2173 lines
59 KiB
C
2173 lines
59 KiB
C
/* $NetBSD: machdep.c,v 1.11 1996/10/13 03:05:54 christos Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1994-1996 Mark Brinicombe.
|
|
* Copyright (c) 1994 Brini.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software written for Brini by Mark Brinicombe
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Brini.
|
|
* 4. The name of the company nor the name of the author may be used to
|
|
* endorse or promote products derived from this software without specific
|
|
* prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* RiscBSD kernel project
|
|
*
|
|
* machdep.c
|
|
*
|
|
* Machine dependant functions for kernel setup
|
|
*
|
|
* This file needs a lot of work.
|
|
*
|
|
* Created : 17/09/94
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/user.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/msgbuf.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/map.h>
|
|
#include <sys/exec.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/device.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/syscallargs.h>
|
|
|
|
#ifdef SYSVMSG
|
|
#include <sys/msg.h>
|
|
#endif
|
|
#ifdef SYSVSEM
|
|
#include <sys/sem.h>
|
|
#endif
|
|
#ifdef SYSVSHM
|
|
#include <sys/shm.h>
|
|
#endif
|
|
|
|
#include <dev/cons.h>
|
|
|
|
#include <machine/db_machdep.h>
|
|
#include <ddb/db_sym.h>
|
|
#include <ddb/db_extern.h>
|
|
|
|
#include <vm/vm_kern.h>
|
|
|
|
#include <machine/signal.h>
|
|
#include <machine/frame.h>
|
|
#include <machine/bootconfig.h>
|
|
#include <machine/katelib.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/pte.h>
|
|
#include <machine/vidc.h>
|
|
#include <machine/iomd.h>
|
|
#include <machine/io.h>
|
|
#include <machine/irqhandler.h>
|
|
#include <machine/undefined.h>
|
|
#include <machine/rtc.h>
|
|
|
|
#include "hydrabus.h"
|
|
|
|
/* Describe different actions to take when boot() is called */
|
|
|
|
#define ACTION_HALT 0x01 /* Halt and boot */
|
|
#define ACTION_REBOOT 0x02 /* Halt and request RiscBSD reboot */
|
|
#define ACTION_KSHELL 0x04 /* Call kshell */
|
|
#define ACTION_DUMP 0x08 /* Dump the system to the dump dev */
|
|
|
|
#define HALT_ACTION ACTION_HALT | ACTION_KSHELL /* boot(RB_HALT,NULL)*/
|
|
#define REBOOT_ACTION ACTION_REBOOT /* boot(0, NULL) */
|
|
#define PANIC_ACTION ACTION_HALT | ACTION_KSHELL /* panic() */
|
|
|
|
BootConfig bootconfig; /* Boot config storage */
|
|
videomemory_t videomemory; /* Video memory descriptor */
|
|
|
|
vm_offset_t physical_start;
|
|
vm_offset_t physical_freestart;
|
|
vm_offset_t physical_freeend;
|
|
vm_offset_t physical_end;
|
|
int physical_memoryblock;
|
|
u_int free_pages;
|
|
vm_offset_t pagetables_start;
|
|
int physmem = 0;
|
|
|
|
int debug_flags;
|
|
int max_processes;
|
|
int cpu_cache;
|
|
int cpu_ctrl;
|
|
|
|
u_int ramdisc_size; /* Ramdisc size */
|
|
|
|
u_int kmodule_base;
|
|
u_int kmodule_size;
|
|
|
|
u_int videodram_size; /* Amount of DRAM to reserve for video */
|
|
vm_offset_t videodram_start;
|
|
|
|
vm_offset_t physical_pt_start;
|
|
vm_offset_t virtual_pt_end;
|
|
|
|
u_int *cursor_data; /* Will move to the vidc code */
|
|
|
|
typedef struct {
|
|
vm_offset_t physical;
|
|
vm_offset_t virtual;
|
|
} pv_addr_t;
|
|
|
|
pv_addr_t systempage;
|
|
pv_addr_t irqstack;
|
|
pv_addr_t undstack;
|
|
pv_addr_t abtstack;
|
|
pv_addr_t kernelstack;
|
|
#if NHYDRABUS > 0
|
|
pv_addr_t hydrascratch;
|
|
#endif
|
|
|
|
pt_entry_t kernel_pt_table[15];
|
|
|
|
/* the following is used externally (sysctl_hw) */
|
|
char machine[] = "arm32"; /* cpu "architecture" */
|
|
|
|
char *boot_args;
|
|
|
|
extern pt_entry_t msgbufpte;
|
|
int msgbufmapped;
|
|
vm_offset_t msgbufphys;
|
|
|
|
extern u_int data_abort_handler_address;
|
|
extern u_int prefetch_abort_handler_address;
|
|
extern u_int undefined_handler_address;
|
|
|
|
extern int pmap_debug_level;
|
|
|
|
#define KERNEL_PT_PAGEDIR 0
|
|
#define KERNEL_PT_PDE 1
|
|
#define KERNEL_PT_PTE 2
|
|
#define KERNEL_PT_VMEM 3
|
|
#define KERNEL_PT_SYS 4
|
|
#define KERNEL_PT_KERNEL 5
|
|
#define KERNEL_PT_VMDATA0 6
|
|
#define KERNEL_PT_VMDATA1 7
|
|
#define KERNEL_PT_VMDATA2 8
|
|
#define KERNEL_PT_VMDATA3 9
|
|
#define KERNEL_PT_VMDATA4 10
|
|
#define KERNEL_PT_VMDATA5 11
|
|
#define KERNEL_PT_VMDATA6 12
|
|
#define KERNEL_PT_VMDATA7 13
|
|
#define KERNEL_PT_VMDATA7 13
|
|
#define KERNEL_PT_KSTACK 14
|
|
|
|
struct user *proc0paddr;
|
|
|
|
/*
|
|
* Declare these as initialized data so we can patch them.
|
|
*/
|
|
int nswbuf = 0;
|
|
#ifdef NBUF
|
|
int nbuf = NBUF;
|
|
#else
|
|
int nbuf = 0;
|
|
#endif
|
|
#ifdef BUFPAGES
|
|
int bufpages = BUFPAGES;
|
|
#else
|
|
int bufpages = 0;
|
|
#endif
|
|
|
|
int cold = 1;
|
|
|
|
/* Prototypes */
|
|
|
|
void physconputchar __P((char));
|
|
void physcon_display_base __P((u_int));
|
|
void consinit __P((void));
|
|
|
|
void map_section __P((vm_offset_t, vm_offset_t, vm_offset_t));
|
|
void map_pagetable __P((vm_offset_t, vm_offset_t, vm_offset_t));
|
|
void map_entry __P((vm_offset_t, vm_offset_t va, vm_offset_t));
|
|
void map_entry_ro __P((vm_offset_t, vm_offset_t, vm_offset_t));
|
|
|
|
void pmap_bootstrap __P((vm_offset_t /*kernel_l1pt*/));
|
|
void process_kernel_args __P((void));
|
|
u_long strtoul __P((const char */*s*/, char **/*ptr*/, int /*base*/));
|
|
caddr_t allocsys __P((caddr_t /*v*/));
|
|
void identify_cpu __P((void));
|
|
void data_abort_handler __P((trapframe_t */*frame*/));
|
|
void prefetch_abort_handler __P((trapframe_t */*frame*/));
|
|
void undefinedinstruction_bounce __P((trapframe_t */*frame*/));
|
|
extern void set_boot_devs __P((void));
|
|
extern void configure __P((void));
|
|
void zero_page_readonly __P((void));
|
|
void zero_page_readwrite __P((void));
|
|
extern u_int disassemble __P((u_int addr));
|
|
int setup_cursor __P((void));
|
|
extern void init_fpe_state __P((struct proc *));
|
|
extern int savectx __P((struct pcb *pcb));
|
|
extern void dump_spl_masks __P((void));
|
|
extern pt_entry_t *pmap_pte __P((pmap_t pmap, vm_offset_t va));
|
|
extern void db_machine_init __P((void));
|
|
|
|
extern void pmap_debug __P((int level));
|
|
extern void dumpsys __P((void));
|
|
extern void hydrastop __P((void));
|
|
|
|
void vtbugreport __P((void));
|
|
|
|
/*
|
|
* Debug function just to park the CPU
|
|
*
|
|
* This should be updated to power down an ARM7500
|
|
*/
|
|
|
|
void
|
|
halt()
|
|
{
|
|
while (1);
|
|
}
|
|
|
|
|
|
/*
|
|
* void boot(int howto, char *bootstr)
|
|
*
|
|
* Reboots the system
|
|
*
|
|
* This gets called when a reboot is request by the user or after a panic.
|
|
* Call boot0() will reboot the machine. For the moment we will try and be
|
|
* clever and return to the booting environment. This may work if we
|
|
* have be booted with the Kate boot loader as long as we have not messed
|
|
* the system up to much. Until we have our own memory management running
|
|
* this should work. The only use of being able to return (to RISC OS)
|
|
* is so I don't have to wait while the machine reboots.
|
|
*/
|
|
|
|
/* NOTE: These variables will be removed, well some of them */
|
|
|
|
extern u_int spl_mask;
|
|
extern u_int current_mask;
|
|
struct pcb dumppcb;
|
|
extern u_int arm700bugcount;
|
|
extern int ioctlconsolebug;
|
|
|
|
void
|
|
boot(howto, bootstr)
|
|
int howto;
|
|
char *bootstr;
|
|
{
|
|
int loop;
|
|
int action;
|
|
|
|
/* Debugging here */
|
|
|
|
if (curproc == NULL)
|
|
printf("curproc = 0 - must have been in cpu_idle()\n");
|
|
|
|
/* if (panicstr)
|
|
printf("ioctlconsolebug=%d %08x\n", ioctlconsolebug, ioctlconsolebug);*/
|
|
|
|
/* if (curpcb)
|
|
printf("curpcb=%08x pcb_sp=%08x pcb_und_sp=%08x\n", curpcb, curpcb->pcb_sp, curpcb->pcb_und_sp);*/
|
|
|
|
#if NHYDRABUS > 0
|
|
/*
|
|
* If we are halting the master then we should halt the slaves :-)
|
|
* otherwise it can get a bit disconcerting to have 4 other
|
|
* processor still tearing away doing things.
|
|
*/
|
|
|
|
hydrastop();
|
|
#endif
|
|
|
|
/* Debug info */
|
|
|
|
printf("boot: howto=%08x %08x curproc=%08x\n", howto, spl_mask, (u_int)curproc);
|
|
|
|
printf("current_mask=%08x spl_mask=%08x\n", current_mask, spl_mask);
|
|
printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_clock=%08x ipl_imp=%08x\n",
|
|
irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
|
|
irqmasks[IPL_CLOCK], irqmasks[IPL_IMP]);
|
|
|
|
dump_spl_masks();
|
|
|
|
/* vtbugreport();*/
|
|
|
|
/* Did we encounter the ARM700 bug we discovered ? */
|
|
|
|
if (arm700bugcount > 0)
|
|
printf("ARM700 PREFETCH/SWI bug count = %d\n", arm700bugcount);
|
|
|
|
/* Disable console buffering */
|
|
|
|
cnpollc(1);
|
|
|
|
/* If we are still cold then hit the air brakes */
|
|
|
|
if (cold) {
|
|
printf("Halted while still in the ICE age.\n");
|
|
printf("Hit a key to reboot\n");
|
|
cngetc();
|
|
boot0();
|
|
}
|
|
|
|
/*
|
|
* Depending on how we got here and with what intructions, choose
|
|
* the actions to take. (See the actions defined above)
|
|
*/
|
|
|
|
if (panicstr)
|
|
action = PANIC_ACTION;
|
|
else if (howto & RB_HALT)
|
|
action = HALT_ACTION;
|
|
else
|
|
action = REBOOT_ACTION;
|
|
|
|
/*
|
|
* If RB_NOSYNC was not specified sync the discs.
|
|
* Note: Unless cold is set to 1 here, syslogd will die during the unmount.
|
|
* It looks like syslogd is getting woken up only to find that it cannot
|
|
* page part of the binary in as the filesystem has been unmounted.
|
|
*/
|
|
|
|
|
|
if (!(howto & RB_NOSYNC)) {
|
|
cold = 1; /* no sleeping etc. */
|
|
bootsync();
|
|
}
|
|
|
|
/* Say NO to interrupts */
|
|
|
|
splhigh();
|
|
|
|
#ifdef KSHELL
|
|
|
|
/* Now enter our crude debug shell if required. Soon to be replaced with DDB */
|
|
|
|
if (action & ACTION_KSHELL)
|
|
shell();
|
|
#else
|
|
if (action & ACTION_KSHELL) {
|
|
printf("Halted.\n");
|
|
printf("Hit a key to reboot ");
|
|
cngetc();
|
|
}
|
|
#endif
|
|
|
|
/* Auto reboot overload protection */
|
|
|
|
/*
|
|
* This code stops the kernel entering an endless loop of reboot - panic
|
|
* cycles. This will only effect kernels that have been configured to
|
|
* reboot on a panic and will have the effect of stopping further reboots
|
|
* after it has rebooted 16 times after panics and clean halt or reboot
|
|
* will reset the counter.
|
|
*/
|
|
|
|
/*
|
|
* Have we done 16 reboots in a row ? If so halt rather than reboot
|
|
* since 16 panics in a row without 1 clean halt means something is
|
|
* seriously wrong
|
|
*/
|
|
|
|
if (cmos_read(RTC_ADDR_REBOOTCNT) > 16)
|
|
action = (action & ~ACTION_REBOOT) | ACTION_HALT;
|
|
|
|
/*
|
|
* If we are rebooting on a panic then up the reboot count otherwise reset
|
|
* This will thus be reset if the kernel changes the boot action from
|
|
* reboot to halt due to too any reboots.
|
|
*/
|
|
|
|
if ((action & ACTION_REBOOT) && panicstr)
|
|
cmos_write(RTC_ADDR_REBOOTCNT,
|
|
cmos_read(RTC_ADDR_REBOOTCNT) + 1);
|
|
else
|
|
cmos_write(RTC_ADDR_REBOOTCNT, 0);
|
|
|
|
/*
|
|
* If we need a RiscBSD reboot, request it but setting a bit in the CMOS RAM
|
|
* This can be detected by the RiscBSD boot loader during a RISC OS boot
|
|
* No other way to do this as RISC OS is in ROM.
|
|
*/
|
|
|
|
if (action & ACTION_REBOOT)
|
|
cmos_write(RTC_ADDR_BOOTOPTS,
|
|
cmos_read(RTC_ADDR_BOOTOPTS) | 0x02);
|
|
|
|
/* If we need to do a dump, do it */
|
|
|
|
if ((howto & RB_DUMP) && (action & ACTION_DUMP)) {
|
|
savectx(&dumppcb);
|
|
dumpsys();
|
|
}
|
|
|
|
/* Run any shutdown hooks */
|
|
|
|
printf("Running shutdown hooks ...\n");
|
|
doshutdownhooks();
|
|
|
|
/* Make sure IRQ's are disabled */
|
|
|
|
IRQdisable;
|
|
|
|
/* Tell the user we are booting */
|
|
|
|
printf("boot...");
|
|
|
|
/* Give the user time to read the last couple of lines of text. */
|
|
|
|
for (loop = 5; loop > 0; --loop) {
|
|
printf("%d..", loop);
|
|
delay(500000);
|
|
}
|
|
|
|
boot0();
|
|
}
|
|
|
|
|
|
/* Sync the discs and unmount the filesystems */
|
|
|
|
void
|
|
bootsync(void)
|
|
{
|
|
/* int iter;
|
|
int nbusy;
|
|
struct buf *bp;*/
|
|
static int bootsyncdone = 0;
|
|
|
|
if (bootsyncdone) return;
|
|
|
|
bootsyncdone = 1;
|
|
|
|
/* Make sure we can still manage to do things */
|
|
|
|
if (GetCPSR() & I32_bit) {
|
|
/*
|
|
* If we get then boot has been called with out RB_NOSYNC and interrupts were
|
|
* disabled. This means the boot() call did not come from a user process e.g.
|
|
* shutdown, but must have come from somewhere in the kernel.
|
|
*/
|
|
|
|
IRQenable;
|
|
printf("Warning IRQ's disabled during boot()\n");
|
|
}
|
|
|
|
vfs_shutdown();
|
|
}
|
|
|
|
|
|
/*
|
|
* Estimated loop for n microseconds
|
|
*/
|
|
|
|
/* Need to re-write this to use the timers */
|
|
|
|
/* One day soon I will actually do this */
|
|
|
|
void
|
|
delay(n)
|
|
u_int n;
|
|
{
|
|
u_int i;
|
|
|
|
while (--n > 0)
|
|
for (i = 8; --i;);
|
|
}
|
|
|
|
|
|
/*
|
|
* u_int initarm(BootConfig *bootconf)
|
|
*
|
|
* Initial entry point on startup. This gets called before main() is
|
|
* entered.
|
|
* It should be responcible for setting up everything that must be
|
|
* in place when main is called.
|
|
* This includes
|
|
* Taking a copy of the boot configuration structure.
|
|
* Initialising the physical console so characters can be printed.
|
|
* Setting up page tables for the kernel
|
|
* Relocating the kernel to the bottom of physical memory
|
|
*/
|
|
|
|
/* This routine is frightening mess ! This is what my mind looks like -mark */
|
|
|
|
u_int
|
|
initarm(bootconf)
|
|
BootConfig *bootconf;
|
|
{
|
|
int loop;
|
|
int loop1;
|
|
u_int logical;
|
|
u_int physical;
|
|
u_int kerneldatasize;
|
|
u_int l1pagetable;
|
|
u_int l2pagetable;
|
|
extern char page0[], page0_end[];
|
|
struct exec *kernexec = (struct exec *)KERNEL_BASE;
|
|
|
|
/* Copy the boot configuration structure */
|
|
|
|
bootconfig = *bootconf;
|
|
|
|
/*
|
|
* Initialise the video memory descriptor
|
|
*
|
|
* This will change in the future to correctly report DRAM as well
|
|
* but for the moment hardwire it. This will allow the console code
|
|
* to use the structure now.
|
|
*
|
|
* Note: all references to the video memory virtual/physical address
|
|
* should go via this structure.
|
|
*/
|
|
|
|
/*
|
|
* In the future ...
|
|
*
|
|
* All console output will be postponed until the primary bootstrap
|
|
* has been completed so that we have had a chance to reserve some
|
|
* memory for the video system if we do not have separate VRAM.
|
|
*/
|
|
|
|
videomemory.vidm_vbase = bootconfig.display_start;
|
|
videomemory.vidm_pbase = VRAM_BASE;
|
|
videomemory.vidm_type = VIDEOMEM_TYPE_VRAM;
|
|
videomemory.vidm_size = bootconfig.display_size;
|
|
|
|
/*
|
|
* Initialise the physical console
|
|
* This is done in main() but for the moment we do it here so that
|
|
* we can use printf in initarm() before main() has been called.
|
|
*/
|
|
|
|
consinit();
|
|
|
|
/* Talk to the user */
|
|
|
|
printf("initarm...\n");
|
|
|
|
printf("Kernel loaded from file %s\n", bootconfig.kernelname);
|
|
printf("Kernel arg string %s\n", (char *)bootconfig.argvirtualbase);
|
|
|
|
printf("\nBoot configuration structure reports the following memory\n");
|
|
|
|
printf(" DRAM block 0a at %08x size %08x DRAM block 0b at %08x size %08x\n\r",
|
|
bootconfig.dram[0].address,
|
|
bootconfig.dram[0].pages * bootconfig.pagesize,
|
|
bootconfig.dram[1].address,
|
|
bootconfig.dram[1].pages * bootconfig.pagesize);
|
|
printf(" DRAM block 1a at %08x size %08x DRAM block 1b at %08x size %08x\n\r",
|
|
bootconfig.dram[2].address,
|
|
bootconfig.dram[2].pages * bootconfig.pagesize,
|
|
bootconfig.dram[3].address,
|
|
bootconfig.dram[3].pages * bootconfig.pagesize);
|
|
printf(" VRAM block 0 at %08x size %08x\n\r",
|
|
bootconfig.vram[0].address,
|
|
bootconfig.vram[0].pages * bootconfig.pagesize);
|
|
|
|
printf(" videomem = %08x %08x\n", bootconfig.display_start, videomemory.vidm_vbase);
|
|
|
|
/* Check to make sure the page size is correct */
|
|
|
|
if (NBPG != bootconfig.pagesize)
|
|
panic("Page size is not %d bytes\n", NBPG);
|
|
|
|
/*
|
|
* Ok now we have the hard bit.
|
|
* We have the kernel allocated up high. The rest of the memory map is
|
|
* available. We are still running on RISC OS page tables.
|
|
*
|
|
* We need to construct new page tables move the kernel in physical
|
|
* memory and switch to them.
|
|
*
|
|
* The booter will have left us 6 pages at the top of memory.
|
|
* Two of these are used as L2 page tables and the other 4 form the L1
|
|
* page table.
|
|
*/
|
|
|
|
/*
|
|
* Ok we must construct own own page table tables.
|
|
* Once we have these we can reorganise the memory as required
|
|
*/
|
|
|
|
/*
|
|
* We better check to make sure the booter has set up the scratch
|
|
* area for us correctly. We use this area to create temporary pagetables
|
|
* while we reorganise the memory map.
|
|
*/
|
|
|
|
if ((bootconfig.scratchphysicalbase & 0x3fff) != 0)
|
|
panic("initarm: Scratch area not aligned on 16KB boundry\n");
|
|
|
|
if ((bootconfig.scratchsize < 0xc000) != 0)
|
|
panic("initarm: Scratch area too small (need >= 48KB)\n");
|
|
|
|
/*
|
|
* Ok start the primary bootstrap.
|
|
* The primary bootstrap basically replaces the booter page tables with
|
|
* new ones that it creates in the boot scratch area. These page tables
|
|
* map the rest of the physical memory into the virtaul memory map.
|
|
* This allows low physical memory to be accessed to create the
|
|
* kernels page tables, relocate the kernel code from high physical
|
|
* memory to low physical memory etc.
|
|
*/
|
|
|
|
printf("initarm: Primary bootstrap ... ");
|
|
|
|
/*
|
|
* Update the videomemory structure to reflect the mapping changes
|
|
*/
|
|
|
|
videomemory.vidm_vbase = VMEM_VBASE;
|
|
videomemory.vidm_pbase = VRAM_BASE;
|
|
videomemory.vidm_type = VIDEOMEM_TYPE_VRAM;
|
|
videomemory.vidm_size = bootconfig.vram[0].pages * NBPG;
|
|
|
|
kerneldatasize = bootconfig.kernsize + bootconfig.argsize;
|
|
|
|
l2pagetable = bootconfig.scratchvirtualbase;
|
|
l1pagetable = l2pagetable + 0x4000;
|
|
|
|
/*
|
|
* Now we construct a L2 pagetables for the VRAM, the current kernel memory
|
|
* and the new kernel memory
|
|
*/
|
|
|
|
for (logical = 0; logical < 0x200000; logical += NBPG) {
|
|
map_entry(l2pagetable + 0x1000, logical,
|
|
bootconfig.vram[0].address + logical);
|
|
map_entry(l2pagetable + 0x1000, logical + 0x200000,
|
|
bootconfig.vram[0].address + logical);
|
|
}
|
|
|
|
for (logical = 0; logical < kerneldatasize + bootconfig.scratchsize;
|
|
logical += NBPG) {
|
|
map_entry(l2pagetable + 0x3000, logical,
|
|
bootconfig.kernphysicalbase + logical);
|
|
}
|
|
|
|
#if NHYDRABUS > 0
|
|
for (logical = 0; logical < 0x200000; logical += NBPG) {
|
|
map_entry(l2pagetable + 0x2000, logical,
|
|
bootconfig.dram[0].address + logical + NBPG);
|
|
}
|
|
#else
|
|
for (logical = 0; logical < 0x200000; logical += NBPG) {
|
|
map_entry(l2pagetable + 0x2000, logical,
|
|
bootconfig.dram[0].address + logical);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Now we construct the L1 pagetable. This only needs the minimum to
|
|
* keep us going until we can contruct the proper kernel L1 page table.
|
|
*/
|
|
|
|
map_section(l1pagetable, VIDC_BASE, VIDC_HW_BASE);
|
|
map_section(l1pagetable, IOMD_BASE, IOMD_HW_BASE);
|
|
|
|
map_pagetable(l1pagetable, 0x00000000,
|
|
bootconfig.scratchphysicalbase + 0x2000);
|
|
map_pagetable(l1pagetable, KERNEL_BASE,
|
|
bootconfig.scratchphysicalbase + 0x3000);
|
|
map_pagetable(l1pagetable, VMEM_VBASE,
|
|
bootconfig.scratchphysicalbase + 0x1000);
|
|
|
|
/* Print some debugging info */
|
|
|
|
/*
|
|
printf("page tables look like this ...\n");
|
|
printf("V0x00000000 - %08x\n", ReadWord(l1pagetable + 0x0000));
|
|
printf("V0x03500000 - %08x\n", ReadWord(l1pagetable + 0x00d4));
|
|
printf("V0x00200000 - %08x\n", ReadWord(l1pagetable + 0x0080));
|
|
printf("V0xf4000000 - %08x\n", ReadWord(l1pagetable + 0x3d00));
|
|
printf("V0xf0000000 - %08x\n", ReadWord(l1pagetable + 0x3c00));
|
|
printf("page dir = P%08x\n", bootconfig.scratchphysicalbase + 0x4000);
|
|
printf("l1= V%08x\n", l1pagetable);
|
|
*/
|
|
|
|
/*
|
|
* Pheww right we are ready to switch page tables !!!
|
|
* The L1 table is at bootconfig.scratchphysicalbase + 0x4000
|
|
*/
|
|
|
|
/* Switch tables */
|
|
|
|
setttb(bootconfig.scratchphysicalbase + 0x4000);
|
|
|
|
/* Since we have mapped the VRAM up into kernel space we must now update the
|
|
* the bootconfig and display structures by hand.
|
|
*/
|
|
|
|
bootconfig.display_start = VMEM_VBASE;
|
|
physcon_display_base(VMEM_VBASE);
|
|
|
|
printf("done.\n");
|
|
|
|
/*
|
|
* Ok we have finished the primary boot strap. All this has done is to
|
|
* allow us to access all the physical memory from known virtual
|
|
* location. We also now know that all the used pages are at the top
|
|
* of the physical memory and where they are in the virtual memory map.
|
|
*
|
|
* This should be the stage we are at at the end of the bootstrap when
|
|
* we have a two stage booter.
|
|
*
|
|
* The secondary bootstrap has the responcibility to sort locating the
|
|
* kernel to the correct address and for creating the kernel page tables.
|
|
* It must also set up various memory pointers that are used by pmap etc.
|
|
*/
|
|
|
|
process_kernel_args();
|
|
|
|
printf("initarm: Secondary bootstrap ... ");
|
|
|
|
/* Zero down the memory we mapped in for the secondary bootstrap */
|
|
|
|
bzero(0x00000000, 0x200000);
|
|
|
|
/* Set up the variables that define the availablilty of physcial memory */
|
|
|
|
physical_start = bootconfig.dram[0].address;
|
|
physical_freestart = physical_start;
|
|
physical_end = bootconfig.dram[bootconfig.dramblocks - 1].address
|
|
+ bootconfig.dram[bootconfig.dramblocks - 1].pages * NBPG;
|
|
physical_freeend = physical_end;
|
|
physical_memoryblock = 0;
|
|
free_pages = bootconfig.drampages;
|
|
|
|
for (loop = 0; loop < bootconfig.dramblocks; ++loop)
|
|
physmem += bootconfig.dram[loop].pages;
|
|
|
|
/*
|
|
* Reserve some pages at the top of the memory for later use
|
|
*
|
|
* This area is not currently used but could be used for the allocation
|
|
* of L1 page tables for each process.
|
|
* The size of this memory would be determined by the maximum number of
|
|
* processes.
|
|
*
|
|
* For the moment we just reserve a few pages just to make sure the
|
|
* system copes.
|
|
*/
|
|
|
|
physical_freeend -= videodram_size;
|
|
free_pages -= (videodram_size / NBPG);
|
|
videodram_start = physical_freeend;
|
|
|
|
physical_freeend -= PD_SIZE * max_processes;
|
|
free_pages -= 4 * max_processes;
|
|
pagetables_start = physical_freeend;
|
|
|
|
/* Right We have the bottom meg of memory mapped to 0x00000000
|
|
* so was can get at it. The kernel will ocupy the start of it.
|
|
* After the kernel/args we allocate some the the fixed page tables
|
|
* we need to get the system going.
|
|
* We allocate one page directory and 8 page tables and store the
|
|
* physical addresses in the kernel_pt_table array.
|
|
* Must remember that neither the page L1 or L2 page tables are the same
|
|
* size as a page !
|
|
*
|
|
* Ok the next bit of physical allocate may look complex but it is
|
|
* simple really. I have done it like this so that no memory gets wasted
|
|
* during the allocate of various pages and tables that are all different
|
|
* sizes.
|
|
* The start address will be page aligned.
|
|
* We allocate the kernel page directory on the first free 16KB boundry
|
|
* we find.
|
|
* We allocate the kernel page tables on the first 1KB boundry we find.
|
|
* We allocate 9 PT's. This means that in the process we
|
|
* KNOW that we will encounter at least 1 16KB boundry.
|
|
*
|
|
* Eventually if the top end of the memory gets used for process L1 page
|
|
* tables the kernel L1 page table may be moved up there.
|
|
*/
|
|
|
|
/*
|
|
* The Simtec Hydra board needs a 2MB aligned page for bootstrapping.
|
|
* Simplest thing is to nick the bottom page of physical memory.
|
|
*/
|
|
|
|
#if NHYDRABUS > 0
|
|
hydrascratch.physical = physical_start;
|
|
physical_start += NBPG;
|
|
--free_pages;
|
|
#endif
|
|
|
|
physical = physical_start + kerneldatasize;
|
|
/* printf("physical=%08x next_phys=%08x\n", physical, pmap_next_phys_page(physical - NBPG));*/
|
|
loop1 = 1;
|
|
kernel_pt_table[0] = 0;
|
|
for (loop = 0; loop < 15; ++loop) {
|
|
if ((physical & (PD_SIZE-1)) == 0 && kernel_pt_table[0] == 0) {
|
|
kernel_pt_table[KERNEL_PT_PAGEDIR] = physical;
|
|
bzero((char *)physical - physical_start, PD_SIZE);
|
|
physical += PD_SIZE;
|
|
} else {
|
|
kernel_pt_table[loop1] = physical;
|
|
bzero((char *)physical - physical_start, PT_SIZE);
|
|
physical += PT_SIZE;
|
|
++loop1;
|
|
}
|
|
}
|
|
|
|
/* A bit of debugging info */
|
|
|
|
/*
|
|
for (loop=0; loop < 10; ++loop)
|
|
printf("%d - P%08x\n", loop, kernel_pt_table[loop]);
|
|
*/
|
|
|
|
/* This should never be able to happen but better confirm that. */
|
|
|
|
if ((kernel_pt_table[0] & (PD_SIZE-1)) != 0)
|
|
panic("initarm: Failed to align the kernel page directory\n");
|
|
|
|
/* Update the address of the first free page of physical memory */
|
|
|
|
physical_freestart = physical;
|
|
/* printf("physical_fs=%08x next_phys=%08x\n", (u_int)physical_freestart, (u_int)pmap_next_phys_page(physical_freestart - NBPG));*/
|
|
free_pages -= (physical - physical_start) / NBPG;
|
|
|
|
/* Allocate a page for the system page mapped to 0x00000000 */
|
|
|
|
systempage.physical = physical_freestart;
|
|
physical_freestart += NBPG;
|
|
/* printf("(0)physical_fs=%08x next_phys=%08x\n", (u_int)physical_freestart, (u_int)pmap_next_phys_page(physical_freestart - NBPG));*/
|
|
--free_pages;
|
|
bzero((char *)systempage.physical - physical_start, NBPG);
|
|
|
|
/* Allocate another 3 pages for the stacks in different CPU modes. */
|
|
|
|
irqstack.physical = physical_freestart;
|
|
physical_freestart += NBPG;
|
|
abtstack.physical = physical_freestart;
|
|
physical_freestart += NBPG;
|
|
undstack.physical = physical_freestart;
|
|
physical_freestart += NBPG;
|
|
bzero((char *)irqstack.physical - physical_start, 3*NBPG);
|
|
free_pages -= 3;
|
|
irqstack.virtual = KERNEL_BASE + irqstack.physical-physical_start;
|
|
abtstack.virtual = KERNEL_BASE + abtstack.physical-physical_start;
|
|
undstack.virtual = KERNEL_BASE + undstack.physical-physical_start;
|
|
/* printf("(1)physical_fs=%08x next_phys=%08x\n", (u_int)physical_freestart, (u_int)pmap_next_phys_page(physical_freestart - NBPG));*/
|
|
|
|
kernelstack.physical = physical_freestart;
|
|
physical_freestart += UPAGES * NBPG;
|
|
bzero((char *)kernelstack.physical - physical_start, UPAGES * NBPG);
|
|
free_pages -= UPAGES;
|
|
|
|
/* printf("(2)physical_fs=%08x next_phys=%08x\n", (u_int)physical_freestart, (u_int)pmap_next_phys_page(physical_freestart - NBPG));*/
|
|
|
|
|
|
kernelstack.virtual = KERNEL_BASE + kernelstack.physical
|
|
- physical_start;
|
|
|
|
msgbufphys = physical_freestart;
|
|
physical_freestart += round_page(sizeof(struct msgbuf));
|
|
free_pages -= round_page(sizeof(struct msgbuf)) / NBPG;
|
|
|
|
/* printf("physical_fs=%08x next_phys=%08x\n", (u_int)physical_freestart, (u_int)pmap_next_phys_page(physical_freestart - NBPG));*/
|
|
|
|
/* Ok we have allocated physical pages for the primary kernel page tables */
|
|
|
|
/* Now we fill in the L2 pagetable for the kernel code/data */
|
|
|
|
l2pagetable = kernel_pt_table[KERNEL_PT_KERNEL] - physical_start;
|
|
|
|
if (N_GETMAGIC(kernexec[0]) == ZMAGIC) {
|
|
/* printf("[ktext read-only] ");
|
|
printf("[%08x %08x %08x] \n", (u_int)kerneldatasize, (u_int)kernexec->a_text,
|
|
(u_int)(kernexec->a_text+kernexec->a_data+kernexec->a_bss));*/
|
|
/* printf("physical start=%08x physical freestart=%08x hydra phys=%08x\n", physical_start, physical_freestart, hydrascratch.physical);*/
|
|
for (logical = 0; logical < 0x00/*kernexec->a_text*/;
|
|
logical += NBPG)
|
|
map_entry_ro(l2pagetable, logical, physical_start
|
|
+ logical);
|
|
for (; logical < kerneldatasize; logical += NBPG)
|
|
map_entry(l2pagetable, logical, physical_start
|
|
+ logical);
|
|
} else
|
|
for (logical = 0; logical < kerneldatasize; logical += NBPG)
|
|
map_entry(l2pagetable, logical, physical_start
|
|
+ logical);
|
|
|
|
/* Map the stack pages */
|
|
|
|
map_entry(l2pagetable, irqstack.physical-physical_start,
|
|
irqstack.physical);
|
|
map_entry(l2pagetable, abtstack.physical-physical_start,
|
|
abtstack.physical);
|
|
map_entry(l2pagetable, undstack.physical-physical_start,
|
|
undstack.physical);
|
|
map_entry(l2pagetable, kernelstack.physical - physical_start,
|
|
kernelstack.physical);
|
|
map_entry(l2pagetable, kernelstack.physical + NBPG - physical_start,
|
|
kernelstack.physical + NBPG);
|
|
|
|
l2pagetable = kernel_pt_table[KERNEL_PT_KSTACK] - physical_start;
|
|
|
|
map_entry(l2pagetable, 0x003fe000, kernelstack.physical);
|
|
map_entry(l2pagetable, 0x003ff000, kernelstack.physical + NBPG);
|
|
|
|
/* Now we fill in the L2 pagetable for the VRAM */
|
|
|
|
/*
|
|
* Current architectures mean that the VRAM is always in 1 continuous
|
|
* bank.
|
|
* This means that we can just map the 2 meg that the VRAM would occupy.
|
|
* In theory we don't need a page table for VRAM, we could section map
|
|
* it but we would need the page tables if DRAM was in use.
|
|
*/
|
|
|
|
l2pagetable = kernel_pt_table[KERNEL_PT_VMEM] - physical_start;
|
|
|
|
for (logical = 0; logical < 0x200000; logical += NBPG) {
|
|
map_entry(l2pagetable, logical, bootconfig.vram[0].address
|
|
+ logical);
|
|
map_entry(l2pagetable, logical + 0x200000,
|
|
bootconfig.vram[0].address + logical);
|
|
}
|
|
|
|
/* Map entries in the page table used to map PDE's */
|
|
|
|
l2pagetable = kernel_pt_table[KERNEL_PT_PDE] - physical_start;
|
|
map_entry(l2pagetable, 0x0000000,
|
|
kernel_pt_table[KERNEL_PT_PAGEDIR]);
|
|
map_entry(l2pagetable, 0x0001000,
|
|
kernel_pt_table[KERNEL_PT_PAGEDIR] + 0x1000);
|
|
map_entry(l2pagetable, 0x0002000,
|
|
kernel_pt_table[KERNEL_PT_PAGEDIR] + 0x2000);
|
|
map_entry(l2pagetable, 0x0003000,
|
|
kernel_pt_table[KERNEL_PT_PAGEDIR] + 0x3000);
|
|
|
|
/*
|
|
* Map entries in the page table used to map PTE's
|
|
* Basically every kernel page table gets mapped here
|
|
*/
|
|
|
|
l2pagetable = kernel_pt_table[KERNEL_PT_PTE] - physical_start;
|
|
map_entry(l2pagetable, (KERNEL_BASE >> (PGSHIFT-2)),
|
|
kernel_pt_table[KERNEL_PT_KERNEL]);
|
|
map_entry(l2pagetable, (PAGE_DIRS_BASE >> (PGSHIFT-2)),
|
|
kernel_pt_table[KERNEL_PT_PDE]);
|
|
map_entry(l2pagetable, (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT-2)),
|
|
kernel_pt_table[KERNEL_PT_PTE]);
|
|
map_entry(l2pagetable, (VMEM_VBASE >> (PGSHIFT-2)),
|
|
kernel_pt_table[KERNEL_PT_VMEM]);
|
|
map_entry(l2pagetable, (0x00000000 >> (PGSHIFT-2)),
|
|
kernel_pt_table[KERNEL_PT_SYS]);
|
|
map_entry(l2pagetable, ((KERNEL_VM_BASE + 0x00000000) >> (PGSHIFT-2)),
|
|
kernel_pt_table[KERNEL_PT_VMDATA0]);
|
|
map_entry(l2pagetable, ((KERNEL_VM_BASE + 0x00400000) >> (PGSHIFT-2)),
|
|
kernel_pt_table[KERNEL_PT_VMDATA1]);
|
|
map_entry(l2pagetable, ((KERNEL_VM_BASE + 0x00800000) >> (PGSHIFT-2)),
|
|
kernel_pt_table[KERNEL_PT_VMDATA2]);
|
|
map_entry(l2pagetable, ((KERNEL_VM_BASE + 0x00c00000) >> (PGSHIFT-2)),
|
|
kernel_pt_table[KERNEL_PT_VMDATA3]);
|
|
map_entry(l2pagetable, ((KERNEL_VM_BASE + 0x01000000) >> (PGSHIFT-2)),
|
|
kernel_pt_table[KERNEL_PT_VMDATA4]);
|
|
map_entry(l2pagetable, ((KERNEL_VM_BASE + 0x01400000) >> (PGSHIFT-2)),
|
|
kernel_pt_table[KERNEL_PT_VMDATA5]);
|
|
map_entry(l2pagetable, ((KERNEL_VM_BASE + 0x01800000) >> (PGSHIFT-2)),
|
|
kernel_pt_table[KERNEL_PT_VMDATA6]);
|
|
map_entry(l2pagetable, ((KERNEL_VM_BASE + 0x01c00000) >> (PGSHIFT-2)),
|
|
kernel_pt_table[KERNEL_PT_VMDATA7]);
|
|
map_entry(l2pagetable, ((0xef800000) >> (PGSHIFT-2)),
|
|
kernel_pt_table[KERNEL_PT_KSTACK]);
|
|
|
|
map_entry(l2pagetable, (0xf5000000 >> (PGSHIFT-2)),
|
|
kernel_pt_table[KERNEL_PT_PAGEDIR] + 0x0000);
|
|
map_entry(l2pagetable, (0xf5400000 >> (PGSHIFT-2)),
|
|
kernel_pt_table[KERNEL_PT_PAGEDIR] + 0x1000);
|
|
map_entry(l2pagetable, (0xf5800000 >> (PGSHIFT-2)),
|
|
kernel_pt_table[KERNEL_PT_PAGEDIR] + 0x2000);
|
|
map_entry(l2pagetable, (0xf5c00000 >> (PGSHIFT-2)),
|
|
kernel_pt_table[KERNEL_PT_PAGEDIR] + 0x3000);
|
|
|
|
/*
|
|
* Map the system page in the kernel page table for the bottom 1Meg
|
|
* of the virtual memory map.
|
|
*/
|
|
|
|
l2pagetable = kernel_pt_table[KERNEL_PT_SYS] - physical_start;
|
|
map_entry(l2pagetable, 0x0000000, systempage.physical);
|
|
|
|
/* Now we construct the L1 pagetable */
|
|
|
|
l1pagetable = kernel_pt_table[KERNEL_PT_PAGEDIR] - physical_start;
|
|
|
|
/* Map the VIDC20, IOMD, COMBO and podules */
|
|
|
|
/* Map the VIDC20 */
|
|
|
|
map_section(l1pagetable, VIDC_BASE, VIDC_HW_BASE);
|
|
|
|
/* Map the IOMD (and SLOW and MEDIUM simple podules) */
|
|
|
|
map_section(l1pagetable, IOMD_BASE, IOMD_HW_BASE);
|
|
|
|
/* Map the COMBO (and module space) */
|
|
|
|
map_section(l1pagetable, IO_BASE, IO_HW_BASE);
|
|
|
|
/* Map the L2 pages tables in the L1 page table */
|
|
|
|
map_pagetable(l1pagetable, 0x00000000,
|
|
kernel_pt_table[KERNEL_PT_SYS]);
|
|
map_pagetable(l1pagetable, 0xef800000,
|
|
kernel_pt_table[KERNEL_PT_KSTACK]);
|
|
map_pagetable(l1pagetable, KERNEL_BASE,
|
|
kernel_pt_table[KERNEL_PT_KERNEL]);
|
|
map_pagetable(l1pagetable, KERNEL_VM_BASE + 0x00000000,
|
|
kernel_pt_table[KERNEL_PT_VMDATA0]);
|
|
map_pagetable(l1pagetable, KERNEL_VM_BASE + 0x00400000,
|
|
kernel_pt_table[KERNEL_PT_VMDATA1]);
|
|
map_pagetable(l1pagetable, KERNEL_VM_BASE + 0x00800000,
|
|
kernel_pt_table[KERNEL_PT_VMDATA2]);
|
|
map_pagetable(l1pagetable, KERNEL_VM_BASE + 0x00c00000,
|
|
kernel_pt_table[KERNEL_PT_VMDATA3]);
|
|
map_pagetable(l1pagetable, KERNEL_VM_BASE + 0x01000000,
|
|
kernel_pt_table[KERNEL_PT_VMDATA4]);
|
|
map_pagetable(l1pagetable, KERNEL_VM_BASE + 0x01400000,
|
|
kernel_pt_table[KERNEL_PT_VMDATA5]);
|
|
map_pagetable(l1pagetable, KERNEL_VM_BASE + 0x01800000,
|
|
kernel_pt_table[KERNEL_PT_VMDATA6]);
|
|
map_pagetable(l1pagetable, KERNEL_VM_BASE + 0x01c00000,
|
|
kernel_pt_table[KERNEL_PT_VMDATA7]);
|
|
map_pagetable(l1pagetable, PAGE_DIRS_BASE,
|
|
kernel_pt_table[KERNEL_PT_PDE]);
|
|
map_pagetable(l1pagetable, PROCESS_PAGE_TBLS_BASE,
|
|
kernel_pt_table[KERNEL_PT_PTE]);
|
|
map_pagetable(l1pagetable, VMEM_VBASE,
|
|
kernel_pt_table[KERNEL_PT_VMEM]);
|
|
|
|
/* Bit more debugging info */
|
|
|
|
/*
|
|
printf("page tables look like this ...\n");
|
|
printf("V0x00000000 - %08x\n", ReadWord(l1pagetable + 0x0000));
|
|
printf("V0x03200000 - %08x\n", ReadWord(l1pagetable + 0x00c8));
|
|
printf("V0x03500000 - %08x\n", ReadWord(l1pagetable + 0x00d4));
|
|
printf("V0xf0000000 - %08x\n", ReadWord(l1pagetable + 0x3c00));
|
|
printf("V0xf1000000 - %08x\n", ReadWord(l1pagetable + 0x3c40));
|
|
printf("V0xf2000000 - %08x\n", ReadWord(l1pagetable + 0x3c80));
|
|
printf("V0xf3000000 - %08x\n", ReadWord(l1pagetable + 0x3cc0));
|
|
printf("V0xf3300000 - %08x\n", ReadWord(l1pagetable + 0x3ccc));
|
|
printf("V0xf4000000 - %08x\n", ReadWord(l1pagetable + 0x3d00));
|
|
printf("V0xf6000000 - %08x\n", ReadWord(l1pagetable + 0x3d80));
|
|
*/
|
|
/* printf("V0xefc00000 - %08x\n", ReadWord(l1pagetable + 0x3bf8));
|
|
printf("V0xef800000 - %08x\n", ReadWord(l1pagetable + 0x3bfc));*/
|
|
|
|
/*
|
|
* Now we have the real page tables in place so we can switch to them.
|
|
* Once this is done we will be running with the REAL kernel page tables.
|
|
*/
|
|
|
|
/*
|
|
* The last thing we must do is copy the kernel down to the new memory.
|
|
* This copies all our kernel data structures and variables as well
|
|
* which is why it is left to the last moment.
|
|
*/
|
|
|
|
printf("mapping ... ");
|
|
|
|
bcopy((char *)KERNEL_BASE, (char *)0x00000000, kerneldatasize);
|
|
|
|
/* Switch tables */
|
|
|
|
setttb(kernel_pt_table[KERNEL_PT_PAGEDIR]);
|
|
|
|
printf("done.\n");
|
|
|
|
/* Right set up the vectors at the bottom of page 0 */
|
|
|
|
bcopy(page0, (char *)0x00000000, page0_end - page0);
|
|
|
|
/*
|
|
* Pages were allocated during the secondary bootstrap for the
|
|
* stacks for different CPU modes.
|
|
* We must now set the r13 registers in the different CPU modes to
|
|
* point to these stacks.
|
|
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
|
|
* of the stack memory.
|
|
*/
|
|
|
|
#ifdef DIAGNOSTIC
|
|
printf("IRQ stack V%08x P%08x\n", (u_int) irqstack.virtual,
|
|
(u_int) irqstack.physical);
|
|
printf("ABT stack V%08x P%08x\n", (u_int) abtstack.virtual,
|
|
(u_int) abtstack.physical);
|
|
printf("UND stack V%08x P%08x\n", (u_int) undstack.virtual,
|
|
(u_int) undstack.physical);
|
|
#endif
|
|
|
|
printf("init subsystems: stacks ");
|
|
|
|
set_stackptr(PSR_IRQ32_MODE, irqstack.virtual + NBPG);
|
|
set_stackptr(PSR_ABT32_MODE, abtstack.virtual + NBPG);
|
|
set_stackptr(PSR_UND32_MODE, undstack.virtual + NBPG);
|
|
|
|
if (pmap_debug_level >= 0)
|
|
printf("kstack V%08x P%08x\n", (int) kernelstack.virtual,
|
|
(int) kernelstack.physical);
|
|
|
|
/*
|
|
* Well we should set a data abort handler.
|
|
* Once things get going this will change as we will need a proper handler.
|
|
* Until then we will use a handler that just panics but tells us
|
|
* why.
|
|
* Initialisation of the vectors will just panic on a data abort.
|
|
* This just fills in a slighly better one.
|
|
*/
|
|
|
|
printf("vectors ");
|
|
data_abort_handler_address = (u_int)data_abort_handler;
|
|
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
|
|
undefined_handler_address = (u_int)undefinedinstruction_bounce;
|
|
|
|
#ifdef SA110
|
|
idcflush();
|
|
tlbflush();
|
|
#endif
|
|
|
|
/* Diagnostic stuff. while writing the boot code */
|
|
|
|
/*
|
|
for (loop = 0x0; loop < 0x1000; ++loop) {
|
|
if (ReadWord(PAGE_DIRS_BASE + loop * 4) != 0)
|
|
printf("Pagetable for V%08x = %08x\n", loop << 20,
|
|
ReadWord(0xf2000000 + loop * 4));
|
|
}
|
|
|
|
*/
|
|
|
|
/* Diagnostic stuff. while writing the boot code */
|
|
|
|
/*
|
|
for (loop = 0x0; loop < 0x400; ++loop) {
|
|
if (ReadWord(kernel_pt_table[KERNEL_PT_PTE] + loop * 4) != 0)
|
|
printf("Pagetable for V%08x P%08x = %08x\n",
|
|
loop << 22, kernel_pt_table[KERNEL_PT_PTE]+loop*4,
|
|
ReadWord(kernel_pt_table[KERNEL_PT_PTE]+loop * 4));
|
|
}
|
|
*/
|
|
|
|
/* At last !
|
|
* We now have the kernel in physical memory from the bottom upwards.
|
|
* Kernel page tables are physically above this.
|
|
* The kernel is mapped to 0xf0000000
|
|
* The kernel data PTs will handle the mapping of 0xf1000000-0xf1ffffff
|
|
* 2Meg of VRAM is mapped to 0xf4000000
|
|
* The kernel page directory is mapped to 0xf3000000
|
|
* The page tables are mapped to 0xefc00000
|
|
* The IOMD is mapped to 0xf6000000
|
|
* The VIDC is mapped to 0xf6100000
|
|
*/
|
|
|
|
/* Initialise the undefined instruction handlers */
|
|
|
|
printf("undefined ");
|
|
undefined_init();
|
|
|
|
/* Boot strap pmap telling it where the kernel page table is */
|
|
|
|
printf("pmap ");
|
|
pmap_bootstrap(PAGE_DIRS_BASE);
|
|
|
|
/* Setup the IRQ system */
|
|
|
|
printf("irq ");
|
|
irq_init();
|
|
printf("done.\n");
|
|
|
|
#ifdef DDB
|
|
printf("ddb: ");
|
|
db_machine_init();
|
|
ddb_init();
|
|
|
|
if (boothowto & RB_KDB)
|
|
Debugger();
|
|
#endif
|
|
|
|
/* We return the new stack pointer address */
|
|
return(kernelstack.virtual + USPACE_SVC_STACK_TOP);
|
|
}
|
|
|
|
|
|
/*
|
|
* void cpu_startup(void)
|
|
*
|
|
* Machine dependant startup code.
|
|
*
|
|
*/
|
|
|
|
void
|
|
cpu_startup()
|
|
{
|
|
int loop;
|
|
vm_offset_t minaddr;
|
|
vm_offset_t maxaddr;
|
|
caddr_t sysbase;
|
|
caddr_t size;
|
|
vm_size_t bufsize;
|
|
int base, residual;
|
|
|
|
/* Set the cpu control register */
|
|
|
|
cpu_ctrl = CPU_CONTROL_MMU_ENABLE | CPU_CONTROL_32BP_ENABLE
|
|
| CPU_CONTROL_32BD_ENABLE | CPU_CONTROL_SYST_ENABLE;
|
|
|
|
if (cpu_cache & 1)
|
|
cpu_ctrl |= CPU_CONTROL_IDC_ENABLE;
|
|
if (cpu_cache & 2)
|
|
cpu_ctrl |= CPU_CONTROL_WBUF_ENABLE;
|
|
|
|
if (!(cpu_cache & 4))
|
|
cpu_ctrl |= CPU_CONTROL_CPCLK;
|
|
|
|
#ifdef CPU_LATE_ABORT
|
|
cpu_ctrl |= CPU_CONTROL_LABT_ENABLE;
|
|
#endif
|
|
|
|
#ifdef CPU_SA110
|
|
cpu_ctrl = CPU_CONTROL_MMU_ENABLE | CPU_CONTROL_32BP_ENABLE
|
|
| CPU_CONTROL_32BD_ENABLE | CPU_CONTROL_SYST_ENABLE;
|
|
#endif
|
|
|
|
/* Clear out the cache */
|
|
|
|
idcflush();
|
|
|
|
cpu_control(cpu_ctrl);
|
|
|
|
/* All domains MUST be clients, permissions are VERY important */
|
|
|
|
cpu_domains(DOMAIN_CLIENT);
|
|
|
|
/* Lock down zero page */
|
|
|
|
zero_page_readonly();
|
|
|
|
/*
|
|
* Initialize error message buffer (at end of core).
|
|
*/
|
|
|
|
/* msgbufphys was setup during the secondary boot strap */
|
|
|
|
for (loop = 0; loop < btoc(sizeof(struct msgbuf)); ++loop)
|
|
pmap_enter(pmap_kernel(),
|
|
(vm_offset_t)((caddr_t)msgbufp + loop * NBPG),
|
|
msgbufphys + loop * NBPG, VM_PROT_ALL, TRUE);
|
|
|
|
msgbufmapped = 1;
|
|
|
|
/*
|
|
* Identify ourselves for the msgbuf (everything printed earlier will
|
|
* not be buffered).
|
|
*/
|
|
|
|
printf(version);
|
|
|
|
printf("screen: %d x %d x %d\n", bootconfig.width + 1, bootconfig.height + 1, bootconfig.framerate);
|
|
|
|
if (cmos_read(RTC_ADDR_REBOOTCNT) > 0)
|
|
printf("Warning: REBOOTCNT = %d\n", cmos_read(RTC_ADDR_REBOOTCNT));
|
|
|
|
printf("real mem = %d (%d pages)\n", arm_page_to_byte(physmem), physmem);
|
|
|
|
/*
|
|
* Find out how much space we need, allocate it,
|
|
* and then give everything true virtual addresses.
|
|
*/
|
|
|
|
size = allocsys((caddr_t)0);
|
|
sysbase = (caddr_t)kmem_alloc(kernel_map, round_page(size));
|
|
if (sysbase == 0)
|
|
panic("cpu_startup: no room for system tables %d bytes required", (u_int)size);
|
|
if ((caddr_t)((allocsys(sysbase) - sysbase)) != size)
|
|
panic("cpu_startup: system table size inconsistency");
|
|
|
|
/*
|
|
* Now allocate buffers proper. They are different than the above
|
|
* in that they usually occupy more virtual memory than physical.
|
|
*/
|
|
|
|
bufsize = MAXBSIZE * nbuf;
|
|
buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
|
|
&maxaddr, bufsize, TRUE);
|
|
minaddr = (vm_offset_t)buffers;
|
|
if (vm_map_find(buffer_map, vm_object_allocate(bufsize),
|
|
(vm_offset_t)0, &minaddr, bufsize, FALSE) != KERN_SUCCESS)
|
|
panic("startup: cannot allocate buffers");
|
|
|
|
if ((bufpages / nbuf) >= btoc(MAXBSIZE)) {
|
|
/* don't want to alloc more physical mem than needed */
|
|
bufpages = btoc(MAXBSIZE) * nbuf;
|
|
}
|
|
|
|
base = bufpages / nbuf;
|
|
residual = bufpages % nbuf;
|
|
for (loop = 0; loop < nbuf; ++loop) {
|
|
vm_size_t curbufsize;
|
|
vm_offset_t curbuf;
|
|
|
|
/*
|
|
* First <residual> buffers get (base+1) physical pages
|
|
* allocated for them. The rest get (base) physical pages.
|
|
*
|
|
* The rest of each buffer occupies virtual space,
|
|
* but has no physical memory allocated for it.
|
|
*/
|
|
|
|
curbuf = (vm_offset_t)buffers + loop * MAXBSIZE;
|
|
curbufsize = CLBYTES * (loop < residual ? base+1 : base);
|
|
vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
|
|
vm_map_simplify(buffer_map, curbuf);
|
|
}
|
|
|
|
/*
|
|
* Allocate a submap for exec arguments. This map effectively
|
|
* limits the number of processes exec'ing at any time.
|
|
*/
|
|
|
|
exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
|
|
16*NCARGS, TRUE);
|
|
|
|
/*
|
|
* Allocate a submap for physio
|
|
*/
|
|
|
|
phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
|
|
VM_PHYS_SIZE, TRUE);
|
|
|
|
/*
|
|
* Finally, allocate mbuf pool. Since mclrefcnt is an off-size
|
|
* we use the more space efficient malloc in place of kmem_alloc.
|
|
*/
|
|
|
|
mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
|
|
M_MBUF, M_NOWAIT);
|
|
bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
|
|
mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
|
|
VM_MBUF_SIZE, FALSE);
|
|
|
|
/*
|
|
printf("mb_buf: map=%08x maxaddr = %08x mbutl = %08x\n", mb_map, maxaddr, mbutl);
|
|
*/
|
|
|
|
/*
|
|
* Initialise callouts
|
|
*/
|
|
|
|
callfree = callout;
|
|
|
|
for (loop = 1; loop < ncallout; ++loop)
|
|
callout[loop - 1].c_next = &callout[loop];
|
|
|
|
printf("avail mem = %d (%d pages)\n", (int)ptoa(cnt.v_free_count),
|
|
(int)ptoa(cnt.v_free_count) / NBPG);
|
|
printf("using %d buffers containing %d bytes of memory\n",
|
|
nbuf, bufpages * CLBYTES);
|
|
|
|
/*
|
|
* Set up buffers, so they can be used to read disk labels.
|
|
*/
|
|
|
|
bufinit();
|
|
|
|
proc0paddr = (struct user *)kernelstack.virtual;
|
|
proc0.p_addr = proc0paddr;
|
|
|
|
curpcb = &proc0.p_addr->u_pcb;
|
|
curpcb->pcb_flags = 0;
|
|
curpcb->pcb_und_sp = (u_int)proc0.p_addr + USPACE_UNDEF_STACK_TOP;
|
|
curpcb->pcb_sp = (u_int)proc0.p_addr + USPACE_SVC_STACK_TOP;
|
|
curpcb->pcb_pagedir = (pd_entry_t *)pmap_extract(kernel_pmap,
|
|
(vm_offset_t)(kernel_pmap)->pm_pdir);
|
|
|
|
proc0.p_md.md_regs = (struct trapframe *)curpcb->pcb_sp - 1;
|
|
#if 0
|
|
/* Hack proc0 */
|
|
|
|
proc0paddr = (struct user *)kernelstack.virtual;
|
|
proc0.p_addr = proc0paddr;
|
|
|
|
curpcb = &proc0.p_addr->u_pcb;
|
|
proc0.p_addr->u_pcb.pcb_flags = 0;
|
|
proc0.p_addr->u_pcb.pcb_und_sp = (u_int)proc0.p_addr + USPACE_UNDEF_STACK_TOP;
|
|
|
|
proc0.p_addr->u_pcb.pcb_pagedir = (pd_entry_t *)pmap_extract(kernel_pmap,
|
|
(vm_offset_t)(kernel_pmap)->pm_pdir);
|
|
#endif
|
|
/*
|
|
* Install an IRQ handler on the VSYNC interrupt to reboot if the
|
|
* middle mouse button is pressed.
|
|
*/
|
|
|
|
setup_cursor();
|
|
|
|
/* Allocate memory for the kmodule area if required */
|
|
|
|
if (kmodule_size) {
|
|
kmodule_size = round_page(kmodule_size);
|
|
kmodule_base = (u_int)kmem_alloc(kernel_map, kmodule_size);
|
|
if (kmodule_base)
|
|
printf("KMODULE SPACE = %08x\n", kmodule_base);
|
|
else
|
|
printf("\x1b[31mNO KMODULE SPACE\n\x1b[0m");
|
|
}
|
|
|
|
/*
|
|
* Configure the hardware
|
|
*/
|
|
|
|
configure();
|
|
|
|
/* Set the root, swap and dump devices from the boot args */
|
|
|
|
set_boot_devs();
|
|
|
|
dump_spl_masks();
|
|
|
|
cold = 0; /* We are warm now ... */
|
|
}
|
|
|
|
|
|
/*
|
|
* Allocate space for system data structures. We are given
|
|
* a starting virtual address and we return a final virtual
|
|
* address; along the way we set each data structure pointer.
|
|
*
|
|
* We call allocsys() with 0 to find out how much space we want,
|
|
* allocate that much and fill it with zeroes, and then call
|
|
* allocsys() again with the correct base virtual address.
|
|
*/
|
|
|
|
caddr_t
|
|
allocsys(v)
|
|
register caddr_t v;
|
|
{
|
|
|
|
#define valloc(name, type, num) \
|
|
(caddr_t)(name) = (type *)v; \
|
|
v = (caddr_t)((name) + (num));
|
|
|
|
valloc(callout, struct callout, ncallout);
|
|
valloc(swapmap, struct map, nswapmap = maxproc * 2);
|
|
|
|
#ifdef SYSVSHM
|
|
valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
|
|
#endif
|
|
#ifdef SYSVSEM
|
|
valloc(sema, struct semid_ds, seminfo.semmni);
|
|
valloc(sem, struct sem, seminfo.semmns);
|
|
/* This is pretty disgusting! */
|
|
valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
|
|
#endif
|
|
#ifdef SYSVMSG
|
|
valloc(msgpool, char, msginfo.msgmax);
|
|
valloc(msgmaps, struct msgmap, msginfo.msgseg);
|
|
valloc(msghdrs, struct msg, msginfo.msgtql);
|
|
valloc(msqids, struct msqid_ds, msginfo.msgmni);
|
|
#endif
|
|
|
|
/*
|
|
* Determine how many buffers to allocate. We use 10% of the
|
|
* first 2MB of memory, and 5% of the rest, with a minimum of 16
|
|
* buffers. We allocate 1/2 as many swap buffer headers as file
|
|
* i/o buffers.
|
|
*/
|
|
|
|
if (bufpages == 0)
|
|
if (physmem < arm_byte_to_page(2 * 1024 * 1024))
|
|
bufpages = physmem / (10 * CLSIZE);
|
|
else
|
|
bufpages = (arm_byte_to_page(2 * 1024 * 1024)
|
|
+ physmem) / (20 * CLSIZE);
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (bufpages == 0)
|
|
panic("bufpages = 0\n");
|
|
#endif
|
|
|
|
if (nbuf == 0) {
|
|
nbuf = bufpages;
|
|
if (nbuf < 16)
|
|
nbuf = 16;
|
|
}
|
|
|
|
if (nswbuf == 0) {
|
|
nswbuf = (nbuf / 2) & ~1; /* force even */
|
|
if (nswbuf > 256)
|
|
nswbuf = 256; /* sanity */
|
|
}
|
|
|
|
valloc(swbuf, struct buf, nswbuf);
|
|
valloc(buf, struct buf, nbuf);
|
|
|
|
return(v);
|
|
}
|
|
|
|
|
|
/* A few functions that are used to help construct the page tables
|
|
* during the bootstrap process.
|
|
*/
|
|
|
|
void
|
|
map_section(pagetable, va, pa)
|
|
vm_offset_t pagetable;
|
|
vm_offset_t va;
|
|
vm_offset_t pa;
|
|
{
|
|
if ((va & 0xfffff) != 0)
|
|
panic("initarm: Cannot allocate 1MB section on non 1MB boundry\n");
|
|
|
|
((u_int *)pagetable)[(va >> 20)] = L1_SEC((pa & PD_MASK));
|
|
}
|
|
|
|
|
|
void
|
|
map_pagetable(pagetable, va, pa)
|
|
vm_offset_t pagetable;
|
|
vm_offset_t va;
|
|
vm_offset_t pa;
|
|
{
|
|
if ((pa & 0xc00) != 0)
|
|
panic("pagetables should be group allocated on pageboundry");
|
|
((u_int *)pagetable)[(va >> 20) + 0] = L1_PTE((pa & PG_FRAME) + 0x000);
|
|
((u_int *)pagetable)[(va >> 20) + 1] = L1_PTE((pa & PG_FRAME) + 0x400);
|
|
((u_int *)pagetable)[(va >> 20) + 2] = L1_PTE((pa & PG_FRAME) + 0x800);
|
|
((u_int *)pagetable)[(va >> 20) + 3] = L1_PTE((pa & PG_FRAME) + 0xc00);
|
|
}
|
|
|
|
|
|
void
|
|
map_entry(pagetable, va, pa)
|
|
vm_offset_t pagetable;
|
|
vm_offset_t va;
|
|
vm_offset_t pa;
|
|
{
|
|
WriteWord(pagetable + ((va >> 10) & 0x00000ffc),
|
|
L2_PTE((pa & PG_FRAME), AP_KRW));
|
|
}
|
|
|
|
|
|
void
|
|
map_entry_nc(pagetable, va, pa)
|
|
vm_offset_t pagetable;
|
|
vm_offset_t va;
|
|
vm_offset_t pa;
|
|
{
|
|
WriteWord(pagetable + ((va >> 10) & 0x00000ffc),
|
|
L2_PTE_NC((pa & PG_FRAME), AP_KRW));
|
|
}
|
|
|
|
|
|
void
|
|
map_entry_ro(pagetable, va, pa)
|
|
vm_offset_t pagetable;
|
|
vm_offset_t va;
|
|
vm_offset_t pa;
|
|
{
|
|
WriteWord(pagetable + ((va >> 10) & 0x00000ffc),
|
|
L2_PTE((pa & PG_FRAME), AP_KR));
|
|
}
|
|
|
|
|
|
int wdresethack = 1;
|
|
|
|
void
|
|
process_kernel_args()
|
|
{
|
|
char *ptr;
|
|
char *args;
|
|
|
|
/* Ok now we will check the arguments for interesting parameters. */
|
|
|
|
args = (char *)bootconfig.argvirtualbase;
|
|
max_processes = 64;
|
|
boothowto = 0;
|
|
kmodule_size = 0;
|
|
cpu_cache = 0x03;
|
|
debug_flags = 0;
|
|
videodram_size = 0;
|
|
|
|
/* Skip the first parameter (the boot loader filename) */
|
|
|
|
while (*args != ' ' && *args != 0)
|
|
++args;
|
|
|
|
while (*args == ' ')
|
|
++args;
|
|
|
|
/* Skip the kernel image filename */
|
|
|
|
while (*args != ' ' && *args != 0)
|
|
++args;
|
|
|
|
while (*args == ' ')
|
|
++args;
|
|
|
|
boot_args = NULL;
|
|
|
|
if (*args != 0) {
|
|
boot_args = args;
|
|
|
|
if (strstr(args, "nocache"))
|
|
cpu_cache &= ~1;
|
|
|
|
if (strstr(args, "nowritebuf"))
|
|
cpu_cache &= ~2;
|
|
|
|
if (strstr(args, "fpaclk2"))
|
|
cpu_cache |= 4;
|
|
|
|
ptr = strstr(args, "maxproc=");
|
|
if (ptr) {
|
|
max_processes = (int)strtoul(ptr + 8, NULL, 10);
|
|
if (max_processes < 16)
|
|
max_processes = 16;
|
|
if (max_processes > 256)
|
|
max_processes = 256;
|
|
printf("Maximum \"in memory\" processes = %d\n",
|
|
max_processes);
|
|
}
|
|
ptr = strstr(args, "ramdisc=");
|
|
if (ptr) {
|
|
ramdisc_size = (u_int)strtoul(ptr + 8, NULL, 10);
|
|
ramdisc_size *= 1024;
|
|
if (ramdisc_size < 32*1024)
|
|
ramdisc_size = 32*1024;
|
|
if (ramdisc_size > 2048*1024)
|
|
ramdisc_size = 2048*1024;
|
|
}
|
|
ptr = strstr(args, "kmodule=");
|
|
if (ptr) {
|
|
kmodule_size = (u_int)strtoul(ptr + 8, NULL, 10);
|
|
kmodule_size *= 1024;
|
|
if (kmodule_size < 4*1024)
|
|
kmodule_size = 4*1024;
|
|
if (kmodule_size > 256*1024)
|
|
kmodule_size = 256*1024;
|
|
}
|
|
ptr = strstr(args, "videodram=");
|
|
if (ptr) {
|
|
videodram_size = (u_int)strtoul(ptr + 10, NULL, 10);
|
|
/* Round to 4K page */
|
|
videodram_size *= 1024;
|
|
videodram_size = round_page(videodram_size);
|
|
if (videodram_size > 1024*1024)
|
|
videodram_size = 1024*1024;
|
|
printf("VIDEO DRAM = %d\n", videodram_size);
|
|
}
|
|
if (strstr(args, "single"))
|
|
boothowto |= RB_SINGLE;
|
|
if (strstr(args, "kdb"))
|
|
boothowto |= RB_KDB;
|
|
ptr = strstr(args, "pmapdebug=");
|
|
if (ptr) {
|
|
pmap_debug_level = (int)strtoul(ptr + 10, NULL, 10);
|
|
pmap_debug(pmap_debug_level);
|
|
debug_flags |= 0x01;
|
|
}
|
|
if (strstr(args, "termdebug"))
|
|
debug_flags |= 0x02;
|
|
if (strstr(args, "nowdreset"))
|
|
wdresethack = 0;
|
|
if (strstr(args, "notermcls"))
|
|
debug_flags |= 0x04;
|
|
}
|
|
}
|
|
|
|
/* This should happen in the console code - This really must move soon */
|
|
|
|
int
|
|
setup_cursor()
|
|
{
|
|
|
|
/* The cursor currently gets set up here. slightly wasteful on memory */
|
|
|
|
/*
|
|
* This should be done in the vidc code as that is responcible for the cursor.
|
|
* This will probably happen when the vidc code is separated from the console
|
|
* (currently work in progress)
|
|
*/
|
|
|
|
cursor_data = (u_int *)kmem_alloc(kernel_map, NBPG);
|
|
/* printf("Cursor data page = V%08x P%08x\n", cursor_data, pmap_extract(kernel_pmap, (vm_offset_t)cursor_data));*/
|
|
WriteWord(IOMD_CURSINIT, pmap_extract(kernel_pmap,
|
|
(vm_offset_t)cursor_data));
|
|
return(0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Clear registers on exec
|
|
*/
|
|
|
|
void
|
|
setregs(p, pack, stack, retval)
|
|
struct proc *p;
|
|
struct exec_package *pack;
|
|
u_long stack;
|
|
register_t *retval;
|
|
{
|
|
register struct trapframe *tf;
|
|
|
|
if (pmap_debug_level >= -1)
|
|
printf("setregs: ip=%08x sp=%08x proc=%08x\n",
|
|
(u_int) pack->ep_entry, (u_int) stack, (u_int) p);
|
|
|
|
tf = p->p_md.md_regs;
|
|
|
|
if (pmap_debug_level >= -1)
|
|
printf("mdregs=%08x pc=%08x lr=%08x sp=%08x\n",
|
|
(u_int) tf, tf->tf_pc, tf->tf_usr_lr, tf->tf_usr_sp);
|
|
|
|
tf->tf_r11 = 0; /* bottom of the fp chain */
|
|
tf->tf_r12 = 0; /* ??? */
|
|
tf->tf_pc = pack->ep_entry;
|
|
tf->tf_usr_lr = pack->ep_entry;
|
|
tf->tf_svc_lr = 0x77777777; /* Something we can see */
|
|
tf->tf_usr_sp = stack;
|
|
tf->tf_r10 = 0xaa55aa55; /* Something we can see */
|
|
tf->tf_spsr = PSR_USR32_MODE;
|
|
|
|
p->p_addr->u_pcb.pcb_flags = 0;
|
|
|
|
retval[1] = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Modify the current mapping for zero page to make it read only
|
|
*
|
|
* This routine is only used until things start forking. Then new
|
|
* system pages are mapped read only in pmap_enter().
|
|
*/
|
|
|
|
void
|
|
zero_page_readonly()
|
|
{
|
|
WriteWord(0xefc00000, L2_PTE((systempage.physical & PG_FRAME), AP_KR));
|
|
tlbflush();
|
|
}
|
|
|
|
|
|
/*
|
|
* Modify the current mapping for zero page to make it read/write
|
|
*
|
|
* This routine is only used until things start forking. Then system
|
|
* pages belonging to user processes are never made writable.
|
|
*/
|
|
|
|
void
|
|
zero_page_readwrite()
|
|
{
|
|
WriteWord(0xefc00000, L2_PTE((systempage.physical & PG_FRAME), AP_KRW));
|
|
tlbflush();
|
|
}
|
|
|
|
|
|
/*
|
|
* Send an interrupt to process.
|
|
*
|
|
* Stack is set up to allow sigcode stored in u. to call routine, followed by kcall
|
|
* to sigreturn routine below. After sigreturn resets the signal mask, the stack, and the
|
|
* frame pointer, it returns to the user specified pc.
|
|
*/
|
|
|
|
void
|
|
sendsig(catcher, sig, mask, code)
|
|
sig_t catcher;
|
|
int sig;
|
|
int mask;
|
|
u_long code;
|
|
{
|
|
struct proc *p = curproc;
|
|
struct trapframe *tf;
|
|
struct sigframe *fp, frame;
|
|
struct sigacts *psp = p->p_sigacts;
|
|
int oonstack;
|
|
extern char sigcode[], esigcode[];
|
|
|
|
if (pmap_debug_level >= 0)
|
|
printf("Sendsig: sig=%d mask=%08x catcher=%08x code=%08x\n",
|
|
sig, mask, (u_int)catcher, (u_int)code);
|
|
|
|
tf = p->p_md.md_regs;
|
|
oonstack = psp->ps_sigstk.ss_flags & SA_ONSTACK;
|
|
|
|
/*
|
|
* Allocate space for the signal handler context.
|
|
*/
|
|
|
|
if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
|
|
(psp->ps_sigonstack & sigmask(sig))) {
|
|
fp = (struct sigframe *)(psp->ps_sigstk.ss_sp +
|
|
psp->ps_sigstk.ss_size - sizeof(struct sigframe));
|
|
psp->ps_sigstk.ss_flags |= SA_ONSTACK;
|
|
} else {
|
|
fp = (struct sigframe *)tf->tf_usr_sp - 1;
|
|
}
|
|
|
|
/*
|
|
* Build the argument list for the signal handler.
|
|
*/
|
|
|
|
frame.sf_signum = sig;
|
|
|
|
frame.sf_code = code;
|
|
frame.sf_scp = &fp->sf_sc;
|
|
frame.sf_handler = catcher;
|
|
|
|
/*
|
|
* Build the signal context to be used by sigreturn.
|
|
*/
|
|
|
|
frame.sf_sc.sc_onstack = oonstack;
|
|
frame.sf_sc.sc_mask = mask;
|
|
frame.sf_sc.sc_r0 = tf->tf_r0;
|
|
frame.sf_sc.sc_r1 = tf->tf_r1;
|
|
frame.sf_sc.sc_r2 = tf->tf_r2;
|
|
frame.sf_sc.sc_r3 = tf->tf_r3;
|
|
frame.sf_sc.sc_r4 = tf->tf_r4;
|
|
frame.sf_sc.sc_r5 = tf->tf_r5;
|
|
frame.sf_sc.sc_r6 = tf->tf_r6;
|
|
frame.sf_sc.sc_r7 = tf->tf_r7;
|
|
frame.sf_sc.sc_r8 = tf->tf_r8;
|
|
frame.sf_sc.sc_r9 = tf->tf_r9;
|
|
frame.sf_sc.sc_r10 = tf->tf_r10;
|
|
frame.sf_sc.sc_r11 = tf->tf_r11;
|
|
frame.sf_sc.sc_r12 = tf->tf_r12;
|
|
frame.sf_sc.sc_usr_sp = tf->tf_usr_sp;
|
|
frame.sf_sc.sc_usr_lr = tf->tf_usr_lr;
|
|
frame.sf_sc.sc_svc_lr = tf->tf_svc_lr;
|
|
frame.sf_sc.sc_pc = tf->tf_pc;
|
|
frame.sf_sc.sc_spsr = tf->tf_spsr;
|
|
|
|
if (copyout(&frame, fp, sizeof(frame)) != 0) {
|
|
/*
|
|
* Process has trashed its stack; give it an illegal
|
|
* instruction to halt it in its tracks.
|
|
*/
|
|
|
|
sigexit(p, SIGILL);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* Build context to run handler in.
|
|
*/
|
|
|
|
tf->tf_r0 = frame.sf_signum;
|
|
tf->tf_r1 = frame.sf_code;
|
|
tf->tf_r2 = (u_int)frame.sf_scp;
|
|
tf->tf_r3 = (u_int)frame.sf_handler;
|
|
tf->tf_usr_sp = (int)fp;
|
|
tf->tf_pc = (int)(((char *)PS_STRINGS) - (esigcode - sigcode));
|
|
|
|
if (pmap_debug_level >= 0)
|
|
printf("Sendsig: sig=%d pc=%08x\n", sig, tf->tf_pc);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* System call to cleanup state after a signal
|
|
* has been taken. Reset signal mask and
|
|
* stack state from context left by sendsig (above).
|
|
* Return to previous pc and psl as specified by
|
|
* context left by sendsig. Check carefully to
|
|
* make sure that the user has not modified the
|
|
* psr to gain improper privileges or to cause
|
|
* a machine fault.
|
|
*/
|
|
|
|
int
|
|
sys_sigreturn(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct sys_sigreturn_args /* {
|
|
syscallarg(struct sigcontext *) sigcntxp;
|
|
} */ *uap = v;
|
|
struct sigcontext *scp, context;
|
|
/* register struct sigframe *fp;*/
|
|
register struct trapframe *tf;
|
|
|
|
if (pmap_debug_level >= 0)
|
|
printf("sigreturn: context=%08x\n", (int)SCARG(uap, sigcntxp));
|
|
|
|
tf = p->p_md.md_regs;
|
|
|
|
/*
|
|
* The trampoline code hands us the context.
|
|
* It is unsafe to keep track of it ourselves, in the event that a
|
|
* program jumps out of a signal handler.
|
|
*/
|
|
|
|
scp = SCARG(uap, sigcntxp);
|
|
|
|
if (copyin((caddr_t)scp, &context, sizeof(*scp)) != 0)
|
|
return (EFAULT);
|
|
|
|
/*
|
|
* Check for security violations.
|
|
*/
|
|
|
|
/* Make sure the processor mode has not been tampered with */
|
|
|
|
if ((context.sc_spsr & PSR_MODE) != PSR_USR32_MODE)
|
|
return(EINVAL);
|
|
|
|
if (context.sc_onstack & 01)
|
|
p->p_sigacts->ps_sigstk.ss_flags |= SA_ONSTACK;
|
|
else
|
|
p->p_sigacts->ps_sigstk.ss_flags &= ~SA_ONSTACK;
|
|
p->p_sigmask = context.sc_mask & ~sigcantmask;
|
|
|
|
/*
|
|
* Restore signal context.
|
|
*/
|
|
|
|
tf->tf_r0 = context.sc_r0;
|
|
tf->tf_r1 = context.sc_r1;
|
|
tf->tf_r2 = context.sc_r2;
|
|
tf->tf_r3 = context.sc_r3;
|
|
tf->tf_r4 = context.sc_r4;
|
|
tf->tf_r5 = context.sc_r5;
|
|
tf->tf_r6 = context.sc_r6;
|
|
tf->tf_r7 = context.sc_r7;
|
|
tf->tf_r8 = context.sc_r8;
|
|
tf->tf_r9 = context.sc_r9;
|
|
tf->tf_r10 = context.sc_r10;
|
|
tf->tf_r11 = context.sc_r11;
|
|
tf->tf_r12 = context.sc_r12;
|
|
tf->tf_usr_sp = context.sc_usr_sp;
|
|
tf->tf_usr_lr = context.sc_usr_lr;
|
|
tf->tf_svc_lr = context.sc_svc_lr;
|
|
tf->tf_pc = context.sc_pc;
|
|
tf->tf_spsr = context.sc_spsr;
|
|
|
|
#ifdef VALIDATE_TRAPFRAME
|
|
validate_trapframe(tf, 6);
|
|
#endif
|
|
|
|
return (EJUSTRETURN);
|
|
}
|
|
|
|
/*
|
|
* machine dependent system variables.
|
|
*/
|
|
|
|
int
|
|
cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
|
|
int *name;
|
|
u_int namelen;
|
|
void *oldp;
|
|
size_t *oldlenp;
|
|
void *newp;
|
|
size_t newlen;
|
|
struct proc *p;
|
|
{
|
|
printf("cpu_sysctl: Currently stoned - Cannot support the operation\n");
|
|
return(EOPNOTSUPP);
|
|
}
|
|
|
|
|
|
/*
|
|
* Ok these are some development functions. They map blocks of memory
|
|
* into the video ram virtual memory.
|
|
* The idea is to follow this with a call to the vidc device to
|
|
* reinitialise the vidc20 for the new video ram.
|
|
*/
|
|
|
|
/* Map DRAM into the video memory */
|
|
|
|
int
|
|
vmem_mapdram()
|
|
{
|
|
u_int l2pagetable;
|
|
u_int logical;
|
|
|
|
if (videodram_start == 0 || videodram_size == 0)
|
|
return(ENOMEM);
|
|
|
|
/* Flush any video data in the cache */
|
|
|
|
idcflush();
|
|
|
|
/* Get the level 2 pagetable for the video memory */
|
|
|
|
l2pagetable = (u_int)pmap_pte(kernel_pmap,
|
|
(vm_offset_t)videomemory.vidm_vbase);
|
|
|
|
/* Map a block of DRAM into the video memory area */
|
|
|
|
for (logical = 0; logical < 0x200000; logical += NBPG) {
|
|
map_entry(l2pagetable, logical, videodram_start
|
|
+ logical);
|
|
map_entry(l2pagetable, logical + 0x200000,
|
|
videodram_start + logical);
|
|
}
|
|
|
|
/* Flush the TLB so we pick up the new mappings */
|
|
|
|
tlbflush();
|
|
|
|
/* Rebuild the video memory descriptor */
|
|
|
|
videomemory.vidm_vbase = VMEM_VBASE;
|
|
videomemory.vidm_pbase = videodram_start;
|
|
videomemory.vidm_type = VIDEOMEM_TYPE_DRAM;
|
|
videomemory.vidm_size = videodram_size;
|
|
|
|
/* Reinitialise the video system */
|
|
|
|
/* video_reinit();*/
|
|
return(0);
|
|
}
|
|
|
|
|
|
/* Map VRAM into the video memory */
|
|
|
|
int
|
|
vmem_mapvram()
|
|
{
|
|
u_int l2pagetable;
|
|
u_int logical;
|
|
|
|
if (bootconfig.vram[0].address == 0 || bootconfig.vram[0].pages == 0)
|
|
return(ENOMEM);
|
|
|
|
/* Flush any video data in the cache */
|
|
|
|
idcflush();
|
|
|
|
/* Get the level 2 pagetable for the video memory */
|
|
|
|
l2pagetable = (u_int)pmap_pte(kernel_pmap,
|
|
(vm_offset_t)videomemory.vidm_vbase);
|
|
|
|
/* Map the VRAM into the video memory area */
|
|
|
|
for (logical = 0; logical < 0x200000; logical += NBPG) {
|
|
map_entry(l2pagetable, logical, bootconfig.vram[0].address
|
|
+ logical);
|
|
map_entry(l2pagetable, logical + 0x200000,
|
|
bootconfig.vram[0].address + logical);
|
|
}
|
|
|
|
/* Flush the TLB so we pick up the new mappings */
|
|
|
|
tlbflush();
|
|
|
|
/* Rebuild the video memory descriptor */
|
|
|
|
videomemory.vidm_vbase = VMEM_VBASE;
|
|
videomemory.vidm_pbase = VRAM_BASE;
|
|
videomemory.vidm_type = VIDEOMEM_TYPE_VRAM;
|
|
videomemory.vidm_size = bootconfig.vram[0].pages * NBPG;
|
|
|
|
/* Reinitialise the video system */
|
|
|
|
/* video_reinit();*/
|
|
return(0);
|
|
}
|
|
|
|
|
|
/* Set the cache behaviour for the video memory */
|
|
|
|
int
|
|
vmem_cachectl(flag)
|
|
int flag;
|
|
{
|
|
u_int l2pagetable;
|
|
u_int logical;
|
|
|
|
if (bootconfig.vram[0].address == 0 || bootconfig.vram[0].pages == 0)
|
|
return(ENOMEM);
|
|
|
|
/* Flush any video data in the cache */
|
|
|
|
idcflush();
|
|
|
|
/* Get the level 2 pagetable for the video memory */
|
|
|
|
l2pagetable = (u_int)pmap_pte(kernel_pmap,
|
|
(vm_offset_t)videomemory.vidm_vbase);
|
|
|
|
/* Map the VRAM into the video memory area */
|
|
|
|
if (flag & 1) {
|
|
for (logical = 0; logical < 0x200000; logical += NBPG) {
|
|
map_entry(l2pagetable, logical, bootconfig.vram[0].address
|
|
+ logical);
|
|
map_entry(l2pagetable, logical + 0x200000,
|
|
bootconfig.vram[0].address + logical);
|
|
}
|
|
} else {
|
|
for (logical = 0; logical < 0x200000; logical += NBPG) {
|
|
map_entry_nc(l2pagetable, logical, bootconfig.vram[0].address
|
|
+ logical);
|
|
map_entry_nc(l2pagetable, logical + 0x200000,
|
|
bootconfig.vram[0].address + logical);
|
|
}
|
|
}
|
|
|
|
/* Flush the TLB so we pick up the new mappings */
|
|
|
|
tlbflush();
|
|
|
|
return(0);
|
|
}
|
|
|
|
#if 0
|
|
extern int vtvalbug;
|
|
extern char *vtlastbug;
|
|
extern u_int vtbugaddr;
|
|
extern u_int vtbugcaddr;
|
|
|
|
void
|
|
vtbugreport()
|
|
{
|
|
printf("vtvalbug = %d\n", vtvalbug);
|
|
if (vtlastbug)
|
|
printf("vtlastbug = %s\n", vtlastbug);
|
|
printf("vtbugaddr = %08x\n", vtbugaddr);
|
|
printf("vtbugcaddr = %08x\n", vtbugcaddr);
|
|
}
|
|
#endif
|
|
|
|
/* End of machdep.c */
|