NetBSD/lib/libpthread/pthread.c

1367 lines
33 KiB
C

/* $NetBSD: pthread.c,v 1.90 2007/11/19 15:14:12 ad Exp $ */
/*-
* Copyright (c) 2001, 2002, 2003, 2006, 2007 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Nathan J. Williams and Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__RCSID("$NetBSD: pthread.c,v 1.90 2007/11/19 15:14:12 ad Exp $");
#define __EXPOSE_STACK 1
#include <sys/param.h>
#include <sys/mman.h>
#include <sys/sysctl.h>
#include <sys/lwpctl.h>
#include <err.h>
#include <errno.h>
#include <lwp.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <syslog.h>
#include <ucontext.h>
#include <unistd.h>
#include <sched.h>
#include "pthread.h"
#include "pthread_int.h"
pthread_rwlock_t pthread__alltree_lock = PTHREAD_RWLOCK_INITIALIZER;
RB_HEAD(__pthread__alltree, __pthread_st) pthread__alltree;
#ifndef lint
static int pthread__cmp(struct __pthread_st *, struct __pthread_st *);
RB_PROTOTYPE_STATIC(__pthread__alltree, __pthread_st, pt_alltree, pthread__cmp)
#endif
static void pthread__create_tramp(pthread_t, void *(*)(void *), void *);
static void pthread__initthread(pthread_t);
static void pthread__scrubthread(pthread_t, char *, int);
static int pthread__stackid_setup(void *, size_t, pthread_t *);
static int pthread__stackalloc(pthread_t *);
static void pthread__initmain(pthread_t *);
static void pthread__fork_callback(void);
void pthread__init(void);
int pthread__started;
pthread_mutex_t pthread__deadqueue_lock = PTHREAD_MUTEX_INITIALIZER;
pthread_queue_t pthread__deadqueue;
pthread_queue_t pthread__allqueue;
static pthread_attr_t pthread_default_attr;
static lwpctl_t pthread__dummy_lwpctl = { .lc_curcpu = LWPCTL_CPU_NONE };
static pthread_t pthread__first;
enum {
DIAGASSERT_ABORT = 1<<0,
DIAGASSERT_STDERR = 1<<1,
DIAGASSERT_SYSLOG = 1<<2
};
static int pthread__diagassert = DIAGASSERT_ABORT | DIAGASSERT_STDERR;
int pthread__concurrency;
int pthread__nspins;
int pthread__unpark_max = PTHREAD__UNPARK_MAX;
int pthread__osrev;
/*
* We have to initialize the pthread_stack* variables here because
* mutexes are used before pthread_init() and thus pthread__initmain()
* are called. Since mutexes only save the stack pointer and not a
* pointer to the thread data, it is safe to change the mapping from
* stack pointer to thread data afterwards.
*/
#define _STACKSIZE_LG 18
int pthread__stacksize_lg = _STACKSIZE_LG;
size_t pthread__stacksize = 1 << _STACKSIZE_LG;
vaddr_t pthread__stackmask = (1 << _STACKSIZE_LG) - 1;
vaddr_t pthread__threadmask = (vaddr_t)~((1 << _STACKSIZE_LG) - 1);
#undef _STACKSIZE_LG
int _sys___sigprocmask14(int, const sigset_t *, sigset_t *);
__strong_alias(__libc_thr_self,pthread_self)
__strong_alias(__libc_thr_create,pthread_create)
__strong_alias(__libc_thr_exit,pthread_exit)
__strong_alias(__libc_thr_errno,pthread__errno)
__strong_alias(__libc_thr_setcancelstate,pthread_setcancelstate)
__strong_alias(__libc_thr_equal,pthread_equal)
__strong_alias(__libc_thr_init,pthread__init)
/*
* Static library kludge. Place a reference to a symbol any library
* file which does not already have a reference here.
*/
extern int pthread__cancel_stub_binder;
void *pthread__static_lib_binder[] = {
&pthread__cancel_stub_binder,
pthread_cond_init,
pthread_mutex_init,
pthread_rwlock_init,
pthread_barrier_init,
pthread_key_create,
pthread_setspecific,
};
/*
* This needs to be started by the library loading code, before main()
* gets to run, for various things that use the state of the initial thread
* to work properly (thread-specific data is an application-visible example;
* spinlock counts for mutexes is an internal example).
*/
void
pthread__init(void)
{
pthread_t first;
char *p;
int i, mib[2];
size_t len;
extern int __isthreaded;
mib[0] = CTL_HW;
mib[1] = HW_NCPU;
len = sizeof(pthread__concurrency);
if (sysctl(mib, 2, &pthread__concurrency, &len, NULL, 0) == -1)
err(1, "sysctl(hw.ncpu");
mib[0] = CTL_KERN;
mib[1] = KERN_OSREV;
len = sizeof(pthread__osrev);
if (sysctl(mib, 2, &pthread__osrev, &len, NULL, 0) == -1)
err(1, "sysctl(hw.osrevision");
/* Initialize locks first; they're needed elsewhere. */
pthread__lockprim_init();
/* Fetch parameters. */
i = (int)_lwp_unpark_all(NULL, 0, NULL);
if (i == -1)
err(1, "_lwp_unpark_all");
if (i < pthread__unpark_max)
pthread__unpark_max = i;
/* Basic data structure setup */
pthread_attr_init(&pthread_default_attr);
PTQ_INIT(&pthread__allqueue);
PTQ_INIT(&pthread__deadqueue);
RB_INIT(&pthread__alltree);
/* Create the thread structure corresponding to main() */
pthread__initmain(&first);
pthread__initthread(first);
pthread__scrubthread(first, NULL, 0);
first->pt_lid = _lwp_self();
PTQ_INSERT_HEAD(&pthread__allqueue, first, pt_allq);
RB_INSERT(__pthread__alltree, &pthread__alltree, first);
/*
* Don't need lwpctl if running on a uniprocessor.
* Just use the dummy block.
*/
if (pthread__concurrency > 1)
(void)_lwp_ctl(LWPCTL_FEATURE_CURCPU, &first->pt_lwpctl);
/* Start subsystems */
PTHREAD_MD_INIT
for (p = pthread__getenv("PTHREAD_DIAGASSERT"); p && *p; p++) {
switch (*p) {
case 'a':
pthread__diagassert |= DIAGASSERT_ABORT;
break;
case 'A':
pthread__diagassert &= ~DIAGASSERT_ABORT;
break;
case 'e':
pthread__diagassert |= DIAGASSERT_STDERR;
break;
case 'E':
pthread__diagassert &= ~DIAGASSERT_STDERR;
break;
case 'l':
pthread__diagassert |= DIAGASSERT_SYSLOG;
break;
case 'L':
pthread__diagassert &= ~DIAGASSERT_SYSLOG;
break;
}
}
/* Tell libc that we're here and it should role-play accordingly. */
pthread__first = first;
pthread_atfork(NULL, NULL, pthread__fork_callback);
__isthreaded = 1;
}
static void
pthread__fork_callback(void)
{
/* lwpctl state is not copied across fork. */
if (pthread__concurrency > 1) {
(void)_lwp_ctl(LWPCTL_FEATURE_CURCPU,
&pthread__first->pt_lwpctl);
}
}
static void
pthread__child_callback(void)
{
/*
* Clean up data structures that a forked child process might
* trip over. Note that if threads have been created (causing
* this handler to be registered) the standards say that the
* child will trigger undefined behavior if it makes any
* pthread_* calls (or any other calls that aren't
* async-signal-safe), so we don't really have to clean up
* much. Anything that permits some pthread_* calls to work is
* merely being polite.
*/
pthread__started = 0;
}
static void
pthread__start(void)
{
/*
* Per-process timers are cleared by fork(); despite the
* various restrictions on fork() and threads, it's legal to
* fork() before creating any threads.
*/
pthread_atfork(NULL, NULL, pthread__child_callback);
}
/* General-purpose thread data structure sanitization. */
/* ARGSUSED */
static void
pthread__initthread(pthread_t t)
{
t->pt_self = t;
t->pt_magic = PT_MAGIC;
t->pt_willpark = 0;
t->pt_unpark = 0;
t->pt_sleeponq = 0;
t->pt_nwaiters = 0;
t->pt_sleepobj = NULL;
t->pt_signalled = 0;
t->pt_havespecific = 0;
t->pt_early = NULL;
t->pt_lwpctl = &pthread__dummy_lwpctl;
t->pt_blocking = 0;
memcpy(&t->pt_lockops, pthread__lock_ops, sizeof(t->pt_lockops));
pthread_mutex_init(&t->pt_lock, NULL);
PTQ_INIT(&t->pt_cleanup_stack);
PTQ_INIT(&t->pt_joiners);
memset(&t->pt_specific, 0, sizeof(int) * PTHREAD_KEYS_MAX);
}
static void
pthread__scrubthread(pthread_t t, char *name, int flags)
{
t->pt_state = PT_STATE_RUNNING;
t->pt_exitval = NULL;
t->pt_flags = flags;
t->pt_cancel = 0;
t->pt_errno = 0;
t->pt_name = name;
t->pt_lid = 0;
}
int
pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*startfunc)(void *), void *arg)
{
pthread_t newthread;
pthread_attr_t nattr;
struct pthread_attr_private *p;
char * volatile name;
unsigned long flag;
int ret;
/*
* It's okay to check this without a lock because there can
* only be one thread before it becomes true.
*/
if (pthread__started == 0) {
pthread__start();
pthread__started = 1;
}
if (attr == NULL)
nattr = pthread_default_attr;
else if (attr->pta_magic == PT_ATTR_MAGIC)
nattr = *attr;
else
return EINVAL;
/* Fetch misc. attributes from the attr structure. */
name = NULL;
if ((p = nattr.pta_private) != NULL)
if (p->ptap_name[0] != '\0')
if ((name = strdup(p->ptap_name)) == NULL)
return ENOMEM;
newthread = NULL;
/*
* Try to reclaim a dead thread.
*/
if (!PTQ_EMPTY(&pthread__deadqueue)) {
pthread_mutex_lock(&pthread__deadqueue_lock);
newthread = PTQ_FIRST(&pthread__deadqueue);
if (newthread != NULL) {
PTQ_REMOVE(&pthread__deadqueue, newthread, pt_deadq);
pthread_mutex_unlock(&pthread__deadqueue_lock);
if ((newthread->pt_flags & PT_FLAG_DETACHED) != 0) {
/* Still running? */
if (newthread->pt_lwpctl->lc_curcpu !=
LWPCTL_CPU_EXITED &&
(_lwp_kill(newthread->pt_lid, 0) == 0 ||
errno != ESRCH)) {
pthread_mutex_lock(
&pthread__deadqueue_lock);
PTQ_INSERT_TAIL(&pthread__deadqueue,
newthread, pt_deadq);
pthread_mutex_unlock(
&pthread__deadqueue_lock);
newthread = NULL;
}
}
} else
pthread_mutex_unlock(&pthread__deadqueue_lock);
}
/*
* If necessary set up a stack, allocate space for a pthread_st,
* and initialize it.
*/
if (newthread == NULL) {
ret = pthread__stackalloc(&newthread);
if (ret != 0) {
if (name)
free(name);
return ret;
}
/* This is used only when creating the thread. */
_INITCONTEXT_U(&newthread->pt_uc);
#ifdef PTHREAD_MACHINE_HAS_ID_REGISTER
pthread__uc_id(&newthread->pt_uc) = newthread;
#endif
newthread->pt_uc.uc_stack = newthread->pt_stack;
newthread->pt_uc.uc_link = NULL;
/* Add to list of all threads. */
pthread_rwlock_wrlock(&pthread__alltree_lock);
PTQ_INSERT_TAIL(&pthread__allqueue, newthread, pt_allq);
RB_INSERT(__pthread__alltree, &pthread__alltree, newthread);
pthread_rwlock_unlock(&pthread__alltree_lock);
/* Will be reset by the thread upon exit. */
pthread__initthread(newthread);
}
/*
* Create the new LWP.
*/
pthread__scrubthread(newthread, name, nattr.pta_flags);
makecontext(&newthread->pt_uc, pthread__create_tramp, 3,
newthread, startfunc, arg);
flag = 0;
if ((newthread->pt_flags & PT_FLAG_SUSPENDED) != 0)
flag |= LWP_SUSPENDED;
if ((newthread->pt_flags & PT_FLAG_DETACHED) != 0)
flag |= LWP_DETACHED;
ret = _lwp_create(&newthread->pt_uc, flag, &newthread->pt_lid);
if (ret != 0) {
free(name);
newthread->pt_state = PT_STATE_DEAD;
pthread_mutex_lock(&pthread__deadqueue_lock);
PTQ_INSERT_HEAD(&pthread__deadqueue, newthread, pt_deadq);
pthread_mutex_unlock(&pthread__deadqueue_lock);
return ret;
}
*thread = newthread;
return 0;
}
static void
pthread__create_tramp(pthread_t self, void *(*start)(void *), void *arg)
{
void *retval;
#ifdef PTHREAD__HAVE_THREADREG
/* Set up identity register. */
pthread__threadreg_set(self);
#endif
/*
* Throw away some stack in a feeble attempt to reduce cache
* thrash. May help for SMT processors. XXX We should not
* be allocating stacks on fixed 2MB boundaries. Needs a
* thread register or decent thread local storage. Note
* that pt_lid may not be set by this point, but we don't
* care.
*/
(void)alloca(((unsigned)self->pt_lid & 7) << 8);
if (self->pt_name != NULL) {
pthread_mutex_lock(&self->pt_lock);
if (self->pt_name != NULL)
(void)_lwp_setname(0, self->pt_name);
pthread_mutex_unlock(&self->pt_lock);
}
/*
* Don't need lwpctl if running on a uniprocessor.
* Just use the dummy block.
*/
if (pthread__concurrency > 1)
(void)_lwp_ctl(LWPCTL_FEATURE_CURCPU, &self->pt_lwpctl);
retval = (*start)(arg);
pthread_exit(retval);
/*NOTREACHED*/
pthread__abort();
}
int
pthread_suspend_np(pthread_t thread)
{
pthread_t self;
self = pthread__self();
if (self == thread) {
return EDEADLK;
}
#ifdef ERRORCHECK
if (pthread__find(thread) != 0)
return ESRCH;
#endif
if (_lwp_suspend(thread->pt_lid) == 0)
return 0;
return errno;
}
int
pthread_resume_np(pthread_t thread)
{
#ifdef ERRORCHECK
if (pthread__find(thread) != 0)
return ESRCH;
#endif
if (_lwp_continue(thread->pt_lid) == 0)
return 0;
return errno;
}
void
pthread_exit(void *retval)
{
pthread_t self;
struct pt_clean_t *cleanup;
char *name;
self = pthread__self();
/* Disable cancellability. */
pthread_mutex_lock(&self->pt_lock);
self->pt_flags |= PT_FLAG_CS_DISABLED;
self->pt_cancel = 0;
pthread_mutex_unlock(&self->pt_lock);
/* Call any cancellation cleanup handlers */
while (!PTQ_EMPTY(&self->pt_cleanup_stack)) {
cleanup = PTQ_FIRST(&self->pt_cleanup_stack);
PTQ_REMOVE(&self->pt_cleanup_stack, cleanup, ptc_next);
(*cleanup->ptc_cleanup)(cleanup->ptc_arg);
}
/* Perform cleanup of thread-specific data */
pthread__destroy_tsd(self);
self->pt_exitval = retval;
pthread_mutex_lock(&self->pt_lock);
if (self->pt_flags & PT_FLAG_DETACHED) {
self->pt_state = PT_STATE_DEAD;
name = self->pt_name;
self->pt_name = NULL;
pthread_mutex_lock(&pthread__deadqueue_lock);
PTQ_INSERT_TAIL(&pthread__deadqueue, self, pt_deadq);
pthread_mutex_unlock(&pthread__deadqueue_lock);
pthread_mutex_unlock(&self->pt_lock);
if (name != NULL)
free(name);
_lwp_exit();
} else {
self->pt_state = PT_STATE_ZOMBIE;
pthread_mutex_unlock(&self->pt_lock);
/* Note: name will be freed by the joiner. */
_lwp_exit();
}
/*NOTREACHED*/
pthread__abort();
exit(1);
}
int
pthread_join(pthread_t thread, void **valptr)
{
pthread_t self;
char *name;
self = pthread__self();
if (pthread__find(thread) != 0)
return ESRCH;
if (thread->pt_magic != PT_MAGIC)
return EINVAL;
if (thread == self)
return EDEADLK;
/*
* IEEE Std 1003.1, 2004 Edition:
*
* "The pthread_join() function shall not return an
* error code of [EINTR]."
*/
while (_lwp_wait(thread->pt_lid, NULL) != 0) {
if (errno != EINTR)
return errno;
}
/*
* No need to lock - nothing else should (legally) be
* interested in the thread's state at this point.
*
* _lwp_wait() provides a barrier, so the user level
* thread state will be visible to us at this point.
*/
if (thread->pt_state != PT_STATE_ZOMBIE) {
pthread__errorfunc(__FILE__, __LINE__, __func__,
"not a zombie");
}
if (valptr != NULL)
*valptr = thread->pt_exitval;
name = thread->pt_name;
thread->pt_name = NULL;
thread->pt_state = PT_STATE_DEAD;
pthread_mutex_lock(&pthread__deadqueue_lock);
PTQ_INSERT_HEAD(&pthread__deadqueue, thread, pt_deadq);
pthread_mutex_unlock(&pthread__deadqueue_lock);
if (name != NULL)
free(name);
return 0;
}
int
pthread_equal(pthread_t t1, pthread_t t2)
{
/* Nothing special here. */
return (t1 == t2);
}
int
pthread_detach(pthread_t thread)
{
int rv;
if (pthread__find(thread) != 0)
return ESRCH;
if (thread->pt_magic != PT_MAGIC)
return EINVAL;
pthread_mutex_lock(&thread->pt_lock);
thread->pt_flags |= PT_FLAG_DETACHED;
rv = _lwp_detach(thread->pt_lid);
pthread_mutex_unlock(&thread->pt_lock);
if (rv == 0)
return 0;
return errno;
}
int
pthread_getname_np(pthread_t thread, char *name, size_t len)
{
if (pthread__find(thread) != 0)
return ESRCH;
if (thread->pt_magic != PT_MAGIC)
return EINVAL;
pthread_mutex_lock(&thread->pt_lock);
if (thread->pt_name == NULL)
name[0] = '\0';
else
strlcpy(name, thread->pt_name, len);
pthread_mutex_unlock(&thread->pt_lock);
return 0;
}
int
pthread_setname_np(pthread_t thread, const char *name, void *arg)
{
char *oldname, *cp, newname[PTHREAD_MAX_NAMELEN_NP];
int namelen;
if (pthread__find(thread) != 0)
return ESRCH;
if (thread->pt_magic != PT_MAGIC)
return EINVAL;
namelen = snprintf(newname, sizeof(newname), name, arg);
if (namelen >= PTHREAD_MAX_NAMELEN_NP)
return EINVAL;
cp = strdup(newname);
if (cp == NULL)
return ENOMEM;
pthread_mutex_lock(&thread->pt_lock);
oldname = thread->pt_name;
thread->pt_name = cp;
(void)_lwp_setname(thread->pt_lid, cp);
pthread_mutex_unlock(&thread->pt_lock);
if (oldname != NULL)
free(oldname);
return 0;
}
/*
* XXX There should be a way for applications to use the efficent
* inline version, but there are opacity/namespace issues.
*/
pthread_t
pthread_self(void)
{
return pthread__self();
}
int
pthread_cancel(pthread_t thread)
{
if (pthread__find(thread) != 0)
return ESRCH;
pthread_mutex_lock(&thread->pt_lock);
thread->pt_flags |= PT_FLAG_CS_PENDING;
if ((thread->pt_flags & PT_FLAG_CS_DISABLED) == 0) {
thread->pt_cancel = 1;
pthread_mutex_unlock(&thread->pt_lock);
_lwp_wakeup(thread->pt_lid);
} else
pthread_mutex_unlock(&thread->pt_lock);
return 0;
}
int
pthread_setcancelstate(int state, int *oldstate)
{
pthread_t self;
int retval;
self = pthread__self();
retval = 0;
pthread_mutex_lock(&self->pt_lock);
if (oldstate != NULL) {
if (self->pt_flags & PT_FLAG_CS_DISABLED)
*oldstate = PTHREAD_CANCEL_DISABLE;
else
*oldstate = PTHREAD_CANCEL_ENABLE;
}
if (state == PTHREAD_CANCEL_DISABLE) {
self->pt_flags |= PT_FLAG_CS_DISABLED;
if (self->pt_cancel) {
self->pt_flags |= PT_FLAG_CS_PENDING;
self->pt_cancel = 0;
}
} else if (state == PTHREAD_CANCEL_ENABLE) {
self->pt_flags &= ~PT_FLAG_CS_DISABLED;
/*
* If a cancellation was requested while cancellation
* was disabled, note that fact for future
* cancellation tests.
*/
if (self->pt_flags & PT_FLAG_CS_PENDING) {
self->pt_cancel = 1;
/* This is not a deferred cancellation point. */
if (self->pt_flags & PT_FLAG_CS_ASYNC) {
pthread_mutex_unlock(&self->pt_lock);
pthread_exit(PTHREAD_CANCELED);
}
}
} else
retval = EINVAL;
pthread_mutex_unlock(&self->pt_lock);
return retval;
}
int
pthread_setcanceltype(int type, int *oldtype)
{
pthread_t self;
int retval;
self = pthread__self();
retval = 0;
pthread_mutex_lock(&self->pt_lock);
if (oldtype != NULL) {
if (self->pt_flags & PT_FLAG_CS_ASYNC)
*oldtype = PTHREAD_CANCEL_ASYNCHRONOUS;
else
*oldtype = PTHREAD_CANCEL_DEFERRED;
}
if (type == PTHREAD_CANCEL_ASYNCHRONOUS) {
self->pt_flags |= PT_FLAG_CS_ASYNC;
if (self->pt_cancel) {
pthread_mutex_unlock(&self->pt_lock);
pthread_exit(PTHREAD_CANCELED);
}
} else if (type == PTHREAD_CANCEL_DEFERRED)
self->pt_flags &= ~PT_FLAG_CS_ASYNC;
else
retval = EINVAL;
pthread_mutex_unlock(&self->pt_lock);
return retval;
}
void
pthread_testcancel()
{
pthread_t self;
self = pthread__self();
if (self->pt_cancel)
pthread_exit(PTHREAD_CANCELED);
}
/*
* POSIX requires that certain functions return an error rather than
* invoking undefined behavior even when handed completely bogus
* pthread_t values, e.g. stack garbage or (pthread_t)666. This
* utility routine searches the list of threads for the pthread_t
* value without dereferencing it.
*/
int
pthread__find(pthread_t id)
{
pthread_t target;
pthread_rwlock_rdlock(&pthread__alltree_lock);
/* LINTED */
target = RB_FIND(__pthread__alltree, &pthread__alltree, id);
pthread_rwlock_unlock(&pthread__alltree_lock);
if (target == NULL || target->pt_state == PT_STATE_DEAD)
return ESRCH;
return 0;
}
void
pthread__testcancel(pthread_t self)
{
if (self->pt_cancel)
pthread_exit(PTHREAD_CANCELED);
}
void
pthread__cleanup_push(void (*cleanup)(void *), void *arg, void *store)
{
pthread_t self;
struct pt_clean_t *entry;
self = pthread__self();
entry = store;
entry->ptc_cleanup = cleanup;
entry->ptc_arg = arg;
PTQ_INSERT_HEAD(&self->pt_cleanup_stack, entry, ptc_next);
}
void
pthread__cleanup_pop(int ex, void *store)
{
pthread_t self;
struct pt_clean_t *entry;
self = pthread__self();
entry = store;
PTQ_REMOVE(&self->pt_cleanup_stack, entry, ptc_next);
if (ex)
(*entry->ptc_cleanup)(entry->ptc_arg);
}
int *
pthread__errno(void)
{
pthread_t self;
self = pthread__self();
return &(self->pt_errno);
}
ssize_t _sys_write(int, const void *, size_t);
void
pthread__assertfunc(const char *file, int line, const char *function,
const char *expr)
{
char buf[1024];
int len;
/*
* snprintf should not acquire any locks, or we could
* end up deadlocked if the assert caller held locks.
*/
len = snprintf(buf, 1024,
"assertion \"%s\" failed: file \"%s\", line %d%s%s%s\n",
expr, file, line,
function ? ", function \"" : "",
function ? function : "",
function ? "\"" : "");
_sys_write(STDERR_FILENO, buf, (size_t)len);
(void)kill(getpid(), SIGABRT);
_exit(1);
}
void
pthread__errorfunc(const char *file, int line, const char *function,
const char *msg)
{
char buf[1024];
size_t len;
if (pthread__diagassert == 0)
return;
/*
* snprintf should not acquire any locks, or we could
* end up deadlocked if the assert caller held locks.
*/
len = snprintf(buf, 1024,
"%s: Error detected by libpthread: %s.\n"
"Detected by file \"%s\", line %d%s%s%s.\n"
"See pthread(3) for information.\n",
getprogname(), msg, file, line,
function ? ", function \"" : "",
function ? function : "",
function ? "\"" : "");
if (pthread__diagassert & DIAGASSERT_STDERR)
_sys_write(STDERR_FILENO, buf, len);
if (pthread__diagassert & DIAGASSERT_SYSLOG)
syslog(LOG_DEBUG | LOG_USER, "%s", buf);
if (pthread__diagassert & DIAGASSERT_ABORT) {
(void)kill(getpid(), SIGABRT);
_exit(1);
}
}
/*
* Thread park/unpark operations. The kernel operations are
* modelled after a brief description from "Multithreading in
* the Solaris Operating Environment":
*
* http://www.sun.com/software/whitepapers/solaris9/multithread.pdf
*/
#define OOPS(msg) \
pthread__errorfunc(__FILE__, __LINE__, __func__, msg)
int
pthread__park(pthread_t self, pthread_spin_t *lock,
pthread_queue_t *queue, const struct timespec *abstime,
int cancelpt, const void *hint)
{
int rv, error;
void *obj;
/* Clear the willpark flag, since we're about to block. */
self->pt_willpark = 0;
/*
* For non-interlocked release of mutexes we need a store
* barrier before incrementing pt_blocking away from zero.
* This is provided by the caller (it will release an
* interlock, or do an explicit barrier).
*/
self->pt_blocking++;
/*
* Kernels before 4.99.27 can't park and unpark in one step,
* so take care of it now if on an old kernel.
*
* XXX Remove this check before NetBSD 5.0 is released.
* It's for compatibility with recent -current only.
*/
if (__predict_false(pthread__osrev < 499002700) &&
self->pt_unpark != 0) {
_lwp_unpark(self->pt_unpark, self->pt_unparkhint);
self->pt_unpark = 0;
}
/*
* Wait until we are awoken by a pending unpark operation,
* a signal, an unpark posted after we have gone asleep,
* or an expired timeout.
*
* It is fine to test the value of both pt_sleepobj and
* pt_sleeponq without holding any locks, because:
*
* o Only the blocking thread (this thread) ever sets them
* to a non-NULL value.
*
* o Other threads may set them NULL, but if they do so they
* must also make this thread return from _lwp_park.
*
* o _lwp_park, _lwp_unpark and _lwp_unpark_all are system
* calls and all make use of spinlocks in the kernel. So
* these system calls act as full memory barriers, and will
* ensure that the calling CPU's store buffers are drained.
* In combination with the spinlock release before unpark,
* this means that modification of pt_sleepobj/onq by another
* thread will become globally visible before that thread
* schedules an unpark operation on this thread.
*
* Note: the test in the while() statement dodges the park op if
* we have already been awoken, unless there is another thread to
* awaken. This saves a syscall - if we were already awakened,
* the next call to _lwp_park() would need to return early in order
* to eat the previous wakeup.
*/
rv = 0;
while ((self->pt_sleepobj != NULL || self->pt_unpark != 0) && rv == 0) {
/*
* If we deferred unparking a thread, arrange to
* have _lwp_park() restart it before blocking.
*/
error = _lwp_park(abstime, self->pt_unpark, hint,
self->pt_unparkhint);
self->pt_unpark = 0;
if (error != 0) {
switch (rv = errno) {
case EINTR:
case EALREADY:
rv = 0;
break;
case ETIMEDOUT:
break;
default:
OOPS("_lwp_park failed");
break;
}
}
/* Check for cancellation. */
if (cancelpt && self->pt_cancel)
rv = EINTR;
}
/*
* If we have been awoken early but are still on the queue,
* then remove ourself. Again, it's safe to do the test
* without holding any locks.
*/
if (__predict_false(self->pt_sleeponq)) {
pthread__spinlock(self, lock);
if (self->pt_sleeponq) {
PTQ_REMOVE(queue, self, pt_sleep);
obj = self->pt_sleepobj;
self->pt_sleepobj = NULL;
self->pt_sleeponq = 0;
if (obj != NULL && self->pt_early != NULL)
(*self->pt_early)(obj);
}
pthread__spinunlock(self, lock);
}
self->pt_early = NULL;
self->pt_blocking--;
return rv;
}
void
pthread__unpark(pthread_t self, pthread_spin_t *lock,
pthread_queue_t *queue, pthread_t target)
{
int rv;
if (target == NULL) {
pthread__spinunlock(self, lock);
return;
}
/*
* Easy: the thread has already been removed from
* the queue, so just awaken it.
*/
target->pt_sleepobj = NULL;
target->pt_sleeponq = 0;
/*
* Releasing the spinlock serves as a store barrier,
* which ensures that all our modifications are visible
* to the thread in pthread__park() before the unpark
* operation is set in motion.
*/
pthread__spinunlock(self, lock);
/*
* If the calling thread is about to block, defer
* unparking the target until _lwp_park() is called.
*/
if (self->pt_willpark && self->pt_unpark == 0) {
self->pt_unpark = target->pt_lid;
self->pt_unparkhint = queue;
} else {
rv = _lwp_unpark(target->pt_lid, queue);
if (rv != 0 && errno != EALREADY && errno != EINTR) {
OOPS("_lwp_unpark failed");
}
}
}
void
pthread__unpark_all(pthread_t self, pthread_spin_t *lock,
pthread_queue_t *queue)
{
ssize_t n, rv;
pthread_t thread, next;
void *wakeobj;
if (PTQ_EMPTY(queue) && self->pt_nwaiters == 0) {
pthread__spinunlock(self, lock);
return;
}
wakeobj = queue;
for (;; n = 0) {
/*
* Pull waiters from the queue and add to this
* thread's waiters list.
*/
thread = PTQ_FIRST(queue);
for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
n < pthread__unpark_max && thread != NULL;
thread = next) {
/*
* If the sleepobj pointer is non-NULL, it
* means one of two things:
*
* o The thread has awoken early, spun
* through application code and is
* once more asleep on this object.
*
* o This is a new thread that has blocked
* on the object after we have released
* the interlock in this loop.
*
* In both cases we shouldn't remove the
* thread from the queue.
*/
next = PTQ_NEXT(thread, pt_sleep);
if (thread->pt_sleepobj != wakeobj)
continue;
thread->pt_sleepobj = NULL;
thread->pt_sleeponq = 0;
self->pt_waiters[n++] = thread->pt_lid;
PTQ_REMOVE(queue, thread, pt_sleep);
}
/*
* Releasing the spinlock serves as a store barrier,
* which ensures that all our modifications are visible
* to the thread in pthread__park() before the unpark
* operation is set in motion.
*/
switch (n) {
case 0:
pthread__spinunlock(self, lock);
return;
case 1:
/*
* If the calling thread is about to block,
* defer unparking the target until _lwp_park()
* is called.
*/
pthread__spinunlock(self, lock);
if (self->pt_willpark && self->pt_unpark == 0) {
self->pt_unpark = self->pt_waiters[0];
self->pt_unparkhint = queue;
return;
}
rv = (ssize_t)_lwp_unpark(self->pt_waiters[0], queue);
if (rv != 0 && errno != EALREADY && errno != EINTR) {
OOPS("_lwp_unpark failed");
}
return;
default:
/*
* Clear all sleepobj pointers, since we
* release the spin lock before awkening
* everybody, and must synchronise with
* pthread__park().
*/
while (thread != NULL) {
thread->pt_sleepobj = NULL;
thread = PTQ_NEXT(thread, pt_sleep);
}
/*
* Now only interested in waking threads
* marked to be woken (sleepobj == NULL).
*/
wakeobj = NULL;
pthread__spinunlock(self, lock);
rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
queue);
if (rv != 0 && errno != EINTR) {
OOPS("_lwp_unpark_all failed");
}
break;
}
pthread__spinlock(self, lock);
}
}
#undef OOPS
/*
* Allocate a stack for a thread, and set it up. It needs to be aligned, so
* that a thread can find itself by its stack pointer.
*/
static int
pthread__stackalloc(pthread_t *newt)
{
void *addr;
addr = mmap(NULL, pthread__stacksize, PROT_READ|PROT_WRITE,
MAP_ANON|MAP_PRIVATE | MAP_ALIGNED(pthread__stacksize_lg),
-1, (off_t)0);
if (addr == MAP_FAILED)
return ENOMEM;
pthread__assert(((intptr_t)addr & pthread__stackmask) == 0);
return pthread__stackid_setup(addr, pthread__stacksize, newt);
}
/*
* Set up the slightly special stack for the "initial" thread, which
* runs on the normal system stack, and thus gets slightly different
* treatment.
*/
static void
pthread__initmain(pthread_t *newt)
{
struct rlimit slimit;
size_t pagesize;
pthread_t t;
void *base;
size_t size;
int error, ret;
char *value;
pagesize = (size_t)sysconf(_SC_PAGESIZE);
pthread__stacksize = 0;
ret = getrlimit(RLIMIT_STACK, &slimit);
if (ret == -1)
err(1, "Couldn't get stack resource consumption limits");
value = pthread__getenv("PTHREAD_STACKSIZE");
if (value != NULL) {
pthread__stacksize = atoi(value) * 1024;
if (pthread__stacksize > slimit.rlim_cur)
pthread__stacksize = (size_t)slimit.rlim_cur;
}
if (pthread__stacksize == 0)
pthread__stacksize = (size_t)slimit.rlim_cur;
if (pthread__stacksize < 4 * pagesize)
errx(1, "Stacksize limit is too low, minimum %zd kbyte.",
4 * pagesize / 1024);
pthread__stacksize_lg = -1;
while (pthread__stacksize) {
pthread__stacksize >>= 1;
pthread__stacksize_lg++;
}
pthread__stacksize = (1 << pthread__stacksize_lg);
pthread__stackmask = pthread__stacksize - 1;
pthread__threadmask = ~pthread__stackmask;
base = (void *)(pthread__sp() & pthread__threadmask);
size = pthread__stacksize;
error = pthread__stackid_setup(base, size, &t);
if (error) {
/* XXX */
errx(2, "failed to setup main thread: error=%d", error);
}
*newt = t;
#ifdef PTHREAD__HAVE_THREADREG
/* Set up identity register. */
pthread__threadreg_set(t);
#endif
}
static int
/*ARGSUSED*/
pthread__stackid_setup(void *base, size_t size, pthread_t *tp)
{
pthread_t t;
void *redaddr;
size_t pagesize;
int ret;
t = base;
pagesize = (size_t)sysconf(_SC_PAGESIZE);
/*
* Put a pointer to the pthread in the bottom (but
* redzone-protected section) of the stack.
*/
redaddr = STACK_SHRINK(STACK_MAX(base, size), pagesize);
t->pt_stack.ss_size = size - 2 * pagesize;
#ifdef __MACHINE_STACK_GROWS_UP
t->pt_stack.ss_sp = (char *)(void *)base + pagesize;
#else
t->pt_stack.ss_sp = (char *)(void *)base + 2 * pagesize;
#endif
/* Protect the next-to-bottom stack page as a red zone. */
ret = mprotect(redaddr, pagesize, PROT_NONE);
if (ret == -1) {
return errno;
}
*tp = t;
return 0;
}
#ifndef lint
static int
pthread__cmp(struct __pthread_st *a, struct __pthread_st *b)
{
return b - a;
}
RB_GENERATE_STATIC(__pthread__alltree, __pthread_st, pt_alltree, pthread__cmp)
#endif
/* Because getenv() wants to use locks. */
char *
pthread__getenv(const char *name)
{
extern char *__findenv(const char *, int *);
int off;
return __findenv(name, &off);
}