NetBSD/lib/libpcap/optimize.c
itojun c6f88a42f4 support IPv6 address and IPv6 protocols.
"tcp" will match both IPv4 TCP and IPv6 TCP.
"ip6" will match IPv6.
you can chase header chain by using "protochain" instead of "proto"
(but bpf code is not optimizable in this case)

commit to tcpdump will follow.

I've sent this fix to LBL guys to get no response.  I wonder why it was.
1999-07-02 10:05:22 +00:00

2096 lines
42 KiB
C

/* $NetBSD: optimize.c,v 1.8 1999/07/02 10:05:22 itojun Exp $ */
/*
* Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that: (1) source code distributions
* retain the above copyright notice and this paragraph in its entirety, (2)
* distributions including binary code include the above copyright notice and
* this paragraph in its entirety in the documentation or other materials
* provided with the distribution, and (3) all advertising materials mentioning
* features or use of this software display the following acknowledgement:
* ``This product includes software developed by the University of California,
* Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
* the University nor the names of its contributors may be used to endorse
* or promote products derived from this software without specific prior
* written permission.
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Optimization module for tcpdump intermediate representation.
*/
#include <sys/cdefs.h>
#ifndef lint
#if 0
static const char rcsid[] =
"@(#) Header: optimize.c,v 1.60 96/09/26 23:28:14 leres Exp (LBL)";
#else
__RCSID("$NetBSD: optimize.c,v 1.8 1999/07/02 10:05:22 itojun Exp $");
#endif
#endif
#include <sys/types.h>
#include <sys/time.h>
#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include "pcap-int.h"
#include "gencode.h"
#include "gnuc.h"
#ifdef HAVE_OS_PROTO_H
#include "os-proto.h"
#endif
#ifdef BDEBUG
extern int dflag;
#endif
#define A_ATOM BPF_MEMWORDS
#define X_ATOM (BPF_MEMWORDS+1)
#define NOP -1
/*
* This define is used to represent *both* the accumulator and
* x register in use-def computations.
* Currently, the use-def code assumes only one definition per instruction.
*/
#define AX_ATOM N_ATOMS
/*
* A flag to indicate that further optimization is needed.
* Iterative passes are continued until a given pass yields no
* branch movement.
*/
static int done;
/*
* A block is marked if only if its mark equals the current mark.
* Rather than traverse the code array, marking each item, 'cur_mark' is
* incremented. This automatically makes each element unmarked.
*/
static int cur_mark;
#define isMarked(p) ((p)->mark == cur_mark)
#define unMarkAll() cur_mark += 1
#define Mark(p) ((p)->mark = cur_mark)
static void opt_init(struct block *);
static void opt_cleanup(void);
static void make_marks(struct block *);
static void mark_code(struct block *);
static void intern_blocks(struct block *);
static int eq_slist(struct slist *, struct slist *);
static void find_levels_r(struct block *);
static void find_levels(struct block *);
static void find_dom(struct block *);
static void propedom(struct edge *);
static void find_edom(struct block *);
static void find_closure(struct block *);
static int atomuse(struct stmt *);
static int atomdef(struct stmt *);
static void compute_local_ud(struct block *);
static void find_ud(struct block *);
static void init_val(void);
static int F(int, int, int);
static inline void vstore(struct stmt *, int *, int, int);
static void opt_blk(struct block *, int);
static int use_conflict(struct block *, struct block *);
static void opt_j(struct edge *);
static void or_pullup(struct block *);
static void and_pullup(struct block *);
static void opt_blks(struct block *, int);
static inline void link_inedge(struct edge *, struct block *);
static void find_inedges(struct block *);
static void opt_root(struct block **);
static void opt_loop(struct block *, int);
static void fold_op(struct stmt *, int, int);
static inline struct slist *this_op(struct slist *);
static void opt_not(struct block *);
static void opt_peep(struct block *);
static void opt_stmt(struct stmt *, int[], int);
static void deadstmt(struct stmt *, struct stmt *[]);
static void opt_deadstores(struct block *);
static void opt_blk(struct block *, int);
static int use_conflict(struct block *, struct block *);
static void opt_j(struct edge *);
static struct block *fold_edge(struct block *, struct edge *);
static inline int eq_blk(struct block *, struct block *);
static int slength(struct slist *);
static int count_blocks(struct block *);
static void number_blks_r(struct block *);
static int count_stmts(struct block *);
static int convert_code_r(struct block *);
#ifdef BDEBUG
static void opt_dump(struct block *);
#endif
static int n_blocks;
struct block **blocks;
static int n_edges;
struct edge **edges;
/*
* A bit vector set representation of the dominators.
* We round up the set size to the next power of two.
*/
static int nodewords;
static int edgewords;
struct block **levels;
bpf_u_int32 *space;
#define BITS_PER_WORD (8*sizeof(bpf_u_int32))
/*
* True if a is in uset {p}
*/
#define SET_MEMBER(p, a) \
((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
/*
* Add 'a' to uset p.
*/
#define SET_INSERT(p, a) \
(p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
/*
* Delete 'a' from uset p.
*/
#define SET_DELETE(p, a) \
(p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
/*
* a := a intersect b
*/
#define SET_INTERSECT(a, b, n)\
{\
register bpf_u_int32 *_x = a, *_y = b;\
register int _n = n;\
while (--_n >= 0) *_x++ &= *_y++;\
}
/*
* a := a - b
*/
#define SET_SUBTRACT(a, b, n)\
{\
register bpf_u_int32 *_x = a, *_y = b;\
register int _n = n;\
while (--_n >= 0) *_x++ &=~ *_y++;\
}
/*
* a := a union b
*/
#define SET_UNION(a, b, n)\
{\
register bpf_u_int32 *_x = a, *_y = b;\
register int _n = n;\
while (--_n >= 0) *_x++ |= *_y++;\
}
static uset all_dom_sets;
static uset all_closure_sets;
static uset all_edge_sets;
#ifndef MAX
#define MAX(a,b) ((a)>(b)?(a):(b))
#endif
static void
find_levels_r(b)
struct block *b;
{
int level;
if (isMarked(b))
return;
Mark(b);
b->link = 0;
if (JT(b)) {
find_levels_r(JT(b));
find_levels_r(JF(b));
level = MAX(JT(b)->level, JF(b)->level) + 1;
} else
level = 0;
b->level = level;
b->link = levels[level];
levels[level] = b;
}
/*
* Level graph. The levels go from 0 at the leaves to
* N_LEVELS at the root. The levels[] array points to the
* first node of the level list, whose elements are linked
* with the 'link' field of the struct block.
*/
static void
find_levels(root)
struct block *root;
{
memset((char *)levels, 0, n_blocks * sizeof(*levels));
unMarkAll();
find_levels_r(root);
}
/*
* Find dominator relationships.
* Assumes graph has been leveled.
*/
static void
find_dom(root)
struct block *root;
{
int i;
struct block *b;
bpf_u_int32 *x;
/*
* Initialize sets to contain all nodes.
*/
x = all_dom_sets;
i = n_blocks * nodewords;
while (--i >= 0)
*x++ = ~0;
/* Root starts off empty. */
for (i = nodewords; --i >= 0;)
root->dom[i] = 0;
/* root->level is the highest level no found. */
for (i = root->level; i >= 0; --i) {
for (b = levels[i]; b; b = b->link) {
SET_INSERT(b->dom, b->id);
if (JT(b) == 0)
continue;
SET_INTERSECT(JT(b)->dom, b->dom, nodewords);
SET_INTERSECT(JF(b)->dom, b->dom, nodewords);
}
}
}
static void
propedom(ep)
struct edge *ep;
{
SET_INSERT(ep->edom, ep->id);
if (ep->succ) {
SET_INTERSECT(ep->succ->et.edom, ep->edom, edgewords);
SET_INTERSECT(ep->succ->ef.edom, ep->edom, edgewords);
}
}
/*
* Compute edge dominators.
* Assumes graph has been leveled and predecessors established.
*/
static void
find_edom(root)
struct block *root;
{
int i;
uset x;
struct block *b;
x = all_edge_sets;
for (i = n_edges * edgewords; --i >= 0; )
x[i] = ~0;
/* root->level is the highest level no found. */
memset(root->et.edom, 0, edgewords * sizeof(*(uset)0));
memset(root->ef.edom, 0, edgewords * sizeof(*(uset)0));
for (i = root->level; i >= 0; --i) {
for (b = levels[i]; b != 0; b = b->link) {
propedom(&b->et);
propedom(&b->ef);
}
}
}
/*
* Find the backwards transitive closure of the flow graph. These sets
* are backwards in the sense that we find the set of nodes that reach
* a given node, not the set of nodes that can be reached by a node.
*
* Assumes graph has been leveled.
*/
static void
find_closure(root)
struct block *root;
{
int i;
struct block *b;
/*
* Initialize sets to contain no nodes.
*/
memset((char *)all_closure_sets, 0,
n_blocks * nodewords * sizeof(*all_closure_sets));
/* root->level is the highest level no found. */
for (i = root->level; i >= 0; --i) {
for (b = levels[i]; b; b = b->link) {
SET_INSERT(b->closure, b->id);
if (JT(b) == 0)
continue;
SET_UNION(JT(b)->closure, b->closure, nodewords);
SET_UNION(JF(b)->closure, b->closure, nodewords);
}
}
}
/*
* Return the register number that is used by s. If A and X are both
* used, return AX_ATOM. If no register is used, return -1.
*
* The implementation should probably change to an array access.
*/
static int
atomuse(s)
struct stmt *s;
{
register int c = s->code;
if (c == NOP)
return -1;
switch (BPF_CLASS(c)) {
case BPF_RET:
return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
(BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
case BPF_LD:
case BPF_LDX:
return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
(BPF_MODE(c) == BPF_MEM) ? s->k : -1;
case BPF_ST:
return A_ATOM;
case BPF_STX:
return X_ATOM;
case BPF_JMP:
case BPF_ALU:
if (BPF_SRC(c) == BPF_X)
return AX_ATOM;
return A_ATOM;
case BPF_MISC:
return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
}
abort();
/* NOTREACHED */
}
/*
* Return the register number that is defined by 's'. We assume that
* a single stmt cannot define more than one register. If no register
* is defined, return -1.
*
* The implementation should probably change to an array access.
*/
static int
atomdef(s)
struct stmt *s;
{
if (s->code == NOP)
return -1;
switch (BPF_CLASS(s->code)) {
case BPF_LD:
case BPF_ALU:
return A_ATOM;
case BPF_LDX:
return X_ATOM;
case BPF_ST:
case BPF_STX:
return s->k;
case BPF_MISC:
return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
}
return -1;
}
static void
compute_local_ud(b)
struct block *b;
{
struct slist *s;
atomset def = 0, use = 0, kill = 0;
int atom;
for (s = b->stmts; s; s = s->next) {
if (s->s.code == NOP)
continue;
atom = atomuse(&s->s);
if (atom >= 0) {
if (atom == AX_ATOM) {
if (!ATOMELEM(def, X_ATOM))
use |= ATOMMASK(X_ATOM);
if (!ATOMELEM(def, A_ATOM))
use |= ATOMMASK(A_ATOM);
}
else if (atom < N_ATOMS) {
if (!ATOMELEM(def, atom))
use |= ATOMMASK(atom);
}
else
abort();
}
atom = atomdef(&s->s);
if (atom >= 0) {
if (!ATOMELEM(use, atom))
kill |= ATOMMASK(atom);
def |= ATOMMASK(atom);
}
}
if (!ATOMELEM(def, A_ATOM) && BPF_CLASS(b->s.code) == BPF_JMP)
use |= ATOMMASK(A_ATOM);
b->def = def;
b->kill = kill;
b->in_use = use;
}
/*
* Assume graph is already leveled.
*/
static void
find_ud(root)
struct block *root;
{
int i, maxlevel;
struct block *p;
/*
* root->level is the highest level no found;
* count down from there.
*/
maxlevel = root->level;
for (i = maxlevel; i >= 0; --i)
for (p = levels[i]; p; p = p->link) {
compute_local_ud(p);
p->out_use = 0;
}
for (i = 1; i <= maxlevel; ++i) {
for (p = levels[i]; p; p = p->link) {
p->out_use |= JT(p)->in_use | JF(p)->in_use;
p->in_use |= p->out_use &~ p->kill;
}
}
}
/*
* These data structures are used in a Cocke and Shwarz style
* value numbering scheme. Since the flowgraph is acyclic,
* exit values can be propagated from a node's predecessors
* provided it is uniquely defined.
*/
struct valnode {
int code;
int v0, v1;
int val;
struct valnode *next;
};
#define MODULUS 213
static struct valnode *hashtbl[MODULUS];
static int curval;
static int maxval;
/* Integer constants mapped with the load immediate opcode. */
#define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L)
struct vmapinfo {
int is_const;
bpf_int32 const_val;
};
struct vmapinfo *vmap;
struct valnode *vnode_base;
struct valnode *next_vnode;
static void
init_val()
{
curval = 0;
next_vnode = vnode_base;
memset((char *)vmap, 0, maxval * sizeof(*vmap));
memset((char *)hashtbl, 0, sizeof hashtbl);
}
/* Because we really don't have an IR, this stuff is a little messy. */
static int
F(code, v0, v1)
int code;
int v0, v1;
{
u_int hash;
int val;
struct valnode *p;
hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
hash %= MODULUS;
for (p = hashtbl[hash]; p; p = p->next)
if (p->code == code && p->v0 == v0 && p->v1 == v1)
return p->val;
val = ++curval;
if (BPF_MODE(code) == BPF_IMM &&
(BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
vmap[val].const_val = v0;
vmap[val].is_const = 1;
}
p = next_vnode++;
p->val = val;
p->code = code;
p->v0 = v0;
p->v1 = v1;
p->next = hashtbl[hash];
hashtbl[hash] = p;
return val;
}
static inline void
vstore(s, valp, newval, alter)
struct stmt *s;
int *valp;
int newval;
int alter;
{
if (alter && *valp == newval)
s->code = NOP;
else
*valp = newval;
}
static void
fold_op(s, v0, v1)
struct stmt *s;
int v0, v1;
{
bpf_int32 a, b;
a = vmap[v0].const_val;
b = vmap[v1].const_val;
switch (BPF_OP(s->code)) {
case BPF_ADD:
a += b;
break;
case BPF_SUB:
a -= b;
break;
case BPF_MUL:
a *= b;
break;
case BPF_DIV:
if (b == 0)
bpf_error("division by zero");
a /= b;
break;
case BPF_AND:
a &= b;
break;
case BPF_OR:
a |= b;
break;
case BPF_LSH:
a <<= b;
break;
case BPF_RSH:
a >>= b;
break;
case BPF_NEG:
a = -a;
break;
default:
abort();
}
s->k = a;
s->code = BPF_LD|BPF_IMM;
done = 0;
}
static inline struct slist *
this_op(s)
struct slist *s;
{
while (s != 0 && s->s.code == NOP)
s = s->next;
return s;
}
static void
opt_not(b)
struct block *b;
{
struct block *tmp = JT(b);
JT(b) = JF(b);
JF(b) = tmp;
}
static void
opt_peep(b)
struct block *b;
{
struct slist *s;
struct slist *next, *last;
int val;
s = b->stmts;
if (s == 0)
return;
last = s;
while (1) {
s = this_op(s);
if (s == 0)
break;
next = this_op(s->next);
if (next == 0)
break;
last = next;
/*
* st M[k] --> st M[k]
* ldx M[k] tax
*/
if (s->s.code == BPF_ST &&
next->s.code == (BPF_LDX|BPF_MEM) &&
s->s.k == next->s.k) {
done = 0;
next->s.code = BPF_MISC|BPF_TAX;
}
/*
* ld #k --> ldx #k
* tax txa
*/
if (s->s.code == (BPF_LD|BPF_IMM) &&
next->s.code == (BPF_MISC|BPF_TAX)) {
s->s.code = BPF_LDX|BPF_IMM;
next->s.code = BPF_MISC|BPF_TXA;
done = 0;
}
/*
* This is an ugly special case, but it happens
* when you say tcp[k] or udp[k] where k is a constant.
*/
if (s->s.code == (BPF_LD|BPF_IMM)) {
struct slist *add, *tax, *ild;
/*
* Check that X isn't used on exit from this
* block (which the optimizer might cause).
* We know the code generator won't generate
* any local dependencies.
*/
if (ATOMELEM(b->out_use, X_ATOM))
break;
if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
add = next;
else
add = this_op(next->next);
if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
break;
tax = this_op(add->next);
if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
break;
ild = this_op(tax->next);
if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
BPF_MODE(ild->s.code) != BPF_IND)
break;
/*
* XXX We need to check that X is not
* subsequently used. We know we can eliminate the
* accumulator modifications since it is defined
* by the last stmt of this sequence.
*
* We want to turn this sequence:
*
* (004) ldi #0x2 {s}
* (005) ldxms [14] {next} -- optional
* (006) addx {add}
* (007) tax {tax}
* (008) ild [x+0] {ild}
*
* into this sequence:
*
* (004) nop
* (005) ldxms [14]
* (006) nop
* (007) nop
* (008) ild [x+2]
*
*/
ild->s.k += s->s.k;
s->s.code = NOP;
add->s.code = NOP;
tax->s.code = NOP;
done = 0;
}
s = next;
}
/*
* If we have a subtract to do a comparison, and the X register
* is a known constant, we can merge this value into the
* comparison.
*/
if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X) &&
!ATOMELEM(b->out_use, A_ATOM)) {
val = b->val[X_ATOM];
if (vmap[val].is_const) {
int op;
b->s.k += vmap[val].const_val;
op = BPF_OP(b->s.code);
if (op == BPF_JGT || op == BPF_JGE) {
struct block *t = JT(b);
JT(b) = JF(b);
JF(b) = t;
b->s.k += 0x80000000;
}
last->s.code = NOP;
done = 0;
} else if (b->s.k == 0) {
/*
* sub x -> nop
* j #0 j x
*/
last->s.code = NOP;
b->s.code = BPF_CLASS(b->s.code) | BPF_OP(b->s.code) |
BPF_X;
done = 0;
}
}
/*
* Likewise, a constant subtract can be simplified.
*/
else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K) &&
!ATOMELEM(b->out_use, A_ATOM)) {
int op;
b->s.k += last->s.k;
last->s.code = NOP;
op = BPF_OP(b->s.code);
if (op == BPF_JGT || op == BPF_JGE) {
struct block *t = JT(b);
JT(b) = JF(b);
JF(b) = t;
b->s.k += 0x80000000;
}
done = 0;
}
/*
* and #k nop
* jeq #0 -> jset #k
*/
if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
!ATOMELEM(b->out_use, A_ATOM) && b->s.k == 0) {
b->s.k = last->s.k;
b->s.code = BPF_JMP|BPF_K|BPF_JSET;
last->s.code = NOP;
done = 0;
opt_not(b);
}
/*
* If the accumulator is a known constant, we can compute the
* comparison result.
*/
val = b->val[A_ATOM];
if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
bpf_int32 v = vmap[val].const_val;
switch (BPF_OP(b->s.code)) {
case BPF_JEQ:
v = v == b->s.k;
break;
case BPF_JGT:
v = (unsigned)v > b->s.k;
break;
case BPF_JGE:
v = (unsigned)v >= b->s.k;
break;
case BPF_JSET:
v &= b->s.k;
break;
default:
abort();
}
if (JF(b) != JT(b))
done = 0;
if (v)
JF(b) = JT(b);
else
JT(b) = JF(b);
}
}
/*
* Compute the symbolic value of expression of 's', and update
* anything it defines in the value table 'val'. If 'alter' is true,
* do various optimizations. This code would be cleaner if symbolic
* evaluation and code transformations weren't folded together.
*/
static void
opt_stmt(s, val, alter)
struct stmt *s;
int val[];
int alter;
{
int op;
int v;
switch (s->code) {
case BPF_LD|BPF_ABS|BPF_W:
case BPF_LD|BPF_ABS|BPF_H:
case BPF_LD|BPF_ABS|BPF_B:
v = F(s->code, s->k, 0L);
vstore(s, &val[A_ATOM], v, alter);
break;
case BPF_LD|BPF_IND|BPF_W:
case BPF_LD|BPF_IND|BPF_H:
case BPF_LD|BPF_IND|BPF_B:
v = val[X_ATOM];
if (alter && vmap[v].is_const) {
s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
s->k += vmap[v].const_val;
v = F(s->code, s->k, 0L);
done = 0;
}
else
v = F(s->code, s->k, v);
vstore(s, &val[A_ATOM], v, alter);
break;
case BPF_LD|BPF_LEN:
v = F(s->code, 0L, 0L);
vstore(s, &val[A_ATOM], v, alter);
break;
case BPF_LD|BPF_IMM:
v = K(s->k);
vstore(s, &val[A_ATOM], v, alter);
break;
case BPF_LDX|BPF_IMM:
v = K(s->k);
vstore(s, &val[X_ATOM], v, alter);
break;
case BPF_LDX|BPF_MSH|BPF_B:
v = F(s->code, s->k, 0L);
vstore(s, &val[X_ATOM], v, alter);
break;
case BPF_ALU|BPF_NEG:
if (alter && vmap[val[A_ATOM]].is_const) {
s->code = BPF_LD|BPF_IMM;
s->k = -vmap[val[A_ATOM]].const_val;
val[A_ATOM] = K(s->k);
}
else
val[A_ATOM] = F(s->code, val[A_ATOM], 0L);
break;
case BPF_ALU|BPF_ADD|BPF_K:
case BPF_ALU|BPF_SUB|BPF_K:
case BPF_ALU|BPF_MUL|BPF_K:
case BPF_ALU|BPF_DIV|BPF_K:
case BPF_ALU|BPF_AND|BPF_K:
case BPF_ALU|BPF_OR|BPF_K:
case BPF_ALU|BPF_LSH|BPF_K:
case BPF_ALU|BPF_RSH|BPF_K:
op = BPF_OP(s->code);
if (alter) {
if (s->k == 0) {
if (op == BPF_ADD || op == BPF_SUB ||
op == BPF_LSH || op == BPF_RSH ||
op == BPF_OR) {
s->code = NOP;
break;
}
if (op == BPF_MUL || op == BPF_AND) {
s->code = BPF_LD|BPF_IMM;
val[A_ATOM] = K(s->k);
break;
}
}
if (vmap[val[A_ATOM]].is_const) {
fold_op(s, val[A_ATOM], K(s->k));
val[A_ATOM] = K(s->k);
break;
}
}
val[A_ATOM] = F(s->code, val[A_ATOM], K(s->k));
break;
case BPF_ALU|BPF_ADD|BPF_X:
case BPF_ALU|BPF_SUB|BPF_X:
case BPF_ALU|BPF_MUL|BPF_X:
case BPF_ALU|BPF_DIV|BPF_X:
case BPF_ALU|BPF_AND|BPF_X:
case BPF_ALU|BPF_OR|BPF_X:
case BPF_ALU|BPF_LSH|BPF_X:
case BPF_ALU|BPF_RSH|BPF_X:
op = BPF_OP(s->code);
if (alter && vmap[val[X_ATOM]].is_const) {
if (vmap[val[A_ATOM]].is_const) {
fold_op(s, val[A_ATOM], val[X_ATOM]);
val[A_ATOM] = K(s->k);
}
else {
s->code = BPF_ALU|BPF_K|op;
s->k = vmap[val[X_ATOM]].const_val;
done = 0;
val[A_ATOM] =
F(s->code, val[A_ATOM], K(s->k));
}
break;
}
/*
* Check if we're doing something to an accumulator
* that is 0, and simplify. This may not seem like
* much of a simplification but it could open up further
* optimizations.
* XXX We could also check for mul by 1, and -1, etc.
*/
if (alter && vmap[val[A_ATOM]].is_const
&& vmap[val[A_ATOM]].const_val == 0) {
if (op == BPF_ADD || op == BPF_OR ||
op == BPF_LSH || op == BPF_RSH || op == BPF_SUB) {
s->code = BPF_MISC|BPF_TXA;
vstore(s, &val[A_ATOM], val[X_ATOM], alter);
break;
}
else if (op == BPF_MUL || op == BPF_DIV ||
op == BPF_AND) {
s->code = BPF_LD|BPF_IMM;
s->k = 0;
vstore(s, &val[A_ATOM], K(s->k), alter);
break;
}
else if (op == BPF_NEG) {
s->code = NOP;
break;
}
}
val[A_ATOM] = F(s->code, val[A_ATOM], val[X_ATOM]);
break;
case BPF_MISC|BPF_TXA:
vstore(s, &val[A_ATOM], val[X_ATOM], alter);
break;
case BPF_LD|BPF_MEM:
v = val[s->k];
if (alter && vmap[v].is_const) {
s->code = BPF_LD|BPF_IMM;
s->k = vmap[v].const_val;
done = 0;
}
vstore(s, &val[A_ATOM], v, alter);
break;
case BPF_MISC|BPF_TAX:
vstore(s, &val[X_ATOM], val[A_ATOM], alter);
break;
case BPF_LDX|BPF_MEM:
v = val[s->k];
if (alter && vmap[v].is_const) {
s->code = BPF_LDX|BPF_IMM;
s->k = vmap[v].const_val;
done = 0;
}
vstore(s, &val[X_ATOM], v, alter);
break;
case BPF_ST:
vstore(s, &val[s->k], val[A_ATOM], alter);
break;
case BPF_STX:
vstore(s, &val[s->k], val[X_ATOM], alter);
break;
}
}
static void
deadstmt(s, last)
register struct stmt *s;
register struct stmt *last[];
{
register int atom;
atom = atomuse(s);
if (atom >= 0) {
if (atom == AX_ATOM) {
last[X_ATOM] = 0;
last[A_ATOM] = 0;
}
else
last[atom] = 0;
}
atom = atomdef(s);
if (atom >= 0) {
if (last[atom]) {
done = 0;
last[atom]->code = NOP;
}
last[atom] = s;
}
}
static void
opt_deadstores(b)
register struct block *b;
{
register struct slist *s;
register int atom;
struct stmt *last[N_ATOMS];
memset((char *)last, 0, sizeof last);
for (s = b->stmts; s != 0; s = s->next)
deadstmt(&s->s, last);
deadstmt(&b->s, last);
for (atom = 0; atom < N_ATOMS; ++atom)
if (last[atom] && !ATOMELEM(b->out_use, atom)) {
last[atom]->code = NOP;
done = 0;
}
}
static void
opt_blk(b, do_stmts)
struct block *b;
int do_stmts;
{
struct slist *s;
struct edge *p;
int i;
bpf_int32 aval;
#if 0
for (s = b->stmts; s && s->next; s = s->next)
if (BPF_CLASS(s->s.code) == BPF_JMP) {
do_stmts = 0;
break;
}
#endif
/*
* Initialize the atom values.
* If we have no predecessors, everything is undefined.
* Otherwise, we inherent our values from our predecessors.
* If any register has an ambiguous value (i.e. control paths are
* merging) give it the undefined value of 0.
*/
p = b->in_edges;
if (p == 0)
memset((char *)b->val, 0, sizeof(b->val));
else {
memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
while ((p = p->next) != NULL) {
for (i = 0; i < N_ATOMS; ++i)
if (b->val[i] != p->pred->val[i])
b->val[i] = 0;
}
}
aval = b->val[A_ATOM];
for (s = b->stmts; s; s = s->next)
opt_stmt(&s->s, b->val, do_stmts);
/*
* This is a special case: if we don't use anything from this
* block, and we load the accumulator with value that is
* already there, or if this block is a return,
* eliminate all the statements.
*/
if (do_stmts &&
((b->out_use == 0 && aval != 0 &&b->val[A_ATOM] == aval) ||
BPF_CLASS(b->s.code) == BPF_RET)) {
if (b->stmts != 0) {
b->stmts = 0;
done = 0;
}
} else {
opt_peep(b);
opt_deadstores(b);
}
/*
* Set up values for branch optimizer.
*/
if (BPF_SRC(b->s.code) == BPF_K)
b->oval = K(b->s.k);
else
b->oval = b->val[X_ATOM];
b->et.code = b->s.code;
b->ef.code = -b->s.code;
}
/*
* Return true if any register that is used on exit from 'succ', has
* an exit value that is different from the corresponding exit value
* from 'b'.
*/
static int
use_conflict(b, succ)
struct block *b, *succ;
{
int atom;
atomset use = succ->out_use;
if (use == 0)
return 0;
for (atom = 0; atom < N_ATOMS; ++atom)
if (ATOMELEM(use, atom))
if (b->val[atom] != succ->val[atom])
return 1;
return 0;
}
static struct block *
fold_edge(child, ep)
struct block *child;
struct edge *ep;
{
int sense;
int aval0, aval1, oval0, oval1;
int code = ep->code;
if (code < 0) {
code = -code;
sense = 0;
} else
sense = 1;
if (child->s.code != code)
return 0;
aval0 = child->val[A_ATOM];
oval0 = child->oval;
aval1 = ep->pred->val[A_ATOM];
oval1 = ep->pred->oval;
if (aval0 != aval1)
return 0;
if (oval0 == oval1)
/*
* The operands are identical, so the
* result is true if a true branch was
* taken to get here, otherwise false.
*/
return sense ? JT(child) : JF(child);
if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
/*
* At this point, we only know the comparison if we
* came down the true branch, and it was an equality
* comparison with a constant. We rely on the fact that
* distinct constants have distinct value numbers.
*/
return JF(child);
return 0;
}
static void
opt_j(ep)
struct edge *ep;
{
register int i, k;
register struct block *target;
if (JT(ep->succ) == 0)
return;
if (JT(ep->succ) == JF(ep->succ)) {
/*
* Common branch targets can be eliminated, provided
* there is no data dependency.
*/
if (!use_conflict(ep->pred, ep->succ->et.succ)) {
done = 0;
ep->succ = JT(ep->succ);
}
}
/*
* For each edge dominator that matches the successor of this
* edge, promote the edge successor to the its grandchild.
*
* XXX We violate the set abstraction here in favor a reasonably
* efficient loop.
*/
top:
for (i = 0; i < edgewords; ++i) {
register bpf_u_int32 x = ep->edom[i];
while (x != 0) {
k = ffs(x) - 1;
x &=~ (1 << k);
k += i * BITS_PER_WORD;
target = fold_edge(ep->succ, edges[k]);
/*
* Check that there is no data dependency between
* nodes that will be violated if we move the edge.
*/
if (target != 0 && !use_conflict(ep->pred, target)) {
done = 0;
ep->succ = target;
if (JT(target) != 0)
/*
* Start over unless we hit a leaf.
*/
goto top;
return;
}
}
}
}
static void
or_pullup(b)
struct block *b;
{
int val, at_top;
struct block *pull;
struct block **diffp, **samep;
struct edge *ep;
ep = b->in_edges;
if (ep == 0)
return;
/*
* Make sure each predecessor loads the same value.
* XXX why?
*/
val = ep->pred->val[A_ATOM];
for (ep = ep->next; ep != 0; ep = ep->next)
if (val != ep->pred->val[A_ATOM])
return;
if (JT(b->in_edges->pred) == b)
diffp = &JT(b->in_edges->pred);
else
diffp = &JF(b->in_edges->pred);
at_top = 1;
while (1) {
if (*diffp == 0)
return;
if (JT(*diffp) != JT(b))
return;
if (!SET_MEMBER((*diffp)->dom, b->id))
return;
if ((*diffp)->val[A_ATOM] != val)
break;
diffp = &JF(*diffp);
at_top = 0;
}
samep = &JF(*diffp);
while (1) {
if (*samep == 0)
return;
if (JT(*samep) != JT(b))
return;
if (!SET_MEMBER((*samep)->dom, b->id))
return;
if ((*samep)->val[A_ATOM] == val)
break;
/* XXX Need to check that there are no data dependencies
between dp0 and dp1. Currently, the code generator
will not produce such dependencies. */
samep = &JF(*samep);
}
#ifdef notdef
/* XXX This doesn't cover everything. */
for (i = 0; i < N_ATOMS; ++i)
if ((*samep)->val[i] != pred->val[i])
return;
#endif
/* Pull up the node. */
pull = *samep;
*samep = JF(pull);
JF(pull) = *diffp;
/*
* At the top of the chain, each predecessor needs to point at the
* pulled up node. Inside the chain, there is only one predecessor
* to worry about.
*/
if (at_top) {
for (ep = b->in_edges; ep != 0; ep = ep->next) {
if (JT(ep->pred) == b)
JT(ep->pred) = pull;
else
JF(ep->pred) = pull;
}
}
else
*diffp = pull;
done = 0;
}
static void
and_pullup(b)
struct block *b;
{
int val, at_top;
struct block *pull;
struct block **diffp, **samep;
struct edge *ep;
ep = b->in_edges;
if (ep == 0)
return;
/*
* Make sure each predecessor loads the same value.
*/
val = ep->pred->val[A_ATOM];
for (ep = ep->next; ep != 0; ep = ep->next)
if (val != ep->pred->val[A_ATOM])
return;
if (JT(b->in_edges->pred) == b)
diffp = &JT(b->in_edges->pred);
else
diffp = &JF(b->in_edges->pred);
at_top = 1;
while (1) {
if (*diffp == 0)
return;
if (JF(*diffp) != JF(b))
return;
if (!SET_MEMBER((*diffp)->dom, b->id))
return;
if ((*diffp)->val[A_ATOM] != val)
break;
diffp = &JT(*diffp);
at_top = 0;
}
samep = &JT(*diffp);
while (1) {
if (*samep == 0)
return;
if (JF(*samep) != JF(b))
return;
if (!SET_MEMBER((*samep)->dom, b->id))
return;
if ((*samep)->val[A_ATOM] == val)
break;
/* XXX Need to check that there are no data dependencies
between diffp and samep. Currently, the code generator
will not produce such dependencies. */
samep = &JT(*samep);
}
#ifdef notdef
/* XXX This doesn't cover everything. */
for (i = 0; i < N_ATOMS; ++i)
if ((*samep)->val[i] != pred->val[i])
return;
#endif
/* Pull up the node. */
pull = *samep;
*samep = JT(pull);
JT(pull) = *diffp;
/*
* At the top of the chain, each predecessor needs to point at the
* pulled up node. Inside the chain, there is only one predecessor
* to worry about.
*/
if (at_top) {
for (ep = b->in_edges; ep != 0; ep = ep->next) {
if (JT(ep->pred) == b)
JT(ep->pred) = pull;
else
JF(ep->pred) = pull;
}
}
else
*diffp = pull;
done = 0;
}
static void
opt_blks(root, do_stmts)
struct block *root;
int do_stmts;
{
int i, maxlevel;
struct block *p;
init_val();
maxlevel = root->level;
for (i = maxlevel; i >= 0; --i)
for (p = levels[i]; p; p = p->link)
opt_blk(p, do_stmts);
if (do_stmts)
/*
* No point trying to move branches; it can't possibly
* make a difference at this point.
*/
return;
for (i = 1; i <= maxlevel; ++i) {
for (p = levels[i]; p; p = p->link) {
opt_j(&p->et);
opt_j(&p->ef);
}
}
for (i = 1; i <= maxlevel; ++i) {
for (p = levels[i]; p; p = p->link) {
or_pullup(p);
and_pullup(p);
}
}
}
static inline void
link_inedge(parent, child)
struct edge *parent;
struct block *child;
{
parent->next = child->in_edges;
child->in_edges = parent;
}
static void
find_inedges(root)
struct block *root;
{
int i;
struct block *b;
for (i = 0; i < n_blocks; ++i)
blocks[i]->in_edges = 0;
/*
* Traverse the graph, adding each edge to the predecessor
* list of its successors. Skip the leaves (i.e. level 0).
*/
for (i = root->level; i > 0; --i) {
for (b = levels[i]; b != 0; b = b->link) {
link_inedge(&b->et, JT(b));
link_inedge(&b->ef, JF(b));
}
}
}
static void
opt_root(b)
struct block **b;
{
struct slist *tmp, *s;
s = (*b)->stmts;
(*b)->stmts = 0;
while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
*b = JT(*b);
tmp = (*b)->stmts;
if (tmp != 0)
sappend(s, tmp);
(*b)->stmts = s;
/*
* If the root node is a return, then there is no
* point executing any statements (since the bpf machine
* has no side effects).
*/
if (BPF_CLASS((*b)->s.code) == BPF_RET)
(*b)->stmts = 0;
}
static void
opt_loop(root, do_stmts)
struct block *root;
int do_stmts;
{
#ifdef BDEBUG
if (dflag > 1)
opt_dump(root);
#endif
do {
done = 1;
find_levels(root);
find_dom(root);
find_closure(root);
find_inedges(root);
find_ud(root);
find_edom(root);
opt_blks(root, do_stmts);
#ifdef BDEBUG
if (dflag > 1)
opt_dump(root);
#endif
} while (!done);
}
/*
* Optimize the filter code in its dag representation.
*/
void
bpf_optimize(rootp)
struct block **rootp;
{
struct block *root;
root = *rootp;
opt_init(root);
opt_loop(root, 0);
opt_loop(root, 1);
intern_blocks(root);
opt_root(rootp);
opt_cleanup();
}
static void
make_marks(p)
struct block *p;
{
if (!isMarked(p)) {
Mark(p);
if (BPF_CLASS(p->s.code) != BPF_RET) {
make_marks(JT(p));
make_marks(JF(p));
}
}
}
/*
* Mark code array such that isMarked(i) is true
* only for nodes that are alive.
*/
static void
mark_code(p)
struct block *p;
{
cur_mark += 1;
make_marks(p);
}
/*
* True iff the two stmt lists load the same value from the packet into
* the accumulator.
*/
static int
eq_slist(x, y)
struct slist *x, *y;
{
while (1) {
while (x && x->s.code == NOP)
x = x->next;
while (y && y->s.code == NOP)
y = y->next;
if (x == 0)
return y == 0;
if (y == 0)
return x == 0;
if (x->s.code != y->s.code || x->s.k != y->s.k)
return 0;
x = x->next;
y = y->next;
}
}
static inline int
eq_blk(b0, b1)
struct block *b0, *b1;
{
if (b0->s.code == b1->s.code &&
b0->s.k == b1->s.k &&
b0->et.succ == b1->et.succ &&
b0->ef.succ == b1->ef.succ)
return eq_slist(b0->stmts, b1->stmts);
return 0;
}
static void
intern_blocks(root)
struct block *root;
{
struct block *p;
int i, j;
int done;
top:
done = 1;
for (i = 0; i < n_blocks; ++i)
blocks[i]->link = 0;
mark_code(root);
for (i = n_blocks - 1; --i >= 0; ) {
if (!isMarked(blocks[i]))
continue;
for (j = i + 1; j < n_blocks; ++j) {
if (!isMarked(blocks[j]))
continue;
if (eq_blk(blocks[i], blocks[j])) {
blocks[i]->link = blocks[j]->link ?
blocks[j]->link : blocks[j];
break;
}
}
}
for (i = 0; i < n_blocks; ++i) {
p = blocks[i];
if (JT(p) == 0)
continue;
if (JT(p)->link) {
done = 0;
JT(p) = JT(p)->link;
}
if (JF(p)->link) {
done = 0;
JF(p) = JF(p)->link;
}
}
if (!done)
goto top;
}
static void
opt_cleanup()
{
free((void *)vnode_base);
free((void *)vmap);
free((void *)edges);
free((void *)space);
free((void *)levels);
free((void *)blocks);
}
/*
* Return the number of stmts in 's'.
*/
static int
slength(s)
struct slist *s;
{
int n = 0;
for (; s; s = s->next)
if (s->s.code != NOP)
++n;
return n;
}
/*
* Return the number of nodes reachable by 'p'.
* All nodes should be initially unmarked.
*/
static int
count_blocks(p)
struct block *p;
{
if (p == 0 || isMarked(p))
return 0;
Mark(p);
return count_blocks(JT(p)) + count_blocks(JF(p)) + 1;
}
/*
* Do a depth first search on the flow graph, numbering the
* the basic blocks, and entering them into the 'blocks' array.`
*/
static void
number_blks_r(p)
struct block *p;
{
int n;
if (p == 0 || isMarked(p))
return;
Mark(p);
n = n_blocks++;
p->id = n;
blocks[n] = p;
number_blks_r(JT(p));
number_blks_r(JF(p));
}
/*
* Return the number of stmts in the flowgraph reachable by 'p'.
* The nodes should be unmarked before calling.
*/
static int
count_stmts(p)
struct block *p;
{
int n;
if (p == 0 || isMarked(p))
return 0;
Mark(p);
n = count_stmts(JT(p)) + count_stmts(JF(p));
return slength(p->stmts) + n + 1;
}
/*
* Allocate memory. All allocation is done before optimization
* is begun. A linear bound on the size of all data structures is computed
* from the total number of blocks and/or statements.
*/
static void
opt_init(root)
struct block *root;
{
bpf_u_int32 *p;
int i, n, max_stmts;
/*
* First, count the blocks, so we can malloc an array to map
* block number to block. Then, put the blocks into the array.
*/
unMarkAll();
n = count_blocks(root);
blocks = (struct block **)malloc(n * sizeof(*blocks));
unMarkAll();
n_blocks = 0;
number_blks_r(root);
n_edges = 2 * n_blocks;
edges = (struct edge **)malloc(n_edges * sizeof(*edges));
/*
* The number of levels is bounded by the number of nodes.
*/
levels = (struct block **)malloc(n_blocks * sizeof(*levels));
edgewords = n_edges / (8 * sizeof(bpf_u_int32)) + 1;
nodewords = n_blocks / (8 * sizeof(bpf_u_int32)) + 1;
/* XXX */
space = (bpf_u_int32 *)malloc(2 * n_blocks * nodewords * sizeof(*space)
+ n_edges * edgewords * sizeof(*space));
p = space;
all_dom_sets = p;
for (i = 0; i < n; ++i) {
blocks[i]->dom = p;
p += nodewords;
}
all_closure_sets = p;
for (i = 0; i < n; ++i) {
blocks[i]->closure = p;
p += nodewords;
}
all_edge_sets = p;
for (i = 0; i < n; ++i) {
register struct block *b = blocks[i];
b->et.edom = p;
p += edgewords;
b->ef.edom = p;
p += edgewords;
b->et.id = i;
edges[i] = &b->et;
b->ef.id = n_blocks + i;
edges[n_blocks + i] = &b->ef;
b->et.pred = b;
b->ef.pred = b;
}
max_stmts = 0;
for (i = 0; i < n; ++i)
max_stmts += slength(blocks[i]->stmts) + 1;
/*
* We allocate at most 3 value numbers per statement,
* so this is an upper bound on the number of valnodes
* we'll need.
*/
maxval = 3 * max_stmts;
vmap = (struct vmapinfo *)malloc(maxval * sizeof(*vmap));
vnode_base = (struct valnode *)malloc(maxval * sizeof(*vmap));
}
/*
* Some pointers used to convert the basic block form of the code,
* into the array form that BPF requires. 'fstart' will point to
* the malloc'd array while 'ftail' is used during the recursive traversal.
*/
static struct bpf_insn *fstart;
static struct bpf_insn *ftail;
#ifdef BDEBUG
int bids[1000];
#endif
/*
* Returns true if successful. Returns false if a branch has
* an offset that is too large. If so, we have marked that
* branch so that on a subsequent iteration, it will be treated
* properly.
*/
static int
convert_code_r(p)
struct block *p;
{
struct bpf_insn *dst;
struct slist *src;
int slen;
u_int off;
int extrajmps; /* number of extra jumps inserted */
struct slist **offset;
if (p == 0 || isMarked(p))
return (1);
Mark(p);
if (convert_code_r(JF(p)) == 0)
return (0);
if (convert_code_r(JT(p)) == 0)
return (0);
slen = slength(p->stmts);
dst = ftail -= (slen + 1 + p->longjt + p->longjf);
/* inflate length by any extra jumps */
p->offset = dst - fstart;
/* generate offset[] for convenience */
offset = (struct slist **)calloc(sizeof(struct slist *), slen);
if (!offset) {
bpf_error("not enough core");
/*NOTREACHED*/
}
src = p->stmts;
for (off = 0; off < slen && src; off++) {
#if 0
printf("off=%d src=%x\n", off, src);
#endif
offset[off] = src;
src = src->next;
}
off = 0;
for (src = p->stmts; src; src = src->next) {
if (src->s.code == NOP)
continue;
dst->code = (u_short)src->s.code;
dst->k = src->s.k;
/* fill block-local relative jump */
if (BPF_CLASS(src->s.code) != BPF_JMP
|| src->s.code == (BPF_JMP|BPF_JA)) {
#if 0
if (src->s.jt || src->s.jf) {
bpf_error("illegal jmp destination");
/*NOTREACHED*/
}
#endif
goto filled;
}
if (off == slen - 2) /*???*/
goto filled;
{
int i;
int jt, jf;
char *ljerr = "%s for block-local relative jump: off=%d";
#if 0
printf("code=%x off=%d %x %x\n", src->s.code,
off, src->s.jt, src->s.jf);
#endif
if (!src->s.jt || !src->s.jf) {
bpf_error(ljerr, "no jmp destination", off);
/*NOTREACHED*/
}
jt = jf = 0;
for (i = 0; i < slen; i++) {
if (offset[i] == src->s.jt) {
if (jt) {
bpf_error(ljerr, "multiple matches", off);
/*NOTREACHED*/
}
dst->jt = i - off - 1;
jt++;
}
if (offset[i] == src->s.jf) {
if (jf) {
bpf_error(ljerr, "multiple matches", off);
/*NOTREACHED*/
}
dst->jf = i - off - 1;
jf++;
}
}
if (!jt || !jf) {
bpf_error(ljerr, "no destination found", off);
/*NOTREACHED*/
}
}
filled:
++dst;
++off;
}
free(offset);
#ifdef BDEBUG
bids[dst - fstart] = p->id + 1;
#endif
dst->code = (u_short)p->s.code;
dst->k = p->s.k;
if (JT(p)) {
extrajmps = 0;
off = JT(p)->offset - (p->offset + slen) - 1;
if (off >= 256) {
/* offset too large for branch, must add a jump */
if (p->longjt == 0) {
/* mark this instruction and retry */
p->longjt++;
return(0);
}
/* branch if T to following jump */
dst->jt = extrajmps;
extrajmps++;
dst[extrajmps].code = BPF_JMP|BPF_JA;
dst[extrajmps].k = off - extrajmps;
}
else
dst->jt = off;
off = JF(p)->offset - (p->offset + slen) - 1;
if (off >= 256) {
/* offset too large for branch, must add a jump */
if (p->longjf == 0) {
/* mark this instruction and retry */
p->longjf++;
return(0);
}
/* branch if F to following jump */
/* if two jumps are inserted, F goes to second one */
dst->jf = extrajmps;
extrajmps++;
dst[extrajmps].code = BPF_JMP|BPF_JA;
dst[extrajmps].k = off - extrajmps;
}
else
dst->jf = off;
}
return (1);
}
/*
* Convert flowgraph intermediate representation to the
* BPF array representation. Set *lenp to the number of instructions.
*/
struct bpf_insn *
icode_to_fcode(root, lenp)
struct block *root;
int *lenp;
{
int n;
struct bpf_insn *fp;
/*
* Loop doing convert_codr_r() until no branches remain
* with too-large offsets.
*/
while (1) {
unMarkAll();
n = *lenp = count_stmts(root);
fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
memset((char *)fp, 0, sizeof(*fp) * n);
fstart = fp;
ftail = fp + n;
unMarkAll();
if (convert_code_r(root))
break;
free(fp);
}
return fp;
}
#ifdef BDEBUG
static void
opt_dump(root)
struct block *root;
{
struct bpf_program f;
memset(bids, 0, sizeof bids);
f.bf_insns = icode_to_fcode(root, &f.bf_len);
bpf_dump(&f, 1);
putchar('\n');
free((char *)f.bf_insns);
}
#endif