cookie = ((struct socket *) fp->f_data)->so_internal;
|
|
|
|
if (!initialized) {
|
|
TAILQ_INIT(&svr4_head);
|
|
initialized = 1;
|
|
return;
|
|
}
|
|
|
|
for (e = svr4_head.tqh_first; e != NULL; e = e->entries.tqe_next)
|
|
if (e->p == p && e->cookie == cookie) {
|
|
TAILQ_REMOVE(&svr4_head, e, entries);
|
|
DPRINTF(("svr4_delete_socket: %s [%p,%d,%d]\n",
|
|
e->sock.sun_path, p, e->dev, e->ino));
|
|
free(e, M_TEMP);
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
int
|
|
svr4_add_socket(p, path, st)
|
|
struct proc *p;
|
|
const char *path;
|
|
struct stat *st;
|
|
{
|
|
struct svr4_sockcache_entry *e;
|
|
int len, error;
|
|
|
|
if (!initialized) {
|
|
TAILQ_INIT(&svr4_head);
|
|
initialized = 1;
|
|
}
|
|
|
|
e = malloc(sizeof(*e), M_TEMP, M_WAITOK);
|
|
e->cookie = NULL;
|
|
e->dev = st->st_dev;
|
|
e->ino = st->st_ino;
|
|
e->p = p;
|
|
|
|
if ((error = copyinstr((char *) path, e->sock.sun_path,
|
|
sizeof(e->sock.sun_path), &len)) != 0) {
|
|
DPRINTF(("svr4_add_socket: copyinstr failed %d\n", error));
|
|
free(e, M_TEMP);
|
|
return error;
|
|
}
|
|
|
|
e->sock.sun_family = AF_UNIX;
|
|
e->sock.sun_len = len;
|
|
|
|
TAILQ_INSERT_HEAD(&svr4_head, e, entries);
|
|
DPRINTF(("svr4_add_socket: %s [%p,%d,%d]\n", e->sock.sun_path,
|
|
p, e->dev, e->ino));
|
|
return 0;
|
|
}
|