NetBSD/sys/fs/hfs/libhfs.c

2798 lines
70 KiB
C

/* $NetBSD: libhfs.c,v 1.12 2012/07/28 00:43:23 matt Exp $ */
/*-
* Copyright (c) 2005, 2007 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Yevgeny Binder, Dieter Baron, and Pelle Johansson.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* All functions and variable types have the prefix "hfs_". All constants
* have the prefix "HFS_".
*
* Naming convention for functions which read/write raw, linear data
* into/from a structured form:
*
* hfs_read/write[d][a]_foo_bar
* [d] - read/write from/to [d]isk instead of a memory buffer
* [a] - [a]llocate output buffer instead of using an existing one
* (not applicable for writing functions)
*
* Most functions do not have either of these options, so they will read from
* or write to a memory buffer, which has been previously allocated by the
* caller.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: libhfs.c,v 1.12 2012/07/28 00:43:23 matt Exp $");
#include "libhfs.h"
/* global private file/folder keys */
hfs_catalog_key_t hfs_gMetadataDirectoryKey; /* contains HFS+ inodes */
hfs_catalog_key_t hfs_gJournalInfoBlockFileKey;
hfs_catalog_key_t hfs_gJournalBufferFileKey;
hfs_catalog_key_t* hfs_gPrivateObjectKeys[4] = {
&hfs_gMetadataDirectoryKey,
&hfs_gJournalInfoBlockFileKey,
&hfs_gJournalBufferFileKey,
NULL};
extern uint16_t be16tohp(void** inout_ptr);
extern uint32_t be32tohp(void** inout_ptr);
extern uint64_t be64tohp(void** inout_ptr);
hfs_callbacks hfs_gcb; /* global callbacks */
/*
* global case folding table
* (lazily initialized; see comments at bottom of hfs_open_volume())
*/
unichar_t* hfs_gcft;
int hfslib_create_casefolding_table(void);
#ifdef DLO_DEBUG
#include <stdio.h>
void
dlo_print_key(hfs_catalog_key_t *key)
{
int i;
printf("%ld:[", (long)key->parent_cnid);
for (i=0; i<key->name.length; i++) {
if (key->name.unicode[i] < 256
&& isprint(key->name.unicode[i]))
putchar(key->name.unicode[i]);
else
printf("<%04x>", key->name.unicode[i]);
}
printf("]");
}
#endif
void
hfslib_init(hfs_callbacks* in_callbacks)
{
unichar_t temp[256];
if(in_callbacks!=NULL)
memcpy(&hfs_gcb, in_callbacks, sizeof(hfs_callbacks));
hfs_gcft = NULL;
/*
* Create keys for the HFS+ "private" files so we can reuse them whenever
* we perform a user-visible operation, such as listing directory contents.
*/
#define ATOU(str, len) /* quick & dirty ascii-to-unicode conversion */ \
do{ int i; for(i=0; i<len; i++) temp[i]=str[i]; } \
while( /*CONSTCOND*/ 0)
ATOU("\0\0\0\0HFS+ Private Data", 21);
hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 21, temp,
&hfs_gMetadataDirectoryKey);
ATOU(".journal_info_block", 19);
hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 19, temp,
&hfs_gJournalInfoBlockFileKey);
ATOU(".journal", 8);
hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 8, temp,
&hfs_gJournalBufferFileKey);
#undef ATOU
}
void
hfslib_done(void)
{
hfs_callback_args cbargs;
if(hfs_gcft!=NULL) {
hfslib_init_cbargs(&cbargs);
hfslib_free(hfs_gcft, &cbargs);
hfs_gcft = NULL;
}
return;
}
void
hfslib_init_cbargs(hfs_callback_args* ptr)
{
memset(ptr, 0, sizeof(hfs_callback_args));
}
#if 0
#pragma mark -
#pragma mark High-Level Routines
#endif
int
hfslib_open_volume(
const char* in_device,
int in_readonly,
hfs_volume* out_vol,
hfs_callback_args* cbargs)
{
hfs_catalog_key_t rootkey;
hfs_thread_record_t rootthread;
hfs_hfs_master_directory_block_t mdb;
uint16_t node_rec_sizes[1];
void* node_recs[1];
void* buffer;
void* buffer2; /* used as temporary pointer for realloc() */
int result;
int isopen = 0;
result = 1;
buffer = NULL;
if(in_device==NULL || out_vol==NULL)
return 1;
out_vol->readonly = in_readonly;
out_vol->offset = 0;
if(hfslib_openvoldevice(out_vol, in_device, cbargs) != 0)
HFS_LIBERR("could not open device");
isopen = 1;
/*
* Read the volume header.
*/
buffer = hfslib_malloc(max(sizeof(hfs_volume_header_t),
sizeof(hfs_hfs_master_directory_block_t)), cbargs);
if(buffer==NULL)
HFS_LIBERR("could not allocate volume header");
if(hfslib_readd(out_vol, buffer, max(sizeof(hfs_volume_header_t),
sizeof(hfs_hfs_master_directory_block_t)),
HFS_VOLUME_HEAD_RESERVE_SIZE, cbargs)!=0)
HFS_LIBERR("could not read volume header");
if (be16toh(*((uint16_t *)buffer)) == HFS_SIG_HFS) {
if (hfslib_read_master_directory_block(buffer, &mdb) == 0)
HFS_LIBERR("could not parse master directory block");
if (mdb.embedded_signature == HFS_SIG_HFSP)
{
/* XXX: is 512 always correct? */
out_vol->offset =
mdb.first_block * 512
+ mdb.embedded_extent.start_block
* (uint64_t)mdb.block_size;
if(hfslib_readd(out_vol, buffer,
sizeof(hfs_volume_header_t),
HFS_VOLUME_HEAD_RESERVE_SIZE, cbargs)!=0)
HFS_LIBERR("could not read volume header");
}
else
HFS_LIBERR("Plain HFS volumes not currently supported");
}
if(hfslib_read_volume_header(buffer, &(out_vol->vh))==0)
HFS_LIBERR("could not parse volume header");
/*
* Check the volume signature to see if this is a legitimate HFS+ or HFSX
* volume. If so, set the key comparison function pointers appropriately.
*/
switch(out_vol->vh.signature)
{
case HFS_SIG_HFSP:
out_vol->keycmp = hfslib_compare_catalog_keys_cf;
break;
case HFS_SIG_HFSX:
out_vol->keycmp = NULL; /* will be set below */
break;
default:
/* HFS_LIBERR("unrecognized volume format"); */
goto error;
break;
}
/*
* Read the catalog header.
*/
buffer2 = hfslib_realloc(buffer, 512, cbargs);
if(buffer2==NULL)
HFS_LIBERR("could not allocate catalog header node");
buffer = buffer2;
/*
We are only interested in the node header, so read the first
512 bytes and construct the node descriptor by hand.
*/
if(hfslib_readd(out_vol, buffer, 512,
out_vol->vh.catalog_file.extents[0].start_block
*(uint64_t)out_vol->vh.block_size,
cbargs) != 0)
HFS_LIBERR("could not read catalog header node");
node_recs[0] = (char *)buffer+14;
node_rec_sizes[0] = 120;
if(hfslib_read_header_node(node_recs, node_rec_sizes, 1,
&out_vol->chr, NULL, NULL)==0)
HFS_LIBERR("could not parse catalog header node");
/* If this is an HFSX volume, the catalog header specifies the type of
* key comparison method (case-folding or binary compare) we should use. */
if(out_vol->keycmp == NULL)
{
if(out_vol->chr.keycomp_type == HFS_KEY_CASEFOLD)
out_vol->keycmp = hfslib_compare_catalog_keys_cf;
else if(out_vol->chr.keycomp_type == HFS_KEY_BINARY)
out_vol->keycmp = hfslib_compare_catalog_keys_bc;
else
HFS_LIBERR("undefined key compare method");
}
out_vol->catkeysizefieldsize
= (out_vol->chr.attributes & HFS_BIG_KEYS_MASK) ?
sizeof(uint16_t) : sizeof(uint8_t);
/*
* Read the extent overflow header.
*/
/*
We are only interested in the node header, so read the first
512 bytes and construct the node descriptor by hand.
buffer is already 512 bytes long.
*/
if(hfslib_readd(out_vol, buffer, 512,
out_vol->vh.extents_file.extents[0].start_block
*(uint64_t)out_vol->vh.block_size,
cbargs) != 0)
HFS_LIBERR("could not read extent header node");
node_recs[0] = (char *)buffer+14;
node_rec_sizes[0] = 120;
if(hfslib_read_header_node(node_recs, node_rec_sizes, 1,
&out_vol->ehr, NULL, NULL)==0)
HFS_LIBERR("could not parse extent header node");
out_vol->extkeysizefieldsize
= (out_vol->ehr.attributes & HFS_BIG_KEYS_MASK) ?
sizeof(uint16_t):sizeof(uint8_t);
/*
* Read the journal info block and journal header (if volume journaled).
*/
if(out_vol->vh.attributes & (1<<HFS_VOL_JOURNALED))
{
/* journal info block */
buffer2 = hfslib_realloc(buffer, sizeof(hfs_journal_info_t), cbargs);
if(buffer2==NULL)
HFS_LIBERR("could not allocate journal info block");
buffer = buffer2;
if(hfslib_readd(out_vol, buffer, sizeof(hfs_journal_info_t),
out_vol->vh.journal_info_block * out_vol->vh.block_size,
cbargs) != 0)
HFS_LIBERR("could not read journal info block");
if(hfslib_read_journal_info(buffer, &out_vol->jib)==0)
HFS_LIBERR("could not parse journal info block");
/* journal header */
buffer2 = hfslib_realloc(buffer, sizeof(hfs_journal_header_t),cbargs);
if(buffer2==NULL)
HFS_LIBERR("could not allocate journal header");
buffer = buffer2;
if(hfslib_readd(out_vol, buffer, sizeof(hfs_journal_header_t),
out_vol->jib.offset, cbargs) != 0)
HFS_LIBERR("could not read journal header");
if(hfslib_read_journal_header(buffer, &out_vol->jh)==0)
HFS_LIBERR("could not parse journal header");
out_vol->journaled = 1;
}
else
{
out_vol->journaled = 0;
}
/*
* If this volume uses case-folding comparison and the folding table hasn't
* been created yet, do that here. (We don't do this in hfslib_init()
* because the table is large and we might never even need to use it.)
*/
if(out_vol->keycmp==hfslib_compare_catalog_keys_cf && hfs_gcft==NULL)
result = hfslib_create_casefolding_table();
else
result = 0;
/*
* Find and store the volume name.
*/
if(hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 0, NULL, &rootkey)==0)
HFS_LIBERR("could not make root search key");
if(hfslib_find_catalog_record_with_key(out_vol, &rootkey,
(hfs_catalog_keyed_record_t*)&rootthread, cbargs)!=0)
HFS_LIBERR("could not find root parent");
memcpy(&out_vol->name, &rootthread.name, sizeof(hfs_unistr255_t));
/* FALLTHROUGH */
error:
if (result != 0 && isopen)
hfslib_close_volume(out_vol, cbargs);
if(buffer!=NULL)
hfslib_free(buffer, cbargs);
return result;
}
void
hfslib_close_volume(hfs_volume* in_vol, hfs_callback_args* cbargs)
{
if(in_vol==NULL)
return;
hfslib_closevoldevice(in_vol, cbargs);
}
int
hfslib_path_to_cnid(hfs_volume* in_vol,
hfs_cnid_t in_cnid,
char** out_unicode,
uint16_t* out_length,
hfs_callback_args* cbargs)
{
hfs_thread_record_t parent_thread;
hfs_cnid_t parent_cnid, child_cnid;
char* newpath;
char* path;
int path_offset = 0;
int result;
uint16_t* ptr; /* dummy var */
uint16_t uchar; /* dummy var */
uint16_t total_path_length;
if(in_vol==NULL || in_cnid==0 || out_unicode==NULL || out_length==NULL)
return 1;
result = 1;
*out_unicode = NULL;
*out_length = 0;
path = NULL;
total_path_length = 0;
path = hfslib_malloc(514, cbargs); /* 256 unichars plus a forward slash */
if(path==NULL)
return 1;
child_cnid = in_cnid;
parent_cnid = child_cnid; /* skips loop in case in_cnid is root id */
while(parent_cnid != HFS_CNID_ROOT_FOLDER
&& parent_cnid != HFS_CNID_ROOT_PARENT)
{
if(child_cnid!=in_cnid)
{
newpath = hfslib_realloc(path, 514 + total_path_length*2, cbargs);
if(newpath==NULL)
goto exit;
path = newpath;
memmove(path + 514, path + path_offset, total_path_length*2);
}
parent_cnid = hfslib_find_parent_thread(in_vol, child_cnid,
&parent_thread, cbargs);
if(parent_cnid==0)
goto exit;
path_offset = 512 - parent_thread.name.length*2;
memcpy(path + path_offset, parent_thread.name.unicode,
parent_thread.name.length*2);
/* Add a forward slash. The unicode string was specified in big endian
* format, so convert to core format if necessary. */
path[512]=0x00;
path[513]=0x2F;
ptr = (uint16_t*)path + 256;
uchar = be16tohp((void*)&ptr);
*(ptr-1) = uchar;
total_path_length += parent_thread.name.length + 1;
child_cnid = parent_cnid;
}
/*
* At this point, 'path' holds a sequence of unicode characters which
* represent the absolute path to the given cnid. This string is missing
* a terminating null char and an initial forward slash that represents
* the root of the filesystem. It most likely also has extra space in
* the beginning, due to the fact that we reserve 512 bytes for each path
* component and won't usually use all that space. So, we allocate the
* final string based on the actual length of the absolute path, plus four
* additional bytes (two unichars) for the forward slash and the null char.
*/
*out_unicode = hfslib_malloc((total_path_length+2)*2, cbargs);
if(*out_unicode == NULL)
goto exit;
/* copy only the bytes that are actually used */
memcpy(*out_unicode + 2, path + path_offset, total_path_length*2);
/* insert forward slash at start */
uchar = be16toh(0x2F);
memcpy(*out_unicode, &uchar, sizeof(uchar));
/* insert null char at end */
(*out_unicode)[total_path_length*2+2] = 0x00;
(*out_unicode)[total_path_length*2+3] = 0x00;
*out_length = total_path_length + 1 /* extra for forward slash */ ;
result = 0;
exit:
if(path!=NULL)
hfslib_free(path, cbargs);
return result;
}
hfs_cnid_t
hfslib_find_parent_thread(
hfs_volume* in_vol,
hfs_cnid_t in_child,
hfs_thread_record_t* out_thread,
hfs_callback_args* cbargs)
{
hfs_catalog_key_t childkey;
if(in_vol==NULL || in_child==0 || out_thread==NULL)
return 0;
if(hfslib_make_catalog_key(in_child, 0, NULL, &childkey)==0)
return 0;
if(hfslib_find_catalog_record_with_key(in_vol, &childkey,
(hfs_catalog_keyed_record_t*)out_thread, cbargs)!=0)
return 0;
return out_thread->parent_cnid;
}
/*
* hfslib_find_catalog_record_with_cnid()
*
* Looks up a catalog record by calling hfslib_find_parent_thread() and
* hfslib_find_catalog_record_with_key(). out_key may be NULL; if not, the key
* corresponding to this cnid is stuffed in it. Returns 0 on success.
*/
int
hfslib_find_catalog_record_with_cnid(
hfs_volume* in_vol,
hfs_cnid_t in_cnid,
hfs_catalog_keyed_record_t* out_rec,
hfs_catalog_key_t* out_key,
hfs_callback_args* cbargs)
{
hfs_cnid_t parentcnid;
hfs_thread_record_t parentthread;
hfs_catalog_key_t key;
if(in_vol==NULL || in_cnid==0 || out_rec==NULL)
return 0;
parentcnid =
hfslib_find_parent_thread(in_vol, in_cnid, &parentthread, cbargs);
if(parentcnid == 0)
HFS_LIBERR("could not find parent thread for cnid %i", in_cnid);
if(hfslib_make_catalog_key(parentthread.parent_cnid,
parentthread.name.length, parentthread.name.unicode, &key) == 0)
HFS_LIBERR("could not make catalog search key");
if(out_key!=NULL)
memcpy(out_key, &key, sizeof(key));
return hfslib_find_catalog_record_with_key(in_vol, &key, out_rec, cbargs);
error:
return 1;
}
/* Returns 0 on success, 1 on error, and -1 if record was not found. */
int
hfslib_find_catalog_record_with_key(
hfs_volume* in_vol,
hfs_catalog_key_t* in_key,
hfs_catalog_keyed_record_t* out_rec,
hfs_callback_args* cbargs)
{
hfs_node_descriptor_t nd;
hfs_extent_descriptor_t* extents;
hfs_catalog_keyed_record_t lastrec;
hfs_catalog_key_t* curkey;
void** recs;
void* buffer;
uint64_t bytesread;
uint32_t curnode;
uint16_t* recsizes;
uint16_t numextents;
uint16_t recnum;
int16_t leaftype;
int keycompare;
int result;
if(in_key==NULL || out_rec==NULL || in_vol==NULL)
return 1;
result = 1;
buffer = NULL;
curkey = NULL;
extents = NULL;
recs = NULL;
recsizes = NULL;
/* The key takes up over half a kb of ram, which is a lot for the BSD
* kernel stack. So allocate it in the heap instead to play it safe. */
curkey = hfslib_malloc(sizeof(hfs_catalog_key_t), cbargs);
if(curkey==NULL)
HFS_LIBERR("could not allocate catalog search key");
buffer = hfslib_malloc(in_vol->chr.node_size, cbargs);
if(buffer==NULL)
HFS_LIBERR("could not allocate node buffer");
numextents = hfslib_get_file_extents(in_vol, HFS_CNID_CATALOG,
HFS_DATAFORK, &extents, cbargs);
if(numextents==0)
HFS_LIBERR("could not locate fork extents");
nd.num_recs = 0;
curnode = in_vol->chr.root_node;
#ifdef DLO_DEBUG
printf("-> key ");
dlo_print_key(in_key);
printf("\n");
#endif
do
{
#ifdef DLO_DEBUG
printf("--> node %d\n", curnode);
#endif
if(hfslib_readd_with_extents(in_vol, buffer,
&bytesread,in_vol->chr.node_size, curnode * in_vol->chr.node_size,
extents, numextents, cbargs)!=0)
HFS_LIBERR("could not read catalog node #%i", curnode);
if(hfslib_reada_node(buffer, &nd, &recs, &recsizes, HFS_CATALOG_FILE,
in_vol, cbargs)==0)
HFS_LIBERR("could not parse catalog node #%i", curnode);
for(recnum=0; recnum<nd.num_recs; recnum++)
{
leaftype = nd.kind;
if(hfslib_read_catalog_keyed_record(recs[recnum], out_rec,
&leaftype, curkey, in_vol)==0)
HFS_LIBERR("could not read catalog record #%i",recnum);
#ifdef DLO_DEBUG
printf("---> record %d: ", recnum);
dlo_print_key(curkey);
fflush(stdout);
#endif
keycompare = in_vol->keycmp(in_key, curkey);
#ifdef DLO_DEBUG
printf(" %c\n",
keycompare < 0 ? '<'
: keycompare == 0 ? '=' : '>');
#endif
if(keycompare < 0)
{
/* Check if key is less than *every* record, which should never
* happen if the volume is consistent and the key legit. */
if(recnum==0)
HFS_LIBERR("all records greater than key");
/* Otherwise, we've found the first record that exceeds our key,
* so retrieve the previous record, which is still less... */
memcpy(out_rec, &lastrec,
sizeof(hfs_catalog_keyed_record_t));
/* ...unless this is a leaf node, which means we've gone from
* a key which is smaller than the search key, in the previous
* loop, to a key which is larger, in this loop, and that
* implies that our search key does not exist on the volume. */
if(nd.kind==HFS_LEAFNODE)
result = -1;
break;
}
else if(keycompare == 0)
{
/* If leaf node, found an exact match. */
result = 0;
break;
}
else if(recnum==nd.num_recs-1 && keycompare > 0)
{
/* If leaf node, we've reached the last record with no match,
* which means this key is not present on the volume. */
result = -1;
break;
}
memcpy(&lastrec, out_rec, sizeof(hfs_catalog_keyed_record_t));
}
if(nd.kind==HFS_INDEXNODE)
curnode = out_rec->child;
else if(nd.kind==HFS_LEAFNODE)
break;
hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
}
while(nd.kind!=HFS_LEAFNODE);
/* FALLTHROUGH */
error:
if(extents!=NULL)
hfslib_free(extents, cbargs);
hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
if(curkey!=NULL)
hfslib_free(curkey, cbargs);
if(buffer!=NULL)
hfslib_free(buffer, cbargs);
return result;
}
/* returns 0 on success */
/* XXX Need to look this over and make sure it gracefully handles cases where
* XXX the key is not found. */
int
hfslib_find_extent_record_with_key(hfs_volume* in_vol,
hfs_extent_key_t* in_key,
hfs_extent_record_t* out_rec,
hfs_callback_args* cbargs)
{
hfs_node_descriptor_t nd;
hfs_extent_descriptor_t* extents;
hfs_extent_record_t lastrec;
hfs_extent_key_t curkey;
void** recs;
void* buffer;
uint64_t bytesread;
uint32_t curnode;
uint16_t* recsizes;
uint16_t numextents;
uint16_t recnum;
int keycompare;
int result;
if(in_vol==NULL || in_key==NULL || out_rec==NULL)
return 1;
result = 1;
buffer = NULL;
extents = NULL;
recs = NULL;
recsizes = NULL;
buffer = hfslib_malloc(in_vol->ehr.node_size, cbargs);
if(buffer==NULL)
HFS_LIBERR("could not allocate node buffer");
numextents = hfslib_get_file_extents(in_vol, HFS_CNID_EXTENTS,
HFS_DATAFORK, &extents, cbargs);
if(numextents==0)
HFS_LIBERR("could not locate fork extents");
nd.num_recs = 0;
curnode = in_vol->ehr.root_node;
do
{
hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
recnum = 0;
if(hfslib_readd_with_extents(in_vol, buffer, &bytesread,
in_vol->ehr.node_size, curnode * in_vol->ehr.node_size, extents,
numextents, cbargs)!=0)
HFS_LIBERR("could not read extents overflow node #%i", curnode);
if(hfslib_reada_node(buffer, &nd, &recs, &recsizes, HFS_EXTENTS_FILE,
in_vol, cbargs)==0)
HFS_LIBERR("could not parse extents overflow node #%i",curnode);
for(recnum=0; recnum<nd.num_recs; recnum++)
{
memcpy(&lastrec, out_rec, sizeof(hfs_extent_record_t));
if(hfslib_read_extent_record(recs[recnum], out_rec, nd.kind,
&curkey, in_vol)==0)
HFS_LIBERR("could not read extents record #%i",recnum);
keycompare = hfslib_compare_extent_keys(in_key, &curkey);
if(keycompare < 0)
{
/* this should never happen for any legitimate key */
if(recnum==0)
return 1;
memcpy(out_rec, &lastrec, sizeof(hfs_extent_record_t));
break;
}
else if(keycompare == 0 ||
(recnum==nd.num_recs-1 && keycompare > 0))
break;
}
if(nd.kind==HFS_INDEXNODE)
curnode = *((uint32_t *)out_rec); /* out_rec is a node ptr in this case */
else if(nd.kind==HFS_LEAFNODE)
break;
else
HFS_LIBERR("unknwon node type for extents overflow node #%i",curnode);
}
while(nd.kind!=HFS_LEAFNODE);
result = 0;
/* FALLTHROUGH */
error:
if(buffer!=NULL)
hfslib_free(buffer, cbargs);
if(extents!=NULL)
hfslib_free(extents, cbargs);
hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
return result;
}
/* out_extents may be NULL. */
uint16_t
hfslib_get_file_extents(hfs_volume* in_vol,
hfs_cnid_t in_cnid,
uint8_t in_forktype,
hfs_extent_descriptor_t** out_extents,
hfs_callback_args* cbargs)
{
hfs_extent_descriptor_t* dummy;
hfs_extent_key_t extentkey;
hfs_file_record_t file;
hfs_catalog_key_t filekey;
hfs_thread_record_t fileparent;
hfs_fork_t fork = {.logical_size = 0};
hfs_extent_record_t nextextentrec;
uint32_t numblocks;
uint16_t numextents, n;
if(in_vol==NULL || in_cnid==0)
return 0;
if(out_extents!=NULL)
{
*out_extents = hfslib_malloc(sizeof(hfs_extent_descriptor_t), cbargs);
if(*out_extents==NULL)
return 0;
}
switch(in_cnid)
{
case HFS_CNID_CATALOG:
fork = in_vol->vh.catalog_file;
break;
case HFS_CNID_EXTENTS:
fork = in_vol->vh.extents_file;
break;
case HFS_CNID_ALLOCATION:
fork = in_vol->vh.allocation_file;
break;
case HFS_CNID_ATTRIBUTES:
fork = in_vol->vh.attributes_file;
break;
case HFS_CNID_STARTUP:
fork = in_vol->vh.startup_file;
break;
default:
if(hfslib_find_parent_thread(in_vol, in_cnid, &fileparent,
cbargs)==0)
goto error;
if(hfslib_make_catalog_key(fileparent.parent_cnid,
fileparent.name.length, fileparent.name.unicode, &filekey)==0)
goto error;
if(hfslib_find_catalog_record_with_key(in_vol, &filekey,
(hfs_catalog_keyed_record_t*)&file, cbargs)!=0)
goto error;
/* only files have extents, not folders or threads */
if(file.rec_type!=HFS_REC_FILE)
goto error;
if(in_forktype==HFS_DATAFORK)
fork = file.data_fork;
else if(in_forktype==HFS_RSRCFORK)
fork = file.rsrc_fork;
}
numextents = 0;
numblocks = 0;
memcpy(&nextextentrec, &fork.extents, sizeof(hfs_extent_record_t));
while(1)
{
for(n=0; n<8; n++)
{
if(nextextentrec[n].block_count==0)
break;
numblocks += nextextentrec[n].block_count;
}
if(out_extents!=NULL)
{
dummy = hfslib_realloc(*out_extents,
(numextents+n) * sizeof(hfs_extent_descriptor_t),
cbargs);
if(dummy==NULL)
goto error;
*out_extents = dummy;
memcpy(*out_extents + numextents,
&nextextentrec, n*sizeof(hfs_extent_descriptor_t));
}
numextents += n;
if(numblocks >= fork.total_blocks)
break;
if(hfslib_make_extent_key(in_cnid, in_forktype, numblocks,
&extentkey)==0)
goto error;
if(hfslib_find_extent_record_with_key(in_vol, &extentkey,
&nextextentrec, cbargs)!=0)
goto error;
}
goto exit;
error:
if(out_extents!=NULL && *out_extents!=NULL)
{
hfslib_free(*out_extents, cbargs);
*out_extents = NULL;
}
return 0;
exit:
return numextents;
}
/*
* hfslib_get_directory_contents()
*
* Finds the immediate children of a given directory CNID and places their
* CNIDs in an array allocated here. The first child is found by doing a
* catalog search that only compares parent CNIDs (ignoring file/folder names)
* and skips over thread records. Then the remaining children are listed in
* ascending order by name, according to the HFS+ spec, so just read off each
* successive leaf node until a different parent CNID is found.
*
* If out_childnames is not NULL, it will be allocated and set to an array of
* hfs_unistr255_t's which correspond to the name of the child with that same
* index.
*
* out_children may be NULL.
*
* Returns 0 on success.
*/
int
hfslib_get_directory_contents(
hfs_volume* in_vol,
hfs_cnid_t in_dir,
hfs_catalog_keyed_record_t** out_children,
hfs_unistr255_t** out_childnames,
uint32_t* out_numchildren,
hfs_callback_args* cbargs)
{
hfs_node_descriptor_t nd;
hfs_extent_descriptor_t* extents;
hfs_catalog_keyed_record_t currec;
hfs_catalog_key_t curkey;
void** recs;
void* buffer;
void* ptr; /* temporary pointer for realloc() */
uint64_t bytesread;
uint32_t curnode;
uint32_t lastnode;
uint16_t* recsizes;
uint16_t numextents;
uint16_t recnum;
int16_t leaftype;
int keycompare;
int result;
if(in_vol==NULL || in_dir==0 || out_numchildren==NULL)
return 1;
result = 1;
buffer = NULL;
extents = NULL;
lastnode = 0;
recs = NULL;
recsizes = NULL;
*out_numchildren = 0;
if(out_children!=NULL)
*out_children = NULL;
if(out_childnames!=NULL)
*out_childnames = NULL;
buffer = hfslib_malloc(in_vol->chr.node_size, cbargs);
if(buffer==NULL)
HFS_LIBERR("could not allocate node buffer");
numextents = hfslib_get_file_extents(in_vol, HFS_CNID_CATALOG,
HFS_DATAFORK, &extents, cbargs);
if(numextents==0)
HFS_LIBERR("could not locate fork extents");
nd.num_recs = 0;
curnode = in_vol->chr.root_node;
while(1)
{
hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
recnum = 0;
if(hfslib_readd_with_extents(in_vol, buffer, &bytesread,
in_vol->chr.node_size, curnode * in_vol->chr.node_size, extents,
numextents, cbargs)!=0)
HFS_LIBERR("could not read catalog node #%i", curnode);
if(hfslib_reada_node(buffer, &nd, &recs, &recsizes, HFS_CATALOG_FILE,
in_vol, cbargs)==0)
HFS_LIBERR("could not parse catalog node #%i", curnode);
for(recnum=0; recnum<nd.num_recs; recnum++)
{
leaftype = nd.kind; /* needed b/c leaftype might be modified now */
if(hfslib_read_catalog_keyed_record(recs[recnum], &currec,
&leaftype, &curkey, in_vol)==0)
HFS_LIBERR("could not read cat record %i:%i", curnode, recnum);
if(nd.kind==HFS_INDEXNODE)
{
keycompare = in_dir - curkey.parent_cnid;
if(keycompare < 0)
{
/* Check if key is less than *every* record, which should
* never happen if the volume and key are good. */
if(recnum==0)
HFS_LIBERR("all records greater than key");
/* Otherwise, we've found the first record that exceeds our
* key, so retrieve the previous, lesser record. */
curnode = lastnode;
break;
}
else if(keycompare == 0)
{
/*
* Normally, if we were doing a typical catalog lookup with
* both a parent cnid AND a name, keycompare==0 would be an
* exact match. However, since we are ignoring object names
* in this case and only comparing parent cnids, a direct
* match on only a parent cnid could mean that we've found
* an object with that parent cnid BUT which is NOT the
* first object (according to the HFS+ spec) with that
* parent cnid. Thus, when we find a parent cnid match, we
* still go back to the previously found leaf node and start
* checking it for a possible prior instance of an object
* with our desired parent cnid.
*/
curnode = lastnode;
break;
}
else if (recnum==nd.num_recs-1 && keycompare > 0)
{
/* Descend to child node if we found an exact match, or if
* this is the last pointer record. */
curnode = currec.child;
break;
}
lastnode = currec.child;
}
else
{
/*
* We have now descended down the hierarchy of index nodes into
* the leaf node that contains the first catalog record with a
* matching parent CNID. Since all leaf nodes are chained
* through their flink/blink, we can simply walk forward through
* this chain, copying every matching non-thread record, until
* we hit a record with a different parent CNID. At that point,
* we've retrieved all of our directory's items, if any.
*/
curnode = nd.flink;
if(curkey.parent_cnid<in_dir)
continue;
else if(curkey.parent_cnid==in_dir)
{
/* Hide files/folders which are supposed to be invisible
* to users, according to the hfs+ spec. */
if(hfslib_is_private_file(&curkey))
continue;
/* leaftype has now been set to the catalog record type */
if(leaftype==HFS_REC_FLDR || leaftype==HFS_REC_FILE)
{
(*out_numchildren)++;
if(out_children!=NULL)
{
ptr = hfslib_realloc(*out_children,
*out_numchildren *
sizeof(hfs_catalog_keyed_record_t), cbargs);
if(ptr==NULL)
HFS_LIBERR("could not allocate child record");
*out_children = ptr;
memcpy(&((*out_children)[*out_numchildren-1]),
&currec, sizeof(hfs_catalog_keyed_record_t));
}
if(out_childnames!=NULL)
{
ptr = hfslib_realloc(*out_childnames,
*out_numchildren * sizeof(hfs_unistr255_t),
cbargs);
if(ptr==NULL)
HFS_LIBERR("could not allocate child name");
*out_childnames = ptr;
memcpy(&((*out_childnames)[*out_numchildren-1]),
&curkey.name, sizeof(hfs_unistr255_t));
}
}
} else {
result = 0;
/* We have just now passed the last item in the desired
* folder (or the folder was empty), so exit. */
goto exit;
}
}
}
}
result = 0;
goto exit;
error:
if(out_children!=NULL && *out_children!=NULL)
hfslib_free(*out_children, cbargs);
if(out_childnames!=NULL && *out_childnames!=NULL)
hfslib_free(*out_childnames, cbargs);
/* FALLTHROUGH */
exit:
if(extents!=NULL)
hfslib_free(extents, cbargs);
hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
if(buffer!=NULL)
hfslib_free(buffer, cbargs);
return result;
}
int
hfslib_is_journal_clean(hfs_volume* in_vol)
{
if(in_vol==NULL)
return 0;
/* return true if no journal */
if(!(in_vol->vh.attributes & (1<<HFS_VOL_JOURNALED)))
return 1;
return (in_vol->jh.start == in_vol->jh.end);
}
/*
* hfslib_is_private_file()
*
* Given a file/folder's key and parent CNID, determines if it should be hidden
* from the user (e.g., the journal header file or the HFS+ Private Data folder)
*/
int
hfslib_is_private_file(hfs_catalog_key_t *filekey)
{
hfs_catalog_key_t* curkey = NULL;
int i = 0;
/*
* According to the HFS+ spec to date, all special objects are located in
* the root directory of the volume, so don't bother going further if the
* requested object is not.
*/
if(filekey->parent_cnid != HFS_CNID_ROOT_FOLDER)
return 0;
while((curkey = hfs_gPrivateObjectKeys[i]) != NULL)
{
/* XXX Always use binary compare here, or use volume's specific key
* XXX comparison routine? */
if(filekey->name.length == curkey->name.length
&& memcmp(filekey->name.unicode, curkey->name.unicode,
2 * curkey->name.length)==0)
return 1;
i++;
}
return 0;
}
/* bool
hfslib_is_journal_valid(hfs_volume* in_vol)
{
- check magic numbers
- check Other Things
}*/
#if 0
#pragma mark -
#pragma mark Major Structures
#endif
/*
* hfslib_read_volume_header()
*
* Reads in_bytes, formats the data appropriately, and places the result
* in out_header, which is assumed to be previously allocated. Returns number
* of bytes read, 0 if failed.
*/
size_t
hfslib_read_volume_header(void* in_bytes, hfs_volume_header_t* out_header)
{
void* ptr;
size_t last_bytes_read;
int i;
if(in_bytes==NULL || out_header==NULL)
return 0;
ptr = in_bytes;
out_header->signature = be16tohp(&ptr);
out_header->version = be16tohp(&ptr);
out_header->attributes = be32tohp(&ptr);
out_header->last_mounting_version = be32tohp(&ptr);
out_header->journal_info_block = be32tohp(&ptr);
out_header->date_created = be32tohp(&ptr);
out_header->date_modified = be32tohp(&ptr);
out_header->date_backedup = be32tohp(&ptr);
out_header->date_checked = be32tohp(&ptr);
out_header->file_count = be32tohp(&ptr);
out_header->folder_count = be32tohp(&ptr);
out_header->block_size = be32tohp(&ptr);
out_header->total_blocks = be32tohp(&ptr);
out_header->free_blocks = be32tohp(&ptr);
out_header->next_alloc_block = be32tohp(&ptr);
out_header->rsrc_clump_size = be32tohp(&ptr);
out_header->data_clump_size = be32tohp(&ptr);
out_header->next_cnid = be32tohp(&ptr);
out_header->write_count = be32tohp(&ptr);
out_header->encodings = be64tohp(&ptr);
for(i=0;i<8;i++)
out_header->finder_info[i] = be32tohp(&ptr);
if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
&out_header->allocation_file))==0)
return 0;
ptr = (uint8_t*)ptr + last_bytes_read;
if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
&out_header->extents_file))==0)
return 0;
ptr = (uint8_t*)ptr + last_bytes_read;
if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
&out_header->catalog_file))==0)
return 0;
ptr = (uint8_t*)ptr + last_bytes_read;
if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
&out_header->attributes_file))==0)
return 0;
ptr = (uint8_t*)ptr + last_bytes_read;
if((last_bytes_read = hfslib_read_fork_descriptor(ptr,
&out_header->startup_file))==0)
return 0;
ptr = (uint8_t*)ptr + last_bytes_read;
return ((uint8_t*)ptr - (uint8_t*)in_bytes);
}
/*
* hfsplib_read_master_directory_block()
*
* Reads in_bytes, formats the data appropriately, and places the result
* in out_header, which is assumed to be previously allocated. Returns numb
er
* of bytes read, 0 if failed.
*/
size_t
hfslib_read_master_directory_block(void* in_bytes,
hfs_hfs_master_directory_block_t* out_mdr)
{
void* ptr;
int i;
if(in_bytes==NULL || out_mdr==NULL)
return 0;
ptr = in_bytes;
out_mdr->signature = be16tohp(&ptr);
out_mdr->date_created = be32tohp(&ptr);
out_mdr->date_modified = be32tohp(&ptr);
out_mdr->attributes = be16tohp(&ptr);
out_mdr->root_file_count = be16tohp(&ptr);
out_mdr->volume_bitmap = be16tohp(&ptr);
out_mdr->next_alloc_block = be16tohp(&ptr);
out_mdr->total_blocks = be16tohp(&ptr);
out_mdr->block_size = be32tohp(&ptr);
out_mdr->clump_size = be32tohp(&ptr);
out_mdr->first_block = be16tohp(&ptr);
out_mdr->next_cnid = be32tohp(&ptr);
out_mdr->free_blocks = be16tohp(&ptr);
memcpy(out_mdr->volume_name, ptr, 28);
ptr = (char *)ptr + 28;
out_mdr->date_backedup = be32tohp(&ptr);
out_mdr->backup_seqnum = be16tohp(&ptr);
out_mdr->write_count = be32tohp(&ptr);
out_mdr->extents_clump_size = be32tohp(&ptr);
out_mdr->catalog_clump_size = be32tohp(&ptr);
out_mdr->root_folder_count = be16tohp(&ptr);
out_mdr->file_count = be32tohp(&ptr);
out_mdr->folder_count = be32tohp(&ptr);
for(i=0;i<8;i++)
out_mdr->finder_info[i] = be32tohp(&ptr);
out_mdr->embedded_signature = be16tohp(&ptr);
out_mdr->embedded_extent.start_block = be16tohp(&ptr);
out_mdr->embedded_extent.block_count = be16tohp(&ptr);
out_mdr->extents_size = be32tohp(&ptr);
for (i = 0; i < 3; i++)
{
out_mdr->extents_extents[i].start_block = be16tohp(&ptr);
out_mdr->extents_extents[i].block_count = be16tohp(&ptr);
}
out_mdr->catalog_size = be32tohp(&ptr);
for (i = 0; i < 3; i++)
{
out_mdr->catalog_extents[i].start_block = be16tohp(&ptr);
out_mdr->catalog_extents[i].block_count = be16tohp(&ptr);
}
return ((uint8_t*)ptr - (uint8_t*)in_bytes);
}
/*
* hfslib_reada_node()
*
* Given the pointer to and size of a buffer containing the entire, raw
* contents of any b-tree node from the disk, this function will:
*
* 1. determine the type of node and read its contents
* 2. allocate memory for each record and fill it appropriately
* 3. set out_record_ptrs_array to point to an array (which it allocates)
* which has out_node_descriptor->num_recs many pointers to the
* records themselves
* 4. allocate out_record_ptr_sizes_array and fill it with the sizes of
* each record
* 5. return the number of bytes read (i.e., the size of the node)
* or 0 on failure
*
* out_node_descriptor must be allocated by the caller and may not be NULL.
*
* out_record_ptrs_array and out_record_ptr_sizes_array must both be specified,
* or both be NULL if the caller is not interested in reading the records.
*
* out_record_ptr_sizes_array may be NULL if the caller is not interested in
* reading the records, but must not be NULL if out_record_ptrs_array is not.
*
* in_parent_file is HFS_CATALOG_FILE, HFS_EXTENTS_FILE, or
* HFS_ATTRIBUTES_FILE, depending on the special file in which this node
* resides.
*
* inout_volume must have its catnodesize or extnodesize field (depending on
* the parent file) set to the correct value if this is an index, leaf, or map
* node. If this is a header node, the field will be set to its correct value.
*/
size_t
hfslib_reada_node(void* in_bytes,
hfs_node_descriptor_t* out_node_descriptor,
void** out_record_ptrs_array[],
uint16_t* out_record_ptr_sizes_array[],
hfs_btree_file_type in_parent_file,
hfs_volume* inout_volume,
hfs_callback_args* cbargs)
{
void* ptr;
uint16_t* rec_offsets;
size_t last_bytes_read;
uint16_t nodesize;
uint16_t numrecords;
uint16_t free_space_offset; /* offset to free space in node */
int keysizefieldsize;
int i;
numrecords = 0;
rec_offsets = NULL;
if(out_record_ptrs_array!=NULL)
*out_record_ptrs_array = NULL;
if(out_record_ptr_sizes_array!=NULL)
*out_record_ptr_sizes_array = NULL;
if(in_bytes==NULL || inout_volume==NULL || out_node_descriptor==NULL
|| (out_record_ptrs_array==NULL && out_record_ptr_sizes_array!=NULL)
|| (out_record_ptrs_array!=NULL && out_record_ptr_sizes_array==NULL) )
goto error;
ptr = in_bytes;
out_node_descriptor->flink = be32tohp(&ptr);
out_node_descriptor->blink = be32tohp(&ptr);
out_node_descriptor->kind = *(((int8_t*)ptr));
ptr = (uint8_t*)ptr + 1;
out_node_descriptor->height = *(((uint8_t*)ptr));
ptr = (uint8_t*)ptr + 1;
out_node_descriptor->num_recs = be16tohp(&ptr);
out_node_descriptor->reserved = be16tohp(&ptr);
numrecords = out_node_descriptor->num_recs;
/*
* To go any further, we will need to know the size of this node, as well
* as the width of keyed records' key_len parameters for this btree. If
* this is an index, leaf, or map node, inout_volume already has the node
* size set in its catnodesize or extnodesize field and the key length set
* in the catkeysizefieldsize or extkeysizefieldsize for catalog files and
* extent files, respectively. However, if this is a header node, this
* information has not yet been determined, so this is the place to do it.
*/
if(out_node_descriptor->kind == HFS_HEADERNODE)
{
hfs_header_record_t hr;
void* header_rec_offset[1];
uint16_t header_rec_size[1];
/* sanity check to ensure this is a good header node */
if(numrecords!=3)
HFS_LIBERR("header node does not have exactly 3 records");
header_rec_offset[0] = ptr;
header_rec_size[0] = sizeof(hfs_header_record_t);
last_bytes_read = hfslib_read_header_node(header_rec_offset,
header_rec_size, 1, &hr, NULL, NULL);
if(last_bytes_read==0)
HFS_LIBERR("could not read header node");
switch(in_parent_file)
{
case HFS_CATALOG_FILE:
inout_volume->chr.node_size = hr.node_size;
inout_volume->catkeysizefieldsize =
(hr.attributes & HFS_BIG_KEYS_MASK) ?
sizeof(uint16_t):sizeof(uint8_t);
break;
case HFS_EXTENTS_FILE:
inout_volume->ehr.node_size = hr.node_size;
inout_volume->extkeysizefieldsize =
(hr.attributes & HFS_BIG_KEYS_MASK) ?
sizeof(uint16_t):sizeof(uint8_t);
break;
case HFS_ATTRIBUTES_FILE:
default:
HFS_LIBERR("invalid parent file type specified");
/* NOTREACHED */
}
}
switch(in_parent_file)
{
case HFS_CATALOG_FILE:
nodesize = inout_volume->chr.node_size;
keysizefieldsize = inout_volume->catkeysizefieldsize;
break;
case HFS_EXTENTS_FILE:
nodesize = inout_volume->ehr.node_size;
keysizefieldsize = inout_volume->extkeysizefieldsize;
break;
case HFS_ATTRIBUTES_FILE:
default:
HFS_LIBERR("invalid parent file type specified");
/* NOTREACHED */
}
/*
* Don't care about records so just exit after getting the node descriptor.
* Note: This happens after the header node code, and not before it, in
* case the caller calls this function and ignores the record data just to
* get at the node descriptor, but then tries to call it again on a non-
* header node without first setting inout_volume->cat/extnodesize.
*/
if(out_record_ptrs_array==NULL)
return ((uint8_t*)ptr - (uint8_t*)in_bytes);
rec_offsets = hfslib_malloc(numrecords * sizeof(uint16_t), cbargs);
*out_record_ptr_sizes_array =
hfslib_malloc(numrecords * sizeof(uint16_t), cbargs);
if(rec_offsets==NULL || *out_record_ptr_sizes_array==NULL)
HFS_LIBERR("could not allocate node record offsets");
*out_record_ptrs_array = hfslib_malloc(numrecords * sizeof(void*), cbargs);
if(*out_record_ptrs_array==NULL)
HFS_LIBERR("could not allocate node records");
last_bytes_read = hfslib_reada_node_offsets((uint8_t*)in_bytes + nodesize -
numrecords * sizeof(uint16_t), rec_offsets);
if(last_bytes_read==0)
HFS_LIBERR("could not read node record offsets");
/* The size of the last record (i.e. the first one listed in the offsets)
* must be determined using the offset to the node's free space. */
free_space_offset = be16toh(*(uint16_t*)((uint8_t*)in_bytes + nodesize -
(numrecords+1) * sizeof(uint16_t)));
(*out_record_ptr_sizes_array)[numrecords-1] =
free_space_offset - rec_offsets[0];
for(i=1;i<numrecords;i++)
{
(*out_record_ptr_sizes_array)[numrecords-i-1] =
rec_offsets[i-1] - rec_offsets[i];
}
for(i=0;i<numrecords;i++)
{
(*out_record_ptrs_array)[i] =
hfslib_malloc((*out_record_ptr_sizes_array)[i], cbargs);
if((*out_record_ptrs_array)[i]==NULL)
HFS_LIBERR("could not allocate node record #%i",i);
/*
* If this is a keyed node (i.e., a leaf or index node), there are two
* boundary rules that each record must obey:
*
* 1. A pad byte must be placed between the key and data if the
* size of the key plus the size of the key_len field is odd.
*
* 2. A pad byte must be placed after the data if the data size
* is odd.
*
* So in the first case we increment the starting point of the data
* and correspondingly decrement the record size. In the second case
* we decrement the record size.
*/
if(out_node_descriptor->kind == HFS_LEAFNODE ||
out_node_descriptor->kind == HFS_INDEXNODE)
{
hfs_catalog_key_t reckey;
uint16_t rectype;
rectype = out_node_descriptor->kind;
last_bytes_read = hfslib_read_catalog_keyed_record(ptr, NULL,
&rectype, &reckey, inout_volume);
if(last_bytes_read==0)
HFS_LIBERR("could not read node record");
if((reckey.key_len + keysizefieldsize) % 2 == 1)
{
ptr = (uint8_t*)ptr + 1;
(*out_record_ptr_sizes_array)[i]--;
}
if((*out_record_ptr_sizes_array)[i] % 2 == 1)
(*out_record_ptr_sizes_array)[i]--;
}
memcpy((*out_record_ptrs_array)[i], ptr,
(*out_record_ptr_sizes_array)[i]);
ptr = (uint8_t*)ptr + (*out_record_ptr_sizes_array)[i];
}
goto exit;
error:
hfslib_free_recs(out_record_ptrs_array, out_record_ptr_sizes_array,
&numrecords, cbargs);
ptr = in_bytes;
/* warn("error occurred in hfslib_reada_node()"); */
/* FALLTHROUGH */
exit:
if(rec_offsets!=NULL)
hfslib_free(rec_offsets, cbargs);
return ((uint8_t*)ptr - (uint8_t*)in_bytes);
}
/*
* hfslib_reada_node_offsets()
*
* Sets out_offset_array to contain the offsets to each record in the node,
* in reverse order. Does not read the free space offset.
*/
size_t
hfslib_reada_node_offsets(void* in_bytes, uint16_t* out_offset_array)
{
void* ptr;
if(in_bytes==NULL || out_offset_array==NULL)
return 0;
ptr = in_bytes;
/*
* The offset for record 0 (which is the very last offset in the node) is
* always equal to 14, the size of the node descriptor. So, once we hit
* offset=14, we know this is the last offset. In this way, we don't need
* to know the number of records beforehand.
*/
out_offset_array--;
do
{
out_offset_array++;
*out_offset_array = be16tohp(&ptr);
}
while(*out_offset_array != (uint16_t)14);
return ((uint8_t*)ptr - (uint8_t*)in_bytes);
}
/* hfslib_read_header_node()
*
* out_header_record and/or out_map_record may be NULL if the caller doesn't
* care about their contents.
*/
size_t
hfslib_read_header_node(void** in_recs,
uint16_t* in_rec_sizes,
uint16_t in_num_recs,
hfs_header_record_t* out_hr,
void* out_userdata,
void* out_map)
{
void* ptr;
int i;
KASSERT(out_hr != NULL);
if(in_recs==NULL || in_rec_sizes==NULL)
return 0;
ptr = in_recs[0];
out_hr->tree_depth = be16tohp(&ptr);
out_hr->root_node = be32tohp(&ptr);
out_hr->leaf_recs = be32tohp(&ptr);
out_hr->first_leaf = be32tohp(&ptr);
out_hr->last_leaf = be32tohp(&ptr);
out_hr->node_size = be16tohp(&ptr);
out_hr->max_key_len = be16tohp(&ptr);
out_hr->total_nodes = be32tohp(&ptr);
out_hr->free_nodes = be32tohp(&ptr);
out_hr->reserved = be16tohp(&ptr);
out_hr->clump_size = be32tohp(&ptr);
out_hr->btree_type = *(((uint8_t*)ptr));
ptr = (uint8_t*)ptr + 1;
out_hr->keycomp_type = *(((uint8_t*)ptr));
ptr = (uint8_t*)ptr + 1;
out_hr->attributes = be32tohp(&ptr);
for(i=0;i<16;i++)
out_hr->reserved2[i] = be32tohp(&ptr);
if(out_userdata!=NULL)
{
memcpy(out_userdata, in_recs[1], in_rec_sizes[1]);
}
ptr = (uint8_t*)ptr + in_rec_sizes[1]; /* size of user data record */
if(out_map!=NULL)
{
memcpy(out_map, in_recs[2], in_rec_sizes[2]);
}
ptr = (uint8_t*)ptr + in_rec_sizes[2]; /* size of map record */
return ((uint8_t*)ptr - (uint8_t*)in_recs[0]);
}
/*
* hfslib_read_catalog_keyed_record()
*
* out_recdata can be NULL. inout_rectype must be set to either HFS_LEAFNODE
* or HFS_INDEXNODE upon calling this function, and will be set by the
* function to one of HFS_REC_FLDR, HFS_REC_FILE, HFS_REC_FLDR_THREAD, or
* HFS_REC_FLDR_THREAD upon return if the node is a leaf node. If it is an
* index node, inout_rectype will not be changed.
*/
size_t
hfslib_read_catalog_keyed_record(
void* in_bytes,
hfs_catalog_keyed_record_t* out_recdata,
int16_t* inout_rectype,
hfs_catalog_key_t* out_key,
hfs_volume* in_volume)
{
void* ptr;
size_t last_bytes_read;
if(in_bytes==NULL || out_key==NULL || inout_rectype==NULL)
return 0;
ptr = in_bytes;
/* For HFS+, the key length is always a 2-byte number. This is indicated
* by the HFS_BIG_KEYS_MASK bit in the attributes field of the catalog
* header record. However, we just assume this bit is set, since all HFS+
* volumes should have it set anyway. */
if(in_volume->catkeysizefieldsize == sizeof(uint16_t))
out_key->key_len = be16tohp(&ptr);
else if (in_volume->catkeysizefieldsize == sizeof(uint8_t)) {
out_key->key_len = *(((uint8_t*)ptr));
ptr = (uint8_t*)ptr + 1;
}
out_key->parent_cnid = be32tohp(&ptr);
last_bytes_read = hfslib_read_unistr255(ptr, &out_key->name);
if(last_bytes_read==0)
return 0;
ptr = (uint8_t*)ptr + last_bytes_read;
/* don't waste time if the user just wanted the key and/or record type */
if(out_recdata==NULL)
{
if(*inout_rectype == HFS_LEAFNODE)
*inout_rectype = be16tohp(&ptr);
else if(*inout_rectype != HFS_INDEXNODE)
return 0; /* should not happen if we were given valid arguments */
return ((uint8_t*)ptr - (uint8_t*)in_bytes);
}
if(*inout_rectype == HFS_INDEXNODE)
{
out_recdata->child = be32tohp(&ptr);
}
else
{
/* first need to determine what kind of record this is */
*inout_rectype = be16tohp(&ptr);
out_recdata->type = *inout_rectype;
switch(out_recdata->type)
{
case HFS_REC_FLDR:
{
out_recdata->folder.flags = be16tohp(&ptr);
out_recdata->folder.valence = be32tohp(&ptr);
out_recdata->folder.cnid = be32tohp(&ptr);
out_recdata->folder.date_created = be32tohp(&ptr);
out_recdata->folder.date_content_mod = be32tohp(&ptr);
out_recdata->folder.date_attrib_mod = be32tohp(&ptr);
out_recdata->folder.date_accessed = be32tohp(&ptr);
out_recdata->folder.date_backedup = be32tohp(&ptr);
last_bytes_read = hfslib_read_bsd_data(ptr,
&out_recdata->folder.bsd);
if(last_bytes_read==0)
return 0;
ptr = (uint8_t*)ptr + last_bytes_read;
last_bytes_read = hfslib_read_folder_userinfo(ptr,
&out_recdata->folder.user_info);
if(last_bytes_read==0)
return 0;
ptr = (uint8_t*)ptr + last_bytes_read;
last_bytes_read = hfslib_read_folder_finderinfo(ptr,
&out_recdata->folder.finder_info);
if(last_bytes_read==0)
return 0;
ptr = (uint8_t*)ptr + last_bytes_read;
out_recdata->folder.text_encoding = be32tohp(&ptr);
out_recdata->folder.reserved = be32tohp(&ptr);
}
break;
case HFS_REC_FILE:
{
out_recdata->file.flags = be16tohp(&ptr);
out_recdata->file.reserved = be32tohp(&ptr);
out_recdata->file.cnid = be32tohp(&ptr);
out_recdata->file.date_created = be32tohp(&ptr);
out_recdata->file.date_content_mod = be32tohp(&ptr);
out_recdata->file.date_attrib_mod = be32tohp(&ptr);
out_recdata->file.date_accessed = be32tohp(&ptr);
out_recdata->file.date_backedup = be32tohp(&ptr);
last_bytes_read = hfslib_read_bsd_data(ptr,
&out_recdata->file.bsd);
if(last_bytes_read==0)
return 0;
ptr = (uint8_t*)ptr + last_bytes_read;
last_bytes_read = hfslib_read_file_userinfo(ptr,
&out_recdata->file.user_info);
if(last_bytes_read==0)
return 0;
ptr = (uint8_t*)ptr + last_bytes_read;
last_bytes_read = hfslib_read_file_finderinfo(ptr,
&out_recdata->file.finder_info);
if(last_bytes_read==0)
return 0;
ptr = (uint8_t*)ptr + last_bytes_read;
out_recdata->file.text_encoding = be32tohp(&ptr);
out_recdata->file.reserved2 = be32tohp(&ptr);
last_bytes_read = hfslib_read_fork_descriptor(ptr,
&out_recdata->file.data_fork);
if(last_bytes_read==0)
return 0;
ptr = (uint8_t*)ptr + last_bytes_read;
last_bytes_read = hfslib_read_fork_descriptor(ptr,
&out_recdata->file.rsrc_fork);
if(last_bytes_read==0)
return 0;
ptr = (uint8_t*)ptr + last_bytes_read;
}
break;
case HFS_REC_FLDR_THREAD:
case HFS_REC_FILE_THREAD:
{
out_recdata->thread.reserved = be16tohp(&ptr);
out_recdata->thread.parent_cnid = be32tohp(&ptr);
last_bytes_read = hfslib_read_unistr255(ptr,
&out_recdata->thread.name);
if(last_bytes_read==0)
return 0;
ptr = (uint8_t*)ptr + last_bytes_read;
}
break;
default:
return 1;
/* NOTREACHED */
}
}
return ((uint8_t*)ptr - (uint8_t*)in_bytes);
}
/* out_rec may be NULL */
size_t
hfslib_read_extent_record(
void* in_bytes,
hfs_extent_record_t* out_rec,
hfs_node_kind in_nodekind,
hfs_extent_key_t* out_key,
hfs_volume* in_volume)
{
void* ptr;
size_t last_bytes_read;
if(in_bytes==NULL || out_key==NULL
|| (in_nodekind!=HFS_LEAFNODE && in_nodekind!=HFS_INDEXNODE))
return 0;
ptr = in_bytes;
/* For HFS+, the key length is always a 2-byte number. This is indicated
* by the HFS_BIG_KEYS_MASK bit in the attributes field of the extent
* overflow header record. However, we just assume this bit is set, since
* all HFS+ volumes should have it set anyway. */
if(in_volume->extkeysizefieldsize == sizeof(uint16_t))
out_key->key_length = be16tohp(&ptr);
else if (in_volume->extkeysizefieldsize == sizeof(uint8_t)) {
out_key->key_length = *(((uint8_t*)ptr));
ptr = (uint8_t*)ptr + 1;
}
out_key->fork_type = *(((uint8_t*)ptr));
ptr = (uint8_t*)ptr + 1;
out_key->padding = *(((uint8_t*)ptr));
ptr = (uint8_t*)ptr + 1;
out_key->file_cnid = be32tohp(&ptr);
out_key->start_block = be32tohp(&ptr);
/* don't waste time if the user just wanted the key */
if(out_rec==NULL)
return ((uint8_t*)ptr - (uint8_t*)in_bytes);
if(in_nodekind==HFS_LEAFNODE)
{
last_bytes_read = hfslib_read_extent_descriptors(ptr, out_rec);
if(last_bytes_read==0)
return 0;
ptr = (uint8_t*)ptr + last_bytes_read;
}
else
{
/* XXX: this is completely bogus */
/* (uint32_t*)*out_rec = be32tohp(&ptr); */
uint32_t *ptr_32 = (uint32_t *)out_rec;
*ptr_32 = be32tohp(&ptr);
/* (*out_rec)[0].start_block = be32tohp(&ptr); */
}
return ((uint8_t*)ptr - (uint8_t*)in_bytes);
}
void
hfslib_free_recs(
void*** inout_node_recs,
uint16_t** inout_rec_sizes,
uint16_t* inout_num_recs,
hfs_callback_args* cbargs)
{
uint16_t i;
if(inout_num_recs==NULL || *inout_num_recs==0)
return;
if(inout_node_recs!=NULL && *inout_node_recs!=NULL)
{
for(i=0;i<*inout_num_recs;i++)
{
if((*inout_node_recs)[i]!=NULL)
{
hfslib_free((*inout_node_recs)[i], cbargs);
(*inout_node_recs)[i] = NULL;
}
}
hfslib_free(*inout_node_recs, cbargs);
*inout_node_recs = NULL;
}
if(inout_rec_sizes!=NULL && *inout_rec_sizes!=NULL)
{
hfslib_free(*inout_rec_sizes, cbargs);
*inout_rec_sizes = NULL;
}
*inout_num_recs = 0;
}
#if 0
#pragma mark -
#pragma mark Individual Fields
#endif
size_t
hfslib_read_fork_descriptor(void* in_bytes, hfs_fork_t* out_forkdata)
{
void* ptr;
size_t last_bytes_read;
if(in_bytes==NULL || out_forkdata==NULL)
return 0;
ptr = in_bytes;
out_forkdata->logical_size = be64tohp(&ptr);
out_forkdata->clump_size = be32tohp(&ptr);
out_forkdata->total_blocks = be32tohp(&ptr);
if((last_bytes_read = hfslib_read_extent_descriptors(ptr,
&out_forkdata->extents))==0)
return 0;
ptr = (uint8_t*)ptr + last_bytes_read;
return ((uint8_t*)ptr - (uint8_t*)in_bytes);
}
size_t
hfslib_read_extent_descriptors(
void* in_bytes,
hfs_extent_record_t* out_extentrecord)
{
void* ptr;
int i;
if(in_bytes==NULL || out_extentrecord==NULL)
return 0;
ptr = in_bytes;
for(i=0;i<8;i++)
{
(((hfs_extent_descriptor_t*)*out_extentrecord)[i]).start_block =
be32tohp(&ptr);
(((hfs_extent_descriptor_t*)*out_extentrecord)[i]).block_count =
be32tohp(&ptr);
}
return ((uint8_t*)ptr - (uint8_t*)in_bytes);
}
size_t
hfslib_read_unistr255(void* in_bytes, hfs_unistr255_t* out_string)
{
void* ptr;
uint16_t i, length;
if(in_bytes==NULL || out_string==NULL)
return 0;
ptr = in_bytes;
length = be16tohp(&ptr);
if(length>255)
length = 255; /* hfs+ folder/file names have a limit of 255 chars */
out_string->length = length;
for(i=0; i<length; i++)
{
out_string->unicode[i] = be16tohp(&ptr);
}
return ((uint8_t*)ptr - (uint8_t*)in_bytes);
}
size_t
hfslib_read_bsd_data(void* in_bytes, hfs_bsd_data_t* out_perms)
{
void* ptr;
if(in_bytes==NULL || out_perms==NULL)
return 0;
ptr = in_bytes;
out_perms->owner_id = be32tohp(&ptr);
out_perms->group_id = be32tohp(&ptr);
out_perms->admin_flags = *(((uint8_t*)ptr));
ptr = (uint8_t*)ptr + 1;
out_perms->owner_flags = *(((uint8_t*)ptr));
ptr = (uint8_t*)ptr + 1;
out_perms->file_mode = be16tohp(&ptr);
out_perms->special.inode_num = be32tohp(&ptr); /* this field is a union */
return ((uint8_t*)ptr - (uint8_t*)in_bytes);
}
size_t
hfslib_read_file_userinfo(void* in_bytes, hfs_macos_file_info_t* out_info)
{
void* ptr;
if(in_bytes==NULL || out_info==NULL)
return 0;
ptr = in_bytes;
out_info->file_type = be32tohp(&ptr);
out_info->file_creator = be32tohp(&ptr);
out_info->finder_flags = be16tohp(&ptr);
out_info->location.v = be16tohp(&ptr);
out_info->location.h = be16tohp(&ptr);
out_info->reserved = be16tohp(&ptr);
return ((uint8_t*)ptr - (uint8_t*)in_bytes);
}
size_t
hfslib_read_file_finderinfo(
void* in_bytes,
hfs_macos_extended_file_info_t* out_info)
{
void* ptr;
if(in_bytes==NULL || out_info==NULL)
return 0;
ptr = in_bytes;
#if 0
#pragma warn Fill in with real code!
#endif
/* FIXME: Fill in with real code! */
memset(out_info, 0, sizeof(*out_info));
ptr = (uint8_t*)ptr + sizeof(hfs_macos_extended_file_info_t);
return ((uint8_t*)ptr - (uint8_t*)in_bytes);
}
size_t
hfslib_read_folder_userinfo(void* in_bytes, hfs_macos_folder_info_t* out_info)
{
void* ptr;
if(in_bytes==NULL || out_info==NULL)
return 0;
ptr = in_bytes;
#if 0
#pragma warn Fill in with real code!
#endif
/* FIXME: Fill in with real code! */
memset(out_info, 0, sizeof(*out_info));
ptr = (uint8_t*)ptr + sizeof(hfs_macos_folder_info_t);
return ((uint8_t*)ptr - (uint8_t*)in_bytes);
}
size_t
hfslib_read_folder_finderinfo(
void* in_bytes,
hfs_macos_extended_folder_info_t* out_info)
{
void* ptr;
if(in_bytes==NULL || out_info==NULL)
return 0;
ptr = in_bytes;
#if 0
#pragma warn Fill in with real code!
#endif
/* FIXME: Fill in with real code! */
memset(out_info, 0, sizeof(*out_info));
ptr = (uint8_t*)ptr + sizeof(hfs_macos_extended_folder_info_t);
return ((uint8_t*)ptr - (uint8_t*)in_bytes);
}
size_t
hfslib_read_journal_info(void* in_bytes, hfs_journal_info_t* out_info)
{
void* ptr;
int i;
if(in_bytes==NULL || out_info==NULL)
return 0;
ptr = in_bytes;
out_info->flags = be32tohp(&ptr);
for(i=0; i<8; i++)
{
out_info->device_signature[i] = be32tohp(&ptr);
}
out_info->offset = be64tohp(&ptr);
out_info->size = be64tohp(&ptr);
for(i=0; i<32; i++)
{
out_info->reserved[i] = be64tohp(&ptr);
}
return ((uint8_t*)ptr - (uint8_t*)in_bytes);
}
size_t
hfslib_read_journal_header(void* in_bytes, hfs_journal_header_t* out_header)
{
void* ptr;
if(in_bytes==NULL || out_header==NULL)
return 0;
ptr = in_bytes;
out_header->magic = be32tohp(&ptr);
out_header->endian = be32tohp(&ptr);
out_header->start = be64tohp(&ptr);
out_header->end = be64tohp(&ptr);
out_header->size = be64tohp(&ptr);
out_header->blocklist_header_size = be32tohp(&ptr);
out_header->checksum = be32tohp(&ptr);
out_header->journal_header_size = be32tohp(&ptr);
return ((uint8_t*)ptr - (uint8_t*)in_bytes);
}
#if 0
#pragma mark -
#pragma mark Disk Access
#endif
/*
* hfslib_readd_with_extents()
*
* This function reads the contents of a file from the volume, given an array
* of extent descriptors which specify where every extent of the file is
* located (in addition to the usual pread() arguments). out_bytes is presumed
* to exist and be large enough to hold in_length number of bytes. Returns 0
* on success.
*/
int
hfslib_readd_with_extents(
hfs_volume* in_vol,
void* out_bytes,
uint64_t* out_bytesread,
uint64_t in_length,
uint64_t in_offset,
hfs_extent_descriptor_t in_extents[],
uint16_t in_numextents,
hfs_callback_args* cbargs)
{
uint64_t ext_length, last_offset;
uint16_t i;
int error;
if(in_vol==NULL || out_bytes==NULL || in_extents==NULL || in_numextents==0
|| out_bytesread==NULL)
return -1;
*out_bytesread = 0;
last_offset = 0;
for(i=0; i<in_numextents; i++)
{
if(in_extents[i].block_count==0)
continue;
ext_length = in_extents[i].block_count * in_vol->vh.block_size;
if(in_offset < last_offset+ext_length
&& in_offset+in_length >= last_offset)
{
uint64_t isect_start, isect_end;
isect_start = max(in_offset, last_offset);
isect_end = min(in_offset+in_length, last_offset+ext_length);
error = hfslib_readd(in_vol, out_bytes, isect_end-isect_start,
isect_start - last_offset + (uint64_t)in_extents[i].start_block
* in_vol->vh.block_size, cbargs);
if(error!=0)
return error;
*out_bytesread += isect_end-isect_start;
out_bytes = (uint8_t*)out_bytes + isect_end-isect_start;
}
last_offset += ext_length;
}
return 0;
}
#if 0
#pragma mark -
#pragma mark Callback Wrappers
#endif
void
hfslib_error(const char* in_format, const char* in_file, int in_line, ...)
{
va_list ap;
if(in_format==NULL)
return;
if(hfs_gcb.error!=NULL)
{
va_start(ap, in_line);
hfs_gcb.error(in_format, in_file, in_line, ap);
va_end(ap);
}
}
void*
hfslib_malloc(size_t size, hfs_callback_args* cbargs)
{
if(hfs_gcb.allocmem!=NULL)
return hfs_gcb.allocmem(size, cbargs);
return NULL;
}
void*
hfslib_realloc(void* ptr, size_t size, hfs_callback_args* cbargs)
{
if(hfs_gcb.reallocmem!=NULL)
return hfs_gcb.reallocmem(ptr, size, cbargs);
return NULL;
}
void
hfslib_free(void* ptr, hfs_callback_args* cbargs)
{
if(hfs_gcb.freemem!=NULL && ptr!=NULL)
hfs_gcb.freemem(ptr, cbargs);
}
int
hfslib_openvoldevice(
hfs_volume* in_vol,
const char* in_device,
hfs_callback_args* cbargs)
{
if(hfs_gcb.openvol!=NULL && in_device!=NULL)
return hfs_gcb.openvol(in_vol, in_device, cbargs);
return 1;
}
void
hfslib_closevoldevice(hfs_volume* in_vol, hfs_callback_args* cbargs)
{
if(hfs_gcb.closevol!=NULL)
hfs_gcb.closevol(in_vol, cbargs);
}
int
hfslib_readd(
hfs_volume* in_vol,
void* out_bytes,
uint64_t in_length,
uint64_t in_offset,
hfs_callback_args* cbargs)
{
if(in_vol==NULL || out_bytes==NULL)
return -1;
if(hfs_gcb.read!=NULL)
return hfs_gcb.read(in_vol, out_bytes, in_length, in_offset, cbargs);
return -1;
}
#if 0
#pragma mark -
#pragma mark Other
#endif
/* returns key length */
uint16_t
hfslib_make_catalog_key(
hfs_cnid_t in_parent_cnid,
uint16_t in_name_len,
unichar_t* in_unicode,
hfs_catalog_key_t* out_key)
{
if(in_parent_cnid==0 || (in_name_len>0 && in_unicode==NULL) || out_key==0)
return 0;
if(in_name_len>255)
in_name_len = 255;
out_key->key_len = 6 + 2 * in_name_len;
out_key->parent_cnid = in_parent_cnid;
out_key->name.length = in_name_len;
if(in_name_len>0)
memcpy(&out_key->name.unicode, in_unicode, in_name_len*2);
return out_key->key_len;
}
/* returns key length */
uint16_t
hfslib_make_extent_key(
hfs_cnid_t in_cnid,
uint8_t in_forktype,
uint32_t in_startblock,
hfs_extent_key_t* out_key)
{
if(in_cnid==0 || out_key==0)
return 0;
out_key->key_length = HFS_MAX_EXT_KEY_LEN;
out_key->fork_type = in_forktype;
out_key->padding = 0;
out_key->file_cnid = in_cnid;
out_key->start_block = in_startblock;
return out_key->key_length;
}
/* case-folding */
int
hfslib_compare_catalog_keys_cf (
const void *ap,
const void *bp)
{
const hfs_catalog_key_t *a, *b;
unichar_t ac, bc; /* current character from a, b */
unichar_t lc; /* lowercase version of current character */
uint8_t apos, bpos; /* current character indices */
a = (const hfs_catalog_key_t*)ap;
b = (const hfs_catalog_key_t*)bp;
if(a->parent_cnid != b->parent_cnid)
{
return (a->parent_cnid - b->parent_cnid);
}
else
{
/*
* The following code implements the pseudocode suggested by
* the HFS+ technote.
*/
/*
* XXX These need to be revised to be endian-independent!
*/
#define hbyte(x) ((x) >> 8)
#define lbyte(x) ((x) & 0x00FF)
apos = bpos = 0;
while(1)
{
/* get next valid character from a */
for (lc=0; lc == 0 && apos < a->name.length; apos++) {
ac = a->name.unicode[apos];
lc = hfs_gcft[hbyte(ac)];
if(lc==0)
lc = ac;
else
lc = hfs_gcft[lc + lbyte(ac)];
};
ac=lc;
/* get next valid character from b */
for (lc=0; lc == 0 && bpos < b->name.length; bpos++) {
bc = b->name.unicode[bpos];
lc = hfs_gcft[hbyte(bc)];
if(lc==0)
lc = bc;
else
lc = hfs_gcft[lc + lbyte(bc)];
};
bc=lc;
/* on end of string ac/bc are 0, otherwise > 0 */
if (ac != bc || (ac == 0 && bc == 0))
return ac - bc;
}
#undef hbyte
#undef lbyte
}
}
/* binary compare (i.e., not case folding) */
int
hfslib_compare_catalog_keys_bc (
const void *a,
const void *b)
{
if(((const hfs_catalog_key_t*)a)->parent_cnid
== ((const hfs_catalog_key_t*)b)->parent_cnid)
{
if(((const hfs_catalog_key_t*)a)->name.length == 0 &&
((const hfs_catalog_key_t*)b)->name.length == 0)
return 0;
if(((const hfs_catalog_key_t*)a)->name.length == 0)
return -1;
if(((const hfs_catalog_key_t*)b)->name.length == 0)
return 1;
/* FIXME: This does a byte-per-byte comparison, whereas the HFS spec
* mandates a uint16_t chunk comparison. */
return memcmp(((const hfs_catalog_key_t*)a)->name.unicode,
((const hfs_catalog_key_t*)b)->name.unicode,
min(((const hfs_catalog_key_t*)a)->name.length,
((const hfs_catalog_key_t*)b)->name.length));
}
else
{
return (((const hfs_catalog_key_t*)a)->parent_cnid -
((const hfs_catalog_key_t*)b)->parent_cnid);
}
}
int
hfslib_compare_extent_keys (
const void *a,
const void *b)
{
/*
* Comparison order, in descending importance:
*
* CNID -> fork type -> start block
*/
if(((const hfs_extent_key_t*)a)->file_cnid
== ((const hfs_extent_key_t*)b)->file_cnid)
{
if(((const hfs_extent_key_t*)a)->fork_type
== ((const hfs_extent_key_t*)b)->fork_type)
{
if(((const hfs_extent_key_t*)a)->start_block
== ((const hfs_extent_key_t*)b)->start_block)
{
return 0;
}
else
{
return (((const hfs_extent_key_t*)a)->start_block -
((const hfs_extent_key_t*)b)->start_block);
}
}
else
{
return (((const hfs_extent_key_t*)a)->fork_type -
((const hfs_extent_key_t*)b)->fork_type);
}
}
else
{
return (((const hfs_extent_key_t*)a)->file_cnid -
((const hfs_extent_key_t*)b)->file_cnid);
}
}
/* 1+10 tables of 16 rows and 16 columns, each 2 bytes wide = 5632 bytes */
int
hfslib_create_casefolding_table(void)
{
hfs_callback_args cbargs;
unichar_t* t; /* convenience */
uint16_t s; /* current subtable * 256 */
uint16_t i; /* current subtable index (0 to 255) */
if(hfs_gcft!=NULL)
return 0; /* no sweat, table already exists */
hfslib_init_cbargs(&cbargs);
hfs_gcft = hfslib_malloc(5632, &cbargs);
if(hfs_gcft==NULL)
HFS_LIBERR("could not allocate case folding table");
t = hfs_gcft; /* easier to type :) */
/*
* high byte indices
*/
s = 0 * 256;
memset(t, 0x00, 512);
t[s+ 0] = 0x0100;
t[s+ 1] = 0x0200;
t[s+ 3] = 0x0300;
t[s+ 4] = 0x0400;
t[s+ 5] = 0x0500;
t[s+ 16] = 0x0600;
t[s+ 32] = 0x0700;
t[s+ 33] = 0x0800;
t[s+254] = 0x0900;
t[s+255] = 0x0a00;
/*
* table 1 (high byte 0x00)
*/
s = 1 * 256;
for(i=0; i<65; i++)
t[s+i] = i;
t[s+ 0] = 0xffff;
for(i=65; i<91; i++)
t[s+i] = i + 0x20;
for(i=91; i<256; i++)
t[s+i] = i;
t[s+198] = 0x00e6;
t[s+208] = 0x00f0;
t[s+216] = 0x00f8;
t[s+222] = 0x00fe;
/*
* table 2 (high byte 0x01)
*/
s = 2 * 256;
for(i=0; i<256; i++)
t[s+i] = i + 0x0100;
t[s+ 16] = 0x0111;
t[s+ 38] = 0x0127;
t[s+ 50] = 0x0133;
t[s+ 63] = 0x0140;
t[s+ 65] = 0x0142;
t[s+ 74] = 0x014b;
t[s+ 82] = 0x0153;
t[s+102] = 0x0167;
t[s+129] = 0x0253;
t[s+130] = 0x0183;
t[s+132] = 0x0185;
t[s+134] = 0x0254;
t[s+135] = 0x0188;
t[s+137] = 0x0256;
t[s+138] = 0x0257;
t[s+139] = 0x018c;
t[s+142] = 0x01dd;
t[s+143] = 0x0259;
t[s+144] = 0x025b;
t[s+145] = 0x0192;
t[s+147] = 0x0260;
t[s+148] = 0x0263;
t[s+150] = 0x0269;
t[s+151] = 0x0268;
t[s+152] = 0x0199;
t[s+156] = 0x026f;
t[s+157] = 0x0272;
t[s+159] = 0x0275;
t[s+162] = 0x01a3;
t[s+164] = 0x01a5;
t[s+167] = 0x01a8;
t[s+169] = 0x0283;
t[s+172] = 0x01ad;
t[s+174] = 0x0288;
t[s+177] = 0x028a;
t[s+178] = 0x028b;
t[s+179] = 0x01b4;
t[s+181] = 0x01b6;
t[s+183] = 0x0292;
t[s+184] = 0x01b9;
t[s+188] = 0x01bd;
t[s+196] = 0x01c6;
t[s+197] = 0x01c6;
t[s+199] = 0x01c9;
t[s+200] = 0x01c9;
t[s+202] = 0x01cc;
t[s+203] = 0x01cc;
t[s+228] = 0x01e5;
t[s+241] = 0x01f3;
t[s+242] = 0x01f3;
/*
* table 3 (high byte 0x03)
*/
s = 3 * 256;
for(i=0; i<145; i++)
t[s+i] = i + 0x0300;
for(i=145; i<170; i++)
t[s+i] = i + 0x0320;
t[s+162] = 0x03a2;
for(i=170; i<256; i++)
t[s+i] = i + 0x0300;
for(i=226; i<239; i+=2)
t[s+i] = i + 0x0301;
/*
* table 4 (high byte 0x04)
*/
s = 4 * 256;
for(i=0; i<16; i++)
t[s+i] = i + 0x0400;
t[s+ 2] = 0x0452;
t[s+ 4] = 0x0454;
t[s+ 5] = 0x0455;
t[s+ 6] = 0x0456;
t[s+ 8] = 0x0458;
t[s+ 9] = 0x0459;
t[s+ 10] = 0x045a;
t[s+ 11] = 0x045b;
t[s+ 15] = 0x045f;
for(i=16; i<48; i++)
t[s+i] = i + 0x0420;
t[s+ 25] = 0x0419;
for(i=48; i<256; i++)
t[s+i] = i + 0x0400;
t[s+195] = 0x04c4;
t[s+199] = 0x04c8;
t[s+203] = 0x04cc;
for(i=96; i<129; i+=2)
t[s+i] = i + 0x0401;
t[s+118] = 0x0476;
for(i=144; i<191; i+=2)
t[s+i] = i + 0x0401;
/*
* table 5 (high byte 0x05)
*/
s = 5 * 256;
for(i=0; i<49; i++)
t[s+i] = i + 0x0500;
for(i=49; i<87; i++)
t[s+i] = i + 0x0530;
for(i=87; i<256; i++)
t[s+i] = i + 0x0500;
/*
* table 6 (high byte 0x10)
*/
s = 6 * 256;
for(i=0; i<160; i++)
t[s+i] = i + 0x1000;
for(i=160; i<198; i++)
t[s+i] = i + 0x1030;
for(i=198; i<256; i++)
t[s+i] = i + 0x1000;
/*
* table 7 (high byte 0x20)
*/
s = 7 * 256;
for(i=0; i<256; i++)
t[s+i] = i + 0x2000;
{
uint8_t zi[15] = { 12, 13, 14, 15,
42, 43, 44, 45, 46,
106, 107, 108, 109, 110, 111};
for(i=0; i<15; i++)
t[s+zi[i]] = 0x0000;
}
/*
* table 8 (high byte 0x21)
*/
s = 8 * 256;
for(i=0; i<96; i++)
t[s+i] = i + 0x2100;
for(i=96; i<112; i++)
t[s+i] = i + 0x2110;
for(i=112; i<256; i++)
t[s+i] = i + 0x2100;
/*
* table 9 (high byte 0xFE)
*/
s = 9 * 256;
for(i=0; i<256; i++)
t[s+i] = i + 0xFE00;
t[s+255] = 0x0000;
/*
* table 10 (high byte 0xFF)
*/
s = 10 * 256;
for(i=0; i<33; i++)
t[s+i] = i + 0xFF00;
for(i=33; i<59; i++)
t[s+i] = i + 0xFF20;
for(i=59; i<256; i++)
t[s+i] = i + 0xFF00;
return 0;
error:
return 1;
}
int
hfslib_get_hardlink(hfs_volume *vol, uint32_t inode_num,
hfs_catalog_keyed_record_t *rec,
hfs_callback_args *cbargs)
{
hfs_catalog_keyed_record_t metadata;
hfs_catalog_key_t key;
char name[16];
unichar_t name_uni[16];
int i, len;
/* XXX: cache this */
if (hfslib_find_catalog_record_with_key(vol,
&hfs_gMetadataDirectoryKey,
&metadata, cbargs) != 0
|| metadata.type != HFS_REC_FLDR)
return -1;
len = snprintf(name, sizeof(name), "iNode%d", inode_num);
for (i=0; i<len; i++)
name_uni[i] = name[i];
if (hfslib_make_catalog_key(metadata.folder.cnid, len, name_uni,
&key) == 0)
return -1;
return hfslib_find_catalog_record_with_key(vol, &key, rec, cbargs);
}