NetBSD/sys/arch/i386/isa/bt742a.c
1994-03-06 17:18:43 +00:00

1408 lines
34 KiB
C

/*
* Written by Julian Elischer (julian@tfs.com)
* for TRW Financial Systems for use under the MACH(2.5) operating system.
*
* TRW Financial Systems, in accordance with their agreement with Carnegie
* Mellon University, makes this software available to CMU to distribute
* or use in any manner that they see fit as long as this message is kept with
* the software. For this reason TFS also grants any other persons or
* organisations permission to use or modify this software.
*
* TFS supplies this software to be publicly redistributed
* on the understanding that TFS is not responsible for the correct
* functioning of this software in any circumstances.
*
* $Id: bt742a.c,v 1.15 1994/03/06 17:18:46 mycroft Exp $
*/
/*
* BusTech/BusLogic SCSI card driver (all cards)
*
* Modified to support round-robin mailbox allocation and page-aligned
* buffer allocation by Michael VanLoon (michaelv@iastate.edu)
*/
#include "bt.h"
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <machine/pio.h>
#include <i386/isa/isa_device.h>
#include <scsi/scsi_all.h>
#include <scsi/scsiconf.h>
#ifdef DDB
int Debugger();
#else
#define Debugger() panic("should call debugger here (bt742a.c)")
#endif
extern int delaycount; /* from clock setup code */
typedef unsigned long int physaddr;
/*
* I/O Port Interface
*/
#define BT_BASE bt_base[unit]
#define BT_CTRL_STAT_PORT (BT_BASE + 0x0) /* control & status */
#define BT_CMD_DATA_PORT (BT_BASE + 0x1) /* cmds and datas */
#define BT_INTR_PORT (BT_BASE + 0x2) /* Intr. stat */
/*
* BT_CTRL_STAT bits (write)
*/
#define BT_HRST 0x80 /* Hardware reset */
#define BT_SRST 0x40 /* Software reset */
#define BT_IRST 0x20 /* Interrupt reset */
#define BT_SCRST 0x10 /* SCSI bus reset */
/*
* BT_CTRL_STAT bits (read)
*/
#define BT_STST 0x80 /* Self test in Progress */
#define BT_DIAGF 0x40 /* Diagnostic Failure */
#define BT_INIT 0x20 /* Mbx Init required */
#define BT_IDLE 0x10 /* Host Adapter Idle */
#define BT_CDF 0x08 /* cmd/data out port full */
#define BT_DF 0x04 /* Data in port full */
#define BT_INVDCMD 0x01 /* Invalid command */
/*
* BT_CMD_DATA bits (write)
*/
#define BT_NOP 0x00 /* No operation */
#define BT_MBX_INIT 0x01 /* Mbx initialization */
#define BT_START_SCSI 0x02 /* start scsi command */
#define BT_START_BIOS 0x03 /* start bios command */
#define BT_INQUIRE 0x04 /* Adapter Inquiry */
#define BT_MBO_INTR_EN 0x05 /* Enable MBO available interrupt */
#define BT_SEL_TIMEOUT_SET 0x06 /* set selection time-out */
#define BT_BUS_ON_TIME_SET 0x07 /* set bus-on time */
#define BT_BUS_OFF_TIME_SET 0x08 /* set bus-off time */
#define BT_SPEED_SET 0x09 /* set transfer speed */
#define BT_DEV_GET 0x0a /* return installed devices */
#define BT_CONF_GET 0x0b /* return configuration data */
#define BT_TARGET_EN 0x0c /* enable target mode */
#define BT_SETUP_GET 0x0d /* return setup data */
#define BT_WRITE_CH2 0x1a /* write channel 2 buffer */
#define BT_READ_CH2 0x1b /* read channel 2 buffer */
#define BT_WRITE_FIFO 0x1c /* write fifo buffer */
#define BT_READ_FIFO 0x1d /* read fifo buffer */
#define BT_ECHO 0x1e /* Echo command data */
#define BT_MBX_INIT_EXTENDED 0x81 /* Mbx initialization */
#define BT_INQUIRE_EXTENDED 0x8D /* Adapter Setup Inquiry */
struct bt_cmd_buf {
u_char byte[16];
};
/*
* BT_INTR_PORT bits (read)
*/
#define BT_ANY_INTR 0x80 /* Any interrupt */
#define BT_SCRD 0x08 /* SCSI reset detected */
#define BT_HACC 0x04 /* Command complete */
#define BT_MBOA 0x02 /* MBX out empty */
#define BT_MBIF 0x01 /* MBX in full */
/*
* Mail box defs
*/
#define BT_MBX_SIZE 32 /* mail box size */
struct bt_mbx {
struct bt_mbx_out {
physaddr ccb_addr;
unsigned char dummy[3];
unsigned char cmd;
} mbo[BT_MBX_SIZE];
struct bt_mbx_in {
physaddr ccb_addr;
unsigned char btstat;
unsigned char sdstat;
unsigned char dummy;
unsigned char stat;
} mbi[BT_MBX_SIZE];
};
/*
* mbo.cmd values
*/
#define BT_MBO_FREE 0x0 /* MBO entry is free */
#define BT_MBO_START 0x1 /* MBO activate entry */
#define BT_MBO_ABORT 0x2 /* MBO abort entry */
#define BT_MBI_FREE 0x0 /* MBI entry is free */
#define BT_MBI_OK 0x1 /* completed without error */
#define BT_MBI_ABORT 0x2 /* aborted ccb */
#define BT_MBI_UNKNOWN 0x3 /* Tried to abort invalid CCB */
#define BT_MBI_ERROR 0x4 /* Completed with error */
#define BT_NSEG 32
struct bt_scat_gath {
unsigned long seg_len;
physaddr seg_addr;
};
struct bt_ccb {
unsigned char opcode;
unsigned char:3, data_in:1, data_out:1,:3;
unsigned char scsi_cmd_length;
unsigned char req_sense_length;
/*------------------------------------longword boundary */
unsigned long data_length;
/*------------------------------------longword boundary */
physaddr data_addr;
/*------------------------------------longword boundary */
unsigned char dummy[2];
unsigned char host_stat;
unsigned char target_stat;
/*------------------------------------longword boundary */
unsigned char target;
unsigned char lun;
unsigned char scsi_cmd[12]; /* 12 bytes (bytes only) */
unsigned char dummy2[1];
unsigned char link_id;
/*------------------------------------4 longword boundary */
physaddr link_addr;
/*------------------------------------longword boundary */
physaddr sense_ptr;
/*------------------------------------longword boundary */
struct scsi_sense_data scsi_sense;
/*------------------------------------longword boundary */
struct bt_scat_gath scat_gath[BT_NSEG];
/*------------------------------------longword boundary */
struct bt_ccb *next;
/*------------------------------------longword boundary */
struct scsi_xfer *xfer; /* the scsi_xfer for this cmd */
/*------------------------------------longword boundary */
struct bt_mbx_out *mbx; /* pointer to mail box */
/*------------------------------------longword boundary */
long delta; /* difference from previous */
struct bt_ccb *later, *sooner;
int flags;
#define CCB_FREE 0
#define CCB_ACTIVE 1
#define CCB_ABORTED 2
unsigned char dummy3[24]; /* align struct to 32 bits */
};
struct bt_ccb *bt_soonest = (struct bt_ccb *) 0;
struct bt_ccb *bt_latest = (struct bt_ccb *) 0;
long int bt_furthest = 0; /* longest time in the timeout queue */
/*
* opcode fields
*/
#define BT_INITIATOR_CCB 0x00 /* SCSI Initiator CCB */
#define BT_TARGET_CCB 0x01 /* SCSI Target CCB */
#define BT_INIT_SCAT_GATH_CCB 0x02 /* SCSI Initiator with scattter gather */
#define BT_RESET_CCB 0x81 /* SCSI Bus reset */
/*
* bt_ccb.host_stat values
*/
#define BT_OK 0x00 /* cmd ok */
#define BT_LINK_OK 0x0a /* Link cmd ok */
#define BT_LINK_IT 0x0b /* Link cmd ok + int */
#define BT_SEL_TIMEOUT 0x11 /* Selection time out */
#define BT_OVER_UNDER 0x12 /* Data over/under run */
#define BT_BUS_FREE 0x13 /* Bus dropped at unexpected time */
#define BT_INV_BUS 0x14 /* Invalid bus phase/sequence */
#define BT_BAD_MBO 0x15 /* Incorrect MBO cmd */
#define BT_BAD_CCB 0x16 /* Incorrect ccb opcode */
#define BT_BAD_LINK 0x17 /* Not same values of LUN for links */
#define BT_INV_TARGET 0x18 /* Invalid target direction */
#define BT_CCB_DUP 0x19 /* Duplicate CCB received */
#define BT_INV_CCB 0x1a /* Invalid CCB or segment list */
#define BT_ABORTED 42 /* pseudo value from driver */
struct bt_setup {
u_char sync_neg:1;
u_char parity:1;
u_char xxx:6;
u_char speed;
u_char bus_on;
u_char bus_off;
u_char num_mbx;
u_char mbx[4];
struct {
u_char offset:4;
u_char period:3;
u_char valid:1;
} sync[8];
u_char disc_sts;
};
struct bt_config {
u_char chan;
u_char intr;
u_char scsi_dev:3;
u_char xxx:5;
};
#define INT9 0x01
#define INT10 0x02
#define INT11 0x04
#define INT12 0x08
#define INT14 0x20
#define INT15 0x40
#define EISADMA 0x00
#define CHAN0 0x01
#define CHAN5 0x20
#define CHAN6 0x40
#define CHAN7 0x80
#define KVTOPHYS(x) vtophys(x)
#define PAGESIZ NBPG
#define INVALIDATE_CACHE {asm volatile( ".byte 0x0F ;.byte 0x08" ); }
short bt_base[NBT]; /* base port for each board */
struct isa_device *btinfo[NBT];
struct bt_ccb *bt_get_ccb();
int bt_int[NBT];
int bt_dma[NBT];
int bt_scsi_dev[NBT];
int bt_initialized[NBT];
/* we'll malloc memory for these in bt_init() */
struct bt_data {
struct bt_mbx bt_mbx;
struct bt_ccb bt_ccb[BT_MBX_SIZE];
struct scsi_xfer bt_scsi_xfer;
int sleepers;
} *btdata[NBT];
struct bt_ccb_lu {
struct bt_ccb *kv_addr;
physaddr phys_addr;
} bt_ccb_lut[NBT][BT_MBX_SIZE];
struct { /* mbo and mbi last used */
u_char mbo;
u_char mbi;
} bt_last[NBT];
/***********debug values *************/
#define BT_SHOWCCBS 0x01
#define BT_SHOWINTS 0x02
#define BT_SHOWCMDS 0x04
#define BT_SHOWMISC 0x08
int bt_debug = 0;
int btprobe(), btattach();
int btintr();
struct isa_driver btdriver = {
btprobe,
btattach,
"bt"
};
static int btunit = 0;
#define bt_abortmbx(mbx) \
(mbx)->cmd = BT_MBO_ABORT; \
outb(BT_CMD_DATA_PORT, BT_START_SCSI);
#define bt_startmbx(mbx) \
(mbx)->cmd = BT_MBO_START; \
outb(BT_CMD_DATA_PORT, BT_START_SCSI);
int bt_scsi_cmd();
int bt_timeout();
void btminphys();
long int bt_adapter_info();
struct scsi_switch bt_switch[NBT];
#define BT_CMD_TIMEOUT_FUDGE 200 /* multiplied to get Secs */
#define BT_RESET_TIMEOUT 1000000 /* */
#define BT_SCSI_TIMEOUT_FUDGE 20 /* divided by for mSecs */
/*
* Activate Adapter command
* icnt: number of args (outbound bytes written after opcode)
* ocnt: number of expected returned bytes
* wait: number of seconds to wait for response
* retval: buffer where to place returned bytes
* opcode: opcode BT_NOP, BT_MBX_INIT, BT_START_SCSI ...
* args: parameters
*
* Performs an adapter command through the ports. Not to be confused
* with a scsi command, which is read in via the dma
* One of the adapter commands tells it to read in a scsi command
*/
bt_cmd(unit, icnt, ocnt, wait, retval, opcode, args)
u_char *retval;
unsigned opcode;
u_char args;
{
unsigned *ic = &opcode;
u_char oc;
register i;
int sts;
struct bt_data *bt = btdata[unit];
/*
* multiply the wait argument by a big constant
* zero defaults to 1
*/
if (!wait)
wait = BT_CMD_TIMEOUT_FUDGE * delaycount;
else
wait *= BT_CMD_TIMEOUT_FUDGE * delaycount;
/*
* Wait for the adapter to go idle, unless it's one of
* the commands which don't need this
*/
if (opcode != BT_MBX_INIT && opcode != BT_START_SCSI) {
i = BT_CMD_TIMEOUT_FUDGE * delaycount; /* 1 sec? */
while (--i) {
sts = inb(BT_CTRL_STAT_PORT);
if (sts & BT_IDLE) {
break;
}
}
if (!i) {
printf("bt_cmd: bt742a host not idle(0x%x)\n", sts);
return (ENXIO);
}
}
/*
* Now that it is idle, if we expect output, preflush the*
* queue feeding to us.
*/
if (ocnt) {
while ((inb(BT_CTRL_STAT_PORT)) & BT_DF)
inb(BT_CMD_DATA_PORT);
}
/*
* Output the command and the number of arguments given
* for each byte, first check the port is empty.
*/
icnt++; /* include the command */
while (icnt--) {
sts = inb(BT_CTRL_STAT_PORT);
for (i = 0; i < wait; i++) {
sts = inb(BT_CTRL_STAT_PORT);
if (!(sts & BT_CDF))
break;
}
if (i >= wait) {
printf("bt_cmd: bt742a cmd/data port full\n");
outb(BT_CTRL_STAT_PORT, BT_SRST);
return (ENXIO);
}
outb(BT_CMD_DATA_PORT, (u_char) (*ic++));
}
/*
* If we expect input, loop that many times, each time,
* looking for the data register to have valid data
*/
while (ocnt--) {
sts = inb(BT_CTRL_STAT_PORT);
for (i = 0; i < wait; i++) {
sts = inb(BT_CTRL_STAT_PORT);
if (sts & BT_DF)
break;
}
if (i >= wait) {
printf("bt_cmd: bt742a cmd/data port empty %d\n", ocnt);
return (ENXIO);
}
oc = inb(BT_CMD_DATA_PORT);
if (retval)
*retval++ = oc;
}
/*
* Wait for the board to report a finised instruction
*/
i = BT_CMD_TIMEOUT_FUDGE * delaycount; /* 1 sec? */
while (--i) {
sts = inb(BT_INTR_PORT);
if (sts & BT_HACC) {
break;
}
}
if (!i) {
printf("bt_cmd: bt742a host not finished(0x%x)\n", sts);
return (ENXIO);
}
outb(BT_CTRL_STAT_PORT, BT_IRST);
return (0);
}
/*
* Check if the device can be found at the port given
* and if so, set it up ready for further work
* as an argument, takes the isa_device structure from
* autoconf.c
*/
btprobe(dev)
struct isa_device *dev;
{
/*
* find unit and check we have that many defined
*/
int unit = btunit;
struct bt_data *bt = btdata[unit];
dev->id_unit = unit;
bt_base[unit] = dev->id_iobase;
if (unit >= NBT) {
printf("bt: unit number (%d) too high\n", unit);
return (0);
}
/*
* Try initialise a unit at this location
* sets up dma and bus speed, loads bt_int[unit]*
*/
if (bt_init(unit) != 0) {
return (0);
}
/*
* If it's there, put in it's interrupt vectors
*/
dev->id_irq = (1 << bt_int[unit]);
dev->id_drq = bt_dma[unit];
btunit++;
return (8);
}
/*
* Attach all the sub-devices we can find
*/
btattach(dev)
struct isa_device *dev;
{
static int firsttime;
static int firstswitch[NBT];
int masunit = dev->id_masunit;
int r;
if (!firstswitch[masunit]) {
firstswitch[masunit] = 1;
bt_switch[masunit].name = "bt";
bt_switch[masunit].scsi_cmd = bt_scsi_cmd;
bt_switch[masunit].scsi_minphys = btminphys;
bt_switch[masunit].open_target_lu = 0;
bt_switch[masunit].close_target_lu = 0;
bt_switch[masunit].adapter_info = bt_adapter_info;
for (r = 0; r < 8; r++) {
bt_switch[masunit].empty[r] = 0;
bt_switch[masunit].used[r] = 0;
bt_switch[masunit].printed[r] = 0;
}
}
r = scsi_attach(masunit, bt_scsi_dev[masunit], &bt_switch[masunit],
&dev->id_physid, &dev->id_unit, dev->id_flags);
/* only one for all boards */
if (firsttime == 0) {
firsttime = 1;
bt_timeout(0);
}
return r;
}
/*
* Return some information to the caller about
* the adapter and it's capabilities
*/
long
bt_adapter_info(unit)
int unit;
{
/* 2 outstanding requests at a time per device */
return (2);
}
/*
* Catch an interrupt from the adaptor
*/
btintr(unit)
{
struct bt_ccb *ccb;
unsigned char stat;
register int i, j;
u_char found_one = 0, done = 0;
struct bt_data *bt = btdata[unit];
if ((scsi_debug & PRINTROUTINES) || bt_debug)
printf("btintr ");
/*
* First acknowlege the interrupt, Then if it's
* not telling about a completed operation
* just return.
*/
stat = inb(BT_INTR_PORT);
outb(BT_CTRL_STAT_PORT, BT_IRST);
if ((scsi_debug & TRACEINTERRUPTS) || bt_debug)
printf("int = 0x%x ", stat);
if (!(stat & BT_MBIF))
return 1;
if (scsi_debug & TRACEINTERRUPTS)
printf("mbxi ");
/*
* If it IS then process the competed operation
*/
for (i = bt_last[unit].mbi; !done && (i < BT_MBX_SIZE); i++) {
if (bt->bt_mbx.mbi[i].stat != BT_MBI_FREE) {
found_one++;
for (j = BT_MBX_SIZE - 1; j >= 0; j--)
if (bt_ccb_lut[unit][j].phys_addr ==
bt->bt_mbx.mbi[i].ccb_addr) {
ccb = bt_ccb_lut[unit][j].
kv_addr;
break;
}
if ((bt_debug & BT_SHOWCCBS) && ccb)
printf("<int ccb(%x(%x))> ", ccb, KVTOPHYS(ccb));
if ((stat = bt->bt_mbx.mbi[i].stat) != BT_MBI_OK) {
switch (stat) {
case BT_MBI_ABORT:
if (bt_debug & BT_SHOWMISC)
printf("abort ");
ccb->host_stat = BT_ABORTED;
break;
case BT_MBI_UNKNOWN:
ccb = (struct bt_ccb *) 0;
if (bt_debug & BT_SHOWMISC)
printf("unknown ccb for abort");
break;
case BT_MBI_ERROR:
break;
default:
printf("bad mbxi status %d, in mbx at 0x%x (0x%x)\n",
stat, &bt->bt_mbx.mbi[i],
KVTOPHYS(&bt->bt_mbx.mbi[i]));
Debugger();
}
if ((bt_debug & BT_SHOWCMDS) && ccb) {
u_char *cp;
cp = ccb->scsi_cmd;
printf("op=%x %x %x %x %x %x\n",
cp[0], cp[1], cp[2],
cp[3], cp[4], cp[5]);
printf("stat %x for mbi[%d]\n",
bt->bt_mbx.mbi[i].stat, i);
printf("addr = 0x%x\n", ccb);
}
}
if (ccb) {
bt_remove_timeout(ccb);
bt_done(unit, ccb);
}
bt->bt_mbx.mbi[i].stat = BT_MBI_FREE;
} else {
/* free mailbox -- done if following a used mbi */
if (found_one)
done++;
}
}
if (done) {
bt_last[unit].mbi = i % BT_MBX_SIZE;
return (1);
}
for (i = 0; !done && (i < bt_last[unit].mbi); i++) {
if (bt->bt_mbx.mbi[i].stat != BT_MBI_FREE) {
found_one++;
for (j = BT_MBX_SIZE - 1; j >= 0; j--)
if (bt_ccb_lut[unit][j].phys_addr ==
bt->bt_mbx.mbi[i].ccb_addr) {
ccb = bt_ccb_lut[unit][j].
kv_addr;
break;
}
if ((bt_debug & BT_SHOWCCBS) && ccb)
printf("<int ccb(%x(%x))> ", ccb, KVTOPHYS(ccb));
if ((stat = bt->bt_mbx.mbi[i].stat) != BT_MBI_OK) {
switch (stat) {
case BT_MBI_ABORT:
if (bt_debug & BT_SHOWMISC)
printf("abort ");
ccb->host_stat = BT_ABORTED;
break;
case BT_MBI_UNKNOWN:
ccb = (struct bt_ccb *) 0;
if (bt_debug & BT_SHOWMISC)
printf("unknown ccb for abort");
break;
case BT_MBI_ERROR:
break;
default:
printf("bad mbxi status %d, in mbx at 0x%x (0x%x)\n",
stat, &bt->bt_mbx.mbi[i],
KVTOPHYS(&bt->bt_mbx.mbi[i]));
Debugger();
}
if ((bt_debug & BT_SHOWCMDS) && ccb) {
u_char *cp;
cp = ccb->scsi_cmd;
printf("op=%x %x %x %x %x %x\n",
cp[0], cp[1], cp[2],
cp[3], cp[4], cp[5]);
printf("stat %x for mbi[%d]\n",
bt->bt_mbx.mbi[i].stat, i);
printf("addr = 0x%x\n", ccb);
}
}
if (ccb) {
bt_remove_timeout(ccb);
bt_done(unit, ccb);
}
bt->bt_mbx.mbi[i].stat = BT_MBI_FREE;
} else {
/* free mailbox -- done if following a used mbi */
if (found_one)
done++;
}
}
bt_last[unit].mbi = i % BT_MBX_SIZE;
return (1);
}
/*
* A ccb (and hence a mbx-out is put onto the
* free list.
*/
bt_free_ccb(unit, ccb, flags)
struct bt_ccb *ccb;
{
unsigned int opri;
struct bt_data *bt = btdata[unit];
if (scsi_debug & PRINTROUTINES)
printf("ccb%d(0x%x)> ", unit, flags);
if (!(flags & SCSI_NOMASK))
opri = splbio();
ccb->flags = CCB_FREE;
/*
* If there were none, wake abybody waiting for
* one to come free, starting with queued entries
*/
if (bt->sleepers) {
bt->sleepers = 0;
wakeup((caddr_t) & bt->sleepers);
}
if (!(flags & SCSI_NOMASK))
splx(opri);
}
/*
* Get a free ccb (and hence mbox-out entry)
*/
struct bt_ccb *
bt_get_ccb(unit, flags)
{
unsigned int opri;
struct bt_ccb *rc = NULL;
struct bt_data *bt = btdata[unit];
int next_mbx = bt_last[unit].mbo;
if (scsi_debug & PRINTROUTINES)
printf("<ccb%d(0x%x) ", unit, flags);
if (!(flags & SCSI_NOMASK))
opri = splbio();
/*
* If we can and have to, sleep waiting for one
* to come free
*/
while (!(bt->bt_ccb[next_mbx].flags == CCB_FREE) &&
!(flags & SCSI_NOSLEEP)) {
bt->sleepers = 1;
sleep((caddr_t) & bt->sleepers, PRIBIO);
}
if (bt->bt_ccb[next_mbx].flags == CCB_FREE) {
rc = &bt->bt_ccb[next_mbx];
bt_last[unit].mbo = (bt_last[unit].mbo + 1) % BT_MBX_SIZE;
rc->flags = CCB_ACTIVE;
}
if (!(flags & SCSI_NOMASK))
splx(opri);
return (rc);
}
/*
* We have a ccb which has been processed by the
* adaptor, now we look to see how the operation
* went. Wake up the owner if waiting
*/
bt_done(unit, ccb)
struct bt_ccb *ccb;
{
struct scsi_sense_data *s1, *s2;
struct scsi_xfer *xs = ccb->xfer;
struct bt_data *bt = btdata[unit];
if (scsi_debug & (PRINTROUTINES | TRACEINTERRUPTS))
printf("bt_done ");
/*
* Otherwise, put the results of the operation
* into the xfer and call whoever started it
*/
if ((ccb->host_stat != BT_OK
|| ccb->target_stat != SCSI_OK)
&& (!(xs->flags & SCSI_ERR_OK))) {
s1 = &(ccb->scsi_sense);
s2 = &(xs->sense);
if (ccb->host_stat) {
switch (ccb->host_stat) {
case BT_ABORTED: /* No response */
case BT_SEL_TIMEOUT: /* No response */
if (bt_debug & BT_SHOWMISC) {
printf("timeout reported back\n");
}
xs->error = XS_TIMEOUT;
break;
default: /* Other scsi protocol messes */
xs->error = XS_DRIVER_STUFFUP;
if (bt_debug & BT_SHOWMISC) {
printf("unexpected host_stat: %x\n",
ccb->host_stat);
}
}
} else {
switch (ccb->target_stat) {
case 0x02:
*s2 = *s1;
xs->error = XS_SENSE;
break;
case 0x08:
xs->error = XS_BUSY;
break;
default:
if (bt_debug & BT_SHOWMISC) {
printf("unexpected target_stat: %x\n",
ccb->target_stat);
}
xs->error = XS_DRIVER_STUFFUP;
}
}
} else { /* All went correctly OR errors expected */
xs->resid = 0;
}
xs->flags |= ITSDONE;
bt_free_ccb(unit, ccb, xs->flags);
if (xs->when_done)
(*(xs->when_done)) (xs->done_arg, xs->done_arg2);
}
/*
* Start the board, ready for normal operation
*/
bt_init(unit)
int unit;
{
unsigned char ad[4];
volatile int i, sts;
struct bt_config conf;
struct bt_data *bt;
/*
* reset board, If it doesn't respond, assume
* that it's not there.. good for the probe
*/
outb(BT_CTRL_STAT_PORT, BT_HRST | BT_SRST);
for (i = 0; i < BT_RESET_TIMEOUT; i++) {
sts = inb(BT_CTRL_STAT_PORT);
if (sts == (BT_IDLE | BT_INIT))
break;
}
if (i >= BT_RESET_TIMEOUT) {
if (bt_debug & BT_SHOWMISC)
printf("bt_init: No answer from bt742a board\n");
return (ENXIO);
}
/*
* Assume we have a board at this stage
* setup dma channel from jumpers and save int
* level
*/
delay(200);
bt_cmd(unit, 0, sizeof(conf), 0, &conf, BT_CONF_GET);
switch (conf.chan) {
case EISADMA:
bt_dma[unit] = -1;
break;
case CHAN0:
outb(0x0b, 0x0c);
outb(0x0a, 0x00);
bt_dma[unit] = 0;
break;
case CHAN5:
outb(0xd6, 0xc1);
outb(0xd4, 0x01);
bt_dma[unit] = 5;
break;
case CHAN6:
outb(0xd6, 0xc2);
outb(0xd4, 0x02);
bt_dma[unit] = 6;
break;
case CHAN7:
outb(0xd6, 0xc3);
outb(0xd4, 0x03);
bt_dma[unit] = 7;
break;
default:
printf("illegal dma setting %x\n", conf.chan);
return (EIO);
}
switch (conf.intr) {
case INT9:
bt_int[unit] = 9;
break;
case INT10:
bt_int[unit] = 10;
break;
case INT11:
bt_int[unit] = 11;
break;
case INT12:
bt_int[unit] = 12;
break;
case INT14:
bt_int[unit] = 14;
break;
case INT15:
bt_int[unit] = 15;
break;
default:
printf("illegal int setting\n");
return (EIO);
}
/* who are we on the scsi bus */
bt_scsi_dev[unit] = conf.scsi_dev;
printf("bt%d: mbx (%d@) %d, ccb %d * %d, xs %d, bt %d bytes\n", unit,
BT_MBX_SIZE, sizeof(struct bt_mbx),
BT_MBX_SIZE, sizeof(struct bt_ccb),
sizeof(struct scsi_xfer), sizeof(struct bt_data));
bt = malloc(sizeof(struct bt_data), M_DEVBUF, M_NOWAIT);
if (!bt) {
printf("bt%d: cannot malloc buffers\n", unit);
return (0);
}
if (bt_debug)
printf("bt%d: buffer allocated at 0x%x (0x%x)\n",
unit, bt, KVTOPHYS(bt));
bzero(bt, sizeof(struct bt_data));
btdata[unit] = bt;
/*
* Initialize mail box
*/
*((physaddr *) ad) = KVTOPHYS(&bt->bt_mbx);
if (bt_debug) {
printf("bt%d: mailbox struct at 0x%x (0x%x)\n",
unit, &bt->bt_mbx, *(physaddr *) ad);
printf("bt%d: ccb struct at 0x%x (0x%x)\n",
unit, bt->bt_ccb, KVTOPHYS(bt->bt_ccb));
printf("bt%d: xs struct at 0x%x (0x%x)\n",
unit, &bt->bt_scsi_xfer, KVTOPHYS(&bt->bt_scsi_xfer));
printf("bt%d: sleepers at 0x%x (0x%x)\n",
unit, &bt->sleepers, KVTOPHYS(&bt->sleepers));
}
bt_cmd(unit, 5, 0, 0, 0, BT_MBX_INIT_EXTENDED, BT_MBX_SIZE,
ad[0], ad[1], ad[2], ad[3]);
/*
* link the ccb's with the mbox-out entries and
* into a free-list
*/
bt_last[unit].mbo = bt_last[unit].mbi = 0;
for (i = 0; i < (BT_MBX_SIZE - 1); i++) {
bt->bt_ccb[i].next = &bt->bt_ccb[i + 1];
bt->bt_ccb[i].flags = CCB_FREE;
bt->bt_ccb[i].mbx = &bt->bt_mbx.mbo[i];
bt->bt_mbx.mbo[i].ccb_addr = KVTOPHYS(&bt->bt_ccb[i]);
bt_ccb_lut[unit][i].kv_addr = &bt->bt_ccb[i];
bt_ccb_lut[unit][i].phys_addr =
bt->bt_mbx.mbo[i].ccb_addr;
}
bt->bt_ccb[i].next = &bt->bt_ccb[0]; /* loop around to first ccb */
bt->bt_ccb[i].flags = CCB_FREE;
bt->bt_ccb[i].mbx = &bt->bt_mbx.mbo[i];
bt->bt_mbx.mbo[i].ccb_addr = KVTOPHYS(&bt->bt_ccb[i]);
bt_ccb_lut[unit][i].kv_addr = &bt->bt_ccb[i];
bt_ccb_lut[unit][i].phys_addr =
bt->bt_mbx.mbo[i].ccb_addr;
/*
* Note that we are going and return (to probe)
*/
bt_initialized[unit]++;
return (0);
}
#ifndef min
#define min(x,y) (x < y ? x : y)
#endif /* min */
void
btminphys(bp)
struct buf *bp;
{
if (bp->b_bcount > ((BT_NSEG - 1) * PAGESIZ)) {
bp->b_bcount = ((BT_NSEG - 1) * PAGESIZ);
}
}
/*
* start a scsi operation given the command and the
* data address. Also needs the unit, target and lu
*/
int
bt_scsi_cmd(xs)
struct scsi_xfer *xs;
{
struct scsi_sense_data *s1, *s2;
struct bt_ccb *ccb;
struct bt_scat_gath *sg;
int seg; /* scatter gather seg being worked on */
int i = 0;
int rc = 0;
int thiskv;
physaddr thisphys, nextphys;
int unit = xs->adapter;
int bytes_this_seg, bytes_this_page, datalen, flags;
struct iovec *iovp;
struct bt_data *bt = btdata[unit];
int done, count;
if (scsi_debug & PRINTROUTINES)
printf("bt_scsi_cmd ");
/*
* get a ccb (mbox-out) to use. If the transfer
* is from a buf (possibly from interrupt time)
* then we can't allow it to sleep
*/
flags = xs->flags;
if (xs->bp)
flags |= (SCSI_NOSLEEP); /* just to be sure */
if (flags & ITSDONE) {
printf("Already done?");
xs->flags &= ~ITSDONE;
}
if (!(flags & INUSE)) {
printf("Not in use?");
xs->flags |= INUSE;
}
if (!(ccb = bt_get_ccb(unit, flags))) {
xs->error = XS_DRIVER_STUFFUP;
return (TRY_AGAIN_LATER);
}
if (bt_debug & BT_SHOWCCBS)
printf("<start ccb(%x(%x))>", ccb, KVTOPHYS(ccb));
if (ccb->mbx->cmd != BT_MBO_FREE)
printf("MBO not free (%x(%x))\n",
ccb->mbx, KVTOPHYS(ccb->mbx));
/*
* Put all the arguments for the xfer in the ccb
*/
ccb->xfer = xs;
if (flags & SCSI_RESET) {
ccb->opcode = BT_RESET_CCB;
} else {
/* can't use S/G if zero length */
ccb->opcode = (xs->datalen ? BT_INIT_SCAT_GATH_CCB :
BT_INITIATOR_CCB);
}
ccb->target = xs->targ;;
ccb->data_out = 0;
ccb->data_in = 0;
ccb->lun = xs->lu;
ccb->scsi_cmd_length = xs->cmdlen;
ccb->sense_ptr = KVTOPHYS(&(ccb->scsi_sense));
ccb->req_sense_length = sizeof(ccb->scsi_sense);
if ((xs->datalen) && (!(flags & SCSI_RESET))) {
/* can use S/G only if not zero length */
ccb->data_addr = KVTOPHYS(ccb->scat_gath);
sg = ccb->scat_gath;
seg = 0;
if (flags & SCSI_DATA_UIO) {
iovp = ((struct uio *) xs->data)->uio_iov;
datalen = ((struct uio *) xs->data)->uio_iovcnt;
xs->datalen = 0;
while (datalen && (seg < BT_NSEG)) {
sg->seg_addr = (physaddr) iovp->iov_base;
xs->datalen += sg->seg_len = iovp->iov_len;
if (scsi_debug & SHOWSCATGATH)
printf("(0x%x@0x%x)",
iovp->iov_len,
iovp->iov_base);
sg++;
iovp++;
seg++;
datalen--;
}
} else {
/*
* Set up the scatter gather block
*/
if (scsi_debug & SHOWSCATGATH)
printf("%d @0x%x:- ", xs->datalen, xs->data);
datalen = xs->datalen;
thiskv = (int) xs->data;
thisphys = KVTOPHYS(thiskv);
while ((datalen) && (seg < BT_NSEG)) {
bytes_this_seg = 0;
/* put in the base address */
sg->seg_addr = thisphys;
if (scsi_debug & SHOWSCATGATH)
printf("0x%x", thisphys);
/* do it at least once */
nextphys = thisphys;
while ((datalen) && (thisphys == nextphys)) {
/*
* This page is contiguous (physically) with
* the the last, just extend the length
* how far to the end of the page
*/
nextphys = (thisphys & (~(PAGESIZ - 1)))
+ PAGESIZ;
bytes_this_page = nextphys - thisphys;
/**** or the data ****/
bytes_this_page = min(bytes_this_page,
datalen);
bytes_this_seg += bytes_this_page;
datalen -= bytes_this_page;
/* get more ready for the next page */
thiskv = (thiskv & (~(PAGESIZ - 1)))
+ PAGESIZ;
if (datalen)
thisphys = KVTOPHYS(thiskv);
}
/*
* next page isn't contiguous, finish the seg
*/
if (scsi_debug & SHOWSCATGATH)
printf("(0x%x)", bytes_this_seg);
sg->seg_len = bytes_this_seg;
sg++;
seg++;
}
} /* end of iov/kv decision */
ccb->data_length = seg * sizeof(struct bt_scat_gath);
if (scsi_debug & SHOWSCATGATH)
printf("\n");
if (datalen) {
/* there's still data, must have run out of segs! */
printf("bt_scsi_cmd%d: more than %d DMA segs\n",
unit, BT_NSEG);
xs->error = XS_DRIVER_STUFFUP;
bt_free_ccb(unit, ccb, flags);
return (HAD_ERROR);
}
} else {
/* No data xfer, use non S/G values */
ccb->data_addr = (physaddr) 0;
ccb->data_length = 0;
}
ccb->link_id = 0;
ccb->link_addr = (physaddr) 0;
/*
* Put the scsi command in the ccb and start it
*/
if (!(flags & SCSI_RESET)) {
bcopy(xs->cmd, ccb->scsi_cmd, ccb->scsi_cmd_length);
}
if (scsi_debug & SHOWCOMMANDS) {
u_char *b = ccb->scsi_cmd;
if (!(flags & SCSI_RESET)) {
int i = 0;
printf("bt%d:%d:%d-", unit, ccb->target, ccb->lun);
while (i < ccb->scsi_cmd_length) {
if (i)
printf(",");
printf("%x", b[i++]);
}
printf("-\n");
} else
printf("bt%d:%d:%d-RESET- ", unit, ccb->target, ccb->lun);
}
bt_startmbx(ccb->mbx);
/*
* Usually return SUCCESSFULLY QUEUED
*/
if (scsi_debug & TRACEINTERRUPTS)
printf("cmd_sent ");
if (!(flags & SCSI_NOMASK)) {
bt_add_timeout(ccb, xs->timeout);
return (SUCCESSFULLY_QUEUED);
}
/*
* If we can't use interrupts, poll on completion
*/
done = 0;
count = delaycount * xs->timeout / BT_SCSI_TIMEOUT_FUDGE;
if (scsi_debug & TRACEINTERRUPTS)
printf("wait ");
while ((!done) && count) {
i = 0;
while (!done && i < BT_MBX_SIZE) {
struct bt_ccb *mbx_ccb = NULL;
int j;
for (j = BT_MBX_SIZE - 1; j >= 0; j--)
if (bt_ccb_lut[unit][j].phys_addr ==
bt->bt_mbx.mbi[i].ccb_addr) {
mbx_ccb = bt_ccb_lut[unit][j].kv_addr;
break;
}
if ((bt->bt_mbx.mbi[i].stat != BT_MBI_FREE) &&
mbx_ccb == ccb) {
bt->bt_mbx.mbi[i].stat = BT_MBI_FREE;
bt_done(unit, ccb);
done++;
}
i++;
}
count--;
}
if (!count) {
if (!(xs->flags & SCSI_SILENT))
printf("cmd fail\n");
bt_abortmbx(ccb->mbx);
count = delaycount * 2000 / BT_SCSI_TIMEOUT_FUDGE;
while (!done && count) {
i = 0;
while (!done && i < BT_MBX_SIZE) {
struct bt_ccb *mbx_ccb = NULL;
int j;
for (j = BT_MBX_SIZE - 1; j >= 0; j--)
if (bt_ccb_lut[unit][j].phys_addr ==
bt->bt_mbx.mbi[i].ccb_addr) {
mbx_ccb = bt_ccb_lut[unit][j].kv_addr;
break;
}
if ((bt->bt_mbx.mbi[i].stat !=
BT_MBI_FREE) && mbx_ccb == ccb) {
bt->bt_mbx.mbi[i].stat =
BT_MBI_FREE;
bt_done(unit, ccb);
done++;
}
i++;
}
count--;
}
if (!count) {
printf("abort failed in wait\n");
ccb->mbx->cmd = BT_MBO_FREE;
}
bt_free_ccb(unit, ccb, flags);
btintr(unit);
xs->error = XS_DRIVER_STUFFUP;
return (HAD_ERROR);
}
btintr(unit);
if (xs->error)
return (HAD_ERROR);
return (COMPLETE);
}
/*
* +----------+ +----------+ +----------+
* bt_soonest--->| later |---->| later|---->| later|--->0
* | [Delta] | | [Delta] | | [Delta] |
* 0<-----|sooner |<----|sooner |<----|sooner |<----bt_latest
* +----------+ +----------+ +----------+
*
* bt_furthest = sum(Delta[1..n])
*/
bt_add_timeout(ccb, time)
struct bt_ccb *ccb;
int time;
{
int timeprev;
struct bt_ccb *prev;
int s = splbio();
prev = bt_latest;
if (prev)
timeprev = bt_furthest;
else
timeprev = 0;
while (prev && (timeprev > time)) {
timeprev -= prev->delta;
prev = prev->sooner;
}
if (prev) {
ccb->delta = time - timeprev;
if (ccb->later = prev->later) { /* yes an assign */
ccb->later->sooner = ccb;
ccb->later->delta -= ccb->delta;
} else {
bt_furthest = time;
bt_latest = ccb;
}
ccb->sooner = prev;
prev->later = ccb;
} else {
if (ccb->later = bt_soonest) { /* yes, an assign */
ccb->later->sooner = ccb;
ccb->later->delta -= time;
} else {
bt_furthest = time;
bt_latest = ccb;
}
ccb->delta = time;
ccb->sooner = (struct bt_ccb *) 0;
bt_soonest = ccb;
}
splx(s);
}
bt_remove_timeout(ccb)
struct bt_ccb *ccb;
{
int s = splbio();
if (ccb->sooner)
ccb->sooner->later = ccb->later;
else
bt_soonest = ccb->later;
if (ccb->later) {
ccb->later->sooner = ccb->sooner;
ccb->later->delta += ccb->delta;
} else {
bt_latest = ccb->sooner;
bt_furthest -= ccb->delta;
}
ccb->sooner = ccb->later = (struct bt_ccb *) 0;
splx(s);
}
extern int hz;
/* #define ONETICK 500 /* milliseconds */
#define ONETICK 250 /* milliseconds */
#define SLEEPTIME ((hz * 1000) / ONETICK)
bt_timeout(arg)
int arg;
{
struct bt_ccb *ccb;
int unit;
int s = splbio();
while (ccb = bt_soonest) {
if (ccb->delta <= ONETICK) {
/*
* It has timed out, we need to do some work
*/
unit = ccb->xfer->adapter;
btintr(unit);
printf("bt%d:%d device timed out\n", unit,
ccb->xfer->targ);
if (bt_debug & BT_SHOWCCBS)
tfs_print_active_ccbs();
/*
* Unlink it from the queue
*/
bt_remove_timeout(ccb);
/*
* If The ccb's mbx is not free, then
* the board has gone south
*/
if (ccb->mbx->cmd != BT_MBO_FREE) {
printf("bt%d not taking commands!\n", unit);
printf("bt: ccb->mbx->cmd = %x\n",
ccb->mbx->cmd);
tfs_print_ccb(ccb);
Debugger();
}
/*
* If it has been through before, then
* a previous abort has failed, don't
* try abort again
*/
if (ccb->flags == CCB_ABORTED) { /* abort timed out */
printf("AGAIN");
ccb->xfer->retries = 0; /* I MEAN IT ! */
ccb->host_stat = BT_ABORTED;
bt_done(unit, ccb);
} else {/* abort the operation that has timed out */
printf("abort mbx\n");
bt_abortmbx(ccb->mbx);
/* 2 secs for the abort */
bt_add_timeout(ccb, 2000 + ONETICK);
ccb->flags = CCB_ABORTED;
}
} else {
/*
* It has not timed out, adjust and leave
*/
ccb->delta -= ONETICK;
bt_furthest -= ONETICK;
break;
}
}
splx(s);
timeout((timeout_t) bt_timeout, (caddr_t) arg, SLEEPTIME);
}
tfs_print_ccb(ccb)
struct bt_ccb *ccb;
{
printf("ccb:%x op:%x cmdlen:%d senlen:%d\n", ccb, ccb->opcode,
ccb->scsi_cmd_length, ccb->req_sense_length);
printf(" datlen:%d hstat:%x tstat:%x delta:%d flags:%x\n",
ccb->data_length, ccb->host_stat, ccb->target_stat,
ccb->delta, ccb->flags);
}
tfs_print_active_ccbs()
{
struct bt_ccb *ccb = bt_soonest;
while (ccb) {
tfs_print_ccb(ccb);
ccb = ccb->later;
}
printf("Furthest = %d\n", bt_furthest);
}